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Identifying two regimes of slip of simple fluids over smooth
surfaces with weak and strong wall-fluid interaction energies
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The slip behavior of simple fluids over atomically smooth surfaces was investigated in a wide range
of wall-fluid interaction (WFI) energies at low shear rates using non-equilibrium molecular dynamics
simulations. The relationship between slip and WFI shows two regimes (the strong-WFI and weak-
WFI regimes): as WFI decreases, the slip length increases in the strong-WFI regime and decreases in
the weak-WFI regime. The critical value of WFI energy that separates these regimes increases with
temperature, but it remains unaffected by the driving force. The mechanism of slip was analyzed by
examining the density-weighted average energy barrier (AE) encountered by fluid atoms in the first
fluid layer (FFL) during their hopping between minima of the surface potential. We demonstrated that
the relationship between slip and WFI can be rationalized by considering the effect of the fluid density
distribution in the FFL on AE as a function of the WFI energy. Moreover, the dependence of the slip
length on WFI and temperature is well correlated with the exponential factor exp(—~AE/(kgT)), which
also determines the critical value of WFI between the strong-WFI and weak-WFI regimes. Published

by AIP Publishing. [http://dx.doi.org/10.1063/1.4973640]

l. INTRODUCTION

For centuries, the no-slip boundary condition (BC) has
been successfully used in analyzing macroscale liquid flows
because it can reproduce the flow characteristics measured
in experiments. In the past few decades, experiments!™ and
computer simulations®!! demonstrated that a liquid can slip
relative to the solid boundary. The most common way to
measure slip is by using the concept of the slip length intro-
duced by Navier, which states that the slip length is defined
as an extrapolated distance where the fluid velocity profile
vanishes.? Typical values reported in experiments for the slip
length are of the order of few nanometers leading to a conclu-
sion that slip can be safely ignored in most macroscale flow
systems.'> However, even a small amount of slip can be impor-
tant in small-scale flows, which are present, for example, in
nanofluidic devices. A critical technological problem of these
devices is the high flow resistance owing to the extremely small
channel dimensions.' '3 By definition, the friction coefficient
(k) of the wall/fluid interface is inversely related to the slip
length: k = p/Ls, where y is the viscosity of fluid.'* There-
fore, slippage can provide a promising way to reduce the high
resistance in nanoflows.

To properly describe and manipulate liquid flow in a
highly confined geometry, such as flows in nanochannels, the
mechanism of slip needs to be understood at the atomic level.
During the past decades, molecular dynamics (MD) simula-
tions were extensively used to study the correlation between
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slip and various interfacial parameters® 311134 since this

method can provide atomistic resolution of velocity profiles
and dynamics of fluid atoms in contact with solid walls.
The dominant factors influencing liquid slip over atomically
smooth surfaces are the wall-fluid interaction (WFI) energy,
shear rate, commensurability between liquid and solid struc-
tures, and thermodynamics parameters (temperature, pressure,
etc.).

The inverse correlation between slip and WFI has been
repeatedly observed in many previous MD studies,”!72-22
which is consistent with the intuition that weak WFI reduces
the friction between a fluid and a smooth solid wall. Along
with decreasing WFI, the slip length was shown to be corre-
lated inversely with the degree of order induced in the first
fluid layer (FFL) by the periodic surface potential.!%1418-20
Increasing shear rate and/or incommensurability between liq-
uid and solid structures reduces the order within FFL, hence
slip is enhanced.!-18

The slip model'®!* based on the fluid structure shows
that the slip length is directly related to the main peak value
of the in-plane structure factor of a liquid in the FFL. The in-

plane fluid structure factor is defined as S(k) = 1/N, |Z i K 2,
where r; = (x;,;) is the two-dimensional position vector of
the jth atom and the sum is taken over N; atoms within the
FFL.!7 Furthermore, Martini er al.'>1° studied the so-called
“defect-slip” mechanism by investigating the hopping dynam-
ics of fluid atoms in the FFL at low shear rates. Using a
similar concept, Wang and Zhao? proposed an explicit quan-
titative expression for the slip velocity. According to their
work, the magnitude of slip velocity depends on the average
shear stress, the temperature, and the energy barrier encoun-
tered by atoms during hopping. Decreasing WFI leads to a

Published by AIP Publishing.


http://dx.doi.org/10.1063/1.4973640
http://dx.doi.org/10.1063/1.4973640
http://dx.doi.org/10.1063/1.4973640
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4973640&domain=pdf&date_stamp=2017-01-17

034701-2 Hu et al.

reduction in the energy barrier, and, consequently, an increase
of slip because atoms can hop more easily. Thus the negative
correlation between slip and WFI is recovered.

The mechanism of slip proposed by Martini et al.'>'¢ and
Wang and Zhao? predicts a monotonic relation between slip
and WFI, which is consistent with previous MD simulation
results.”-17-20:22.26-28 Hwever, when WFI is less than a critical
value (about six percent of the interaction energy between fluid
atoms), Liu and Li%° observed a positive correlation between
the WFI energy and the fluid mass flux, which is another way
to measure the degree of slip. Most of the previous MD stud-
ies that reported inverse relation between slip and WFI were
carried out with the WFI energy greater than ten percent of the
interaction energy between fluid atoms.”-!7-20:22.26-28 There-
fore, the slip length appears to exhibit two distinct regimes
depending on WFI, which has not been studied systematically.
Moreover, the mechanism of slip at weak WFI still remains
unclear.

The present work provides a detailed analysis of the slip
behavior in a wide range of WFI and explores the mechanism
of slip at weak WFI using non-equilibrium MD simulations.
Our numerical results demonstrate that the negative correlation
between the slip length and WFI is consistently followed by the
positive correlation with decreasing WFI for various flow con-
ditions. The critical value of WFI between these slip regimes
increases with temperature but it is independent of shear rate.
We will show that the two-regime relationship between slip
and WFI is a result of a competition between a reduced WFI
energy and the variation of fluid density distribution in the
FFL.

The paper is organized as follows. The details of MD
simulations are presented in the Sec. II. Results for the slip
length in a wide range of WFI at different shear rates and
temperatures are presented in Sec. III A. The mechanism slip
is discussed in Sec. III B. The summary is given in the last
section.

Il. MD SIMULATION MODEL

The geometry of simulation is a slab of fluid confined
between two face-centered-cubic (FCC) (001) solid walls (see
Fig. 1). The interaction between fluid atoms or fluid and wall
atoms is both modeled using Lennard-Jones (LJ/126) potential
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where E;; is the energy between atoms i and j, & and o are
the characteristic energy and length of the potential, respec-
tively. Here @ and B are types of atoms i and j. The indices
af denote either fluid-fluid (FF) or wall-fluid (WF), which
corresponds to the interaction between fluid atoms or fluid
and wall atoms. The LJ units defined by the intrinsic proper-
ties of the fluid: mgg, epp, and opp are used to express all the
physical units and the subscripts will be ignored, if these quan-
tities are treated as units. A cutoff distance (r. =2.50") of the
LJ potential was adopted to improve the computational effi-
ciency. The dimensions of the simulation domain in the x and
z directions are 58.140" and 28.210, respectively. The height
of the channel and the density of the fluid are 29.360 and

RIGHTS L1 N Hig

J. Chem. Phys. 146, 034701 (2017)

29.360

0o

FIG. 1. The front view of the simulation domain. The symbols (e, blue) and
(e, red) denote the solid and fluid atoms. The fluid phase consists of 39 168
atoms and each wall contains 15 300 atoms. The vertical axis (y) shows y = 0o
and the channel height.

0.813073, respectively. Both solid walls shown in Fig. 1 were
constructed using the face-centered-cubic lattice constant of
1.150. The rigid wall model was adopted where wall atoms
were fixed to their lattice sites. The wall density is 4.350 3
and the density ratio between a fluid and a solid corresponds
to a high degree of incommensurability between the adjacent
fluid and the wall structure.'? The thickness of the walls was
set to be greater than the cutoff distance.

The planar Poiseuille flow was generated by a constant
external force F, in the +x direction, which was added to
the equation of motion for each fluid atom.'”!® A biased
Nosé-Hoover thermostat®® is applied to the fluid phase to
maintain the temperature in the system. While computing the
temperature, the kinetic energy is calculated after subtracting
out a spatially-averaged center-of-mass velocity field of the x
component of fluid atoms. This is done by dividing the sim-
ulation domain into 100 bins parallel to the solid walls. All
simulations are carried out using the LAMMPS MD code?!
with a time step of Ar = 0.0027, where 7 = (mo2 /)12,
The damping parameter used in the Nosé-Hoover thermostat
is 0.27. The force F, was applied to each fluid atom after equi-
libration of the system during 10° time steps, and additional
10% time steps were used to reach the steady Poiseuille flow.

The fluid density and velocity profiles were averaged
within slices of thickness Ay = 0.02¢ for additional 2 x 10°
time steps. The slip length (Ls) was computed using the Navier
slip model: Lg = vs/y, where vg and y are the slip velocity and
shear rate at the wall-fluid interface, which is set at the posi-
tion of the bottom layer for the upper wall and the top layer for
the lower wall. The parameters vg and y were calculated by
extrapolating the parabolic fit of velocity profiles with respect
to the wall-fluid interface. The velocity profiles used for fitting
were computed from 5.010 to 24.990 to exclude the portions
near both walls,'%-!11:19:32

lll. RESULTS AND DISCUSSION
A. Slip length versus wall-fluid interaction energy

The variation of the slip length (Lg) versus WFI energy
(eyg) for different temperatures (7') and driving forces (£)
is presented in Fig. 2. With decreasing &, the slip length
exhibits two distinct regimes, namely, Lg first increases and
then decreases when ¢, becomes smaller than a critical value
el Atagiven T and Fy, e]™ is defined as the WFI energy,
where Ls as a function of &, reaches maximum. This rela-
tionship between Lg and &, holds at different T and F,. In
what follows, we call the negative correlation between Lg and
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FIG. 2. The slip length (Ls) versus the wall-fluid interaction (WFI) energy &, for different temperatures (7') and driving forces (Fy). The units of 7" and Fy
are e/kp and g/o. The right panel represents the enlarged view of Lg — &y in the strong-WFI slip regime. The blue dashed line in the left panel is a guide to
the eye in order to distinguish the strong-WFI and weak-WFI slip regimes. The vertical dashed line in the right panel indicates the intersection point and the
value of sék. The typical error bars were computed from five independent simulations with different initial atomic momenta distributions. Each simulation was

carried out in the same way as described in Section II except that 105 MD steps were used to average the fluid density and velocity profiles.

&wr as the strong-WFI slip regime, and, correspondingly, the
positive correlation between Ls and &, as the weak-WFI slip
regime. The critical value of WFI energy between strong- and
weak-WFI slip regimes, sﬂax, increases as T is varied from
0.8¢/kp to 1.6e/kp when Fy = 0.005¢/0, while £/ remains
unchanged as Fy is varied from 0.0025¢/0 to 0.0l¢/o for
T = 1.0¢/kp [see Fig. 3]. A similar dependence of £/ on T
also holds for Fy = 0.0075¢/0 . These results demonstrate that
e is positively correlated with 7' and independent of F.

It can be observed in Fig. 2(b), that Ls — &, curves inter-
sect each other at different 7. We denoted the intersection
point as sLR. Furthermore, T affects the slip length in two
opposite ways, when &, is either larger or smaller than séR.

When &, > &l , Ls increases with 7, while at &, < &', Lg
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FIG. 3. Variation of £ as a function of temperature and driving force.
The parameter & @* denotes the wall-fluid interaction energy where the
slip length reaches maximum. The symbols (black filled square) and (red
filled circle) indicate sglsax versus T and F\, respectively. Fy is varied from
0.0025 to 0.01e/0- at T = 1.0&/kp, and T is changed from 0.8 to 1.6&/kp
at F, =0.005&/0. The black and red dashed lines show trends of agax as a

function of temperature and driving force, respectively.

Ay

decreases with 7. With increasing F',, Lg increases in the whole
range of &, at the same 7, which is consistent with published
results.'® When &, becomes sufficiently large, several fluid
layers near the wall were locked to the substrate and thus they
can be regarded as immobile epitaxial layers.'? In this case, the
slip length is negative since by definition it was calculated by
extrapolating the parabolic fit of velocity profile with respect
to the wall-fluid interface. Higher degree of locking of fluid
layers leads to more negative slip. Therefore, the negative slip
length reflects the degree of locking of fluid layers near the
walls. In other words, a small value of the negative slip length
means that fluid flows over the locked fluid layers but it does
not imply that the flow is in the opposite direction (there is
no backflow in this geometry). With decreasing &, the slip
length increases from negative to positive. We denoted 82R as
the critical value of &, between negative and positive values of
the slip length, and it can be seen in Fig. 2(b) that ng increases
with T and F,. We note that the positive correlation between
ng and F) is not significant owing to the small increment of
F, from 0.005¢/0 to 0.0075&/0.

B. Analysis of the slip behavior in the weak
and strong WFI regimes

Many previous studies'?!416:18:20.25.32 haye demonstrated
that the first fluid layer (FFL) plays a crucial role in describ-
ing slip phenomena. The influence of the remaining layers on
slip needs to be considered only at high shear rates,>> which
is not the case in our study. Martini ef al.'>'® and Wang and
Zhao.” suggested that the slip velocity is proportional to the
difference between hopping rates of FFL fluid atoms from one
equilibrium site to another along and opposite to the flow direc-
tion. Fluid atoms in the FFL experience a corrugated surface
potential determined by WFI, lattice structure, and thermal
roughness.!*3? In our study, we focused on the influence of
WFI. As shown in Fig. 4(a), the surface potential consists of
local maxima and minima periodically distributed at the wall
lattice plane.

Atoms in the FFL prefer to occupy the local minima of
the surface potential, while some of these atoms occasionally
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hop across the energy barrier between potential minima. The
slip velocity originates from the difference between hopping
rates in the flow direction and opposite to the flow direction.
The slip velocity (vs) can be expressed as>

¢ =24 keI ex AE sinh 45 §>
= e — ra— V.
po=1%s WFy P\ TkeT wsT )7 (@)

/7
0,vg <vy

where T is the temperature and / is the Planck constant. AE is
the energy barrier that atoms encounter. F', and F are the par-
tition functions for the activated and initial states, respectively.
Here, 7 is the shear stress acting on FFL, S is the effective area
of FFL along the flow direction, and A is the distance of a single
hop in the FFL. vy is the typical fluctuation of thermal veloc-
ity in the FFL. The apparent slip velocity in Eq. (2) becomes
finite when v§ can be discerned from the fluctuation of thermal
velocity; otherwise, the shear stress only enhances the thermal
motion of liquid atoms.”> At low shear rates, the term #AS is
much smaller than kg T, and thus the hyperbolic sine function
in Eq. (2) can be reduced to the linear function and F,/F( can
be assumed to be constant. Therefore, Eq. (2) for the average
slip velocity reduces to

AE
Vg &< ‘T'/leexp (— 3)

)
In general, the energy barrier AE depends on &, the
distance from the top lattice plane, and the wall lattice constant.

In the present study, we focused on the first two factors. As it
is evident from Fig. 4(b), AE increases sharply as the distance
between the LJ atom and lattice plane decreases. For the same
distance from the top lattice plane, AE decreases at small g,
and the sharply increasing part of AE — y curve is displaced
closer to the wall at the small g.

The fluid density profiles near the lower wall are presented
in Fig. 5 for the indicated system parameters. It can be seen
in Fig. 5(a) that the density distribution of atoms in the FFL is
markedly different at large and small values of &,. At large
&wF, the location of the FFL (measured by the position of the
first density maximum) remains nearly the same and the first
peak is relatively sharp [see Fig. 5(a)]. These features of the
density profiles of fluid atoms in the FFL support the validity
of assumption that AE is constant in Egs. (2) and (3) for large
enough ;.. In other words, AE depends on the distance from
the top lattice plane in an insignificant way.

When &, decreases below a certain value, the location
of FFL is displaced towards the wall, and fluid atoms become
more broadly distributed within the FFL [see Figs. 5(a) and
5(b2)]. We note, however, that fluid atoms do not penetrate
into the solid wall even at the smallest value €, = 0.0035¢
considered in the present study. The broader density distri-
bution within the FFL suggests that the equal energy barrier
assumption might not be valid at small g, since atoms at
different positions experience an energy barrier of different
magnitudes. In this case, the dependence of AE on the location
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of FFL should be taken into account. To consider the depen-
dence of AE on the position of atoms within FFL and Eyp W
introduce the density-weighted average energy barrier, AE,
E _ Z?:] Pi AE;
Z?;] Pi ’

where p; is the density in the ith slice parallel to the lattice
plane, AE; is the energy barrier for atoms in the ith slice, and
n is the total number of slices in the FFL.

The dependence of the density-averaged energy barrier
AE as a function of &, for the indicated parameters is pre-
sented in Fig. 6(a). In all cases, AE first decreases and then
increases with &, decreasing. We then calculated the fac-
tor exp(—AE/(kgT)) using the corresponding values of AE at
different &, for cases at a given T and F,. The Boltzmann
constant (kg) is set to 1 for the unit system used in our study.
The values of temperature used to calculated exp(—ﬁ/(kg 7))
are in the range from 0.8¢/kp to 1.6&/kg. We directly used
the temperature set by the thermostat because the difference
between the time-averaged temperature from simulations and
the thermostat temperature is negligible. Therefore, the value
of &, at which AE is minimum is the same as the value of &
at which exp(—ﬁ/ (kgT)) is maximum for a given 7" and F.
It can be seen in Fig. 6(b) that the critical value of &, where
exp(—ﬁ/ (kgT)) reaches maximum or AE reaches minimum
correlates well with g7,

“

The non-monotonic dependence of AE on Ewr 1S @ net
result of decreasing ;. and the broader density distribution
of the FFL at smaller .. As mentioned above, AE depends on
&y and the distance from the top lattice plane for a given wall
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structure. For large &, the location of FFL remains approx-
imatively unchanged and atoms in the FFL are distributed
within a narrow region. Under these circumstances, &, domi-
nates the magnitude of AE resulting in that AE decreases with
reducing &,,.. By contrast, for small €, the location of FFL
is displaced towards the wall, and fluid atoms become more
broadly distributed within the FFL as &, decreases. Since AE
increases sharply as the distance from the top lattice plane is
decreasing, these variations of density distribution of atoms in
the FFL dominate AE in Eq. (4). Therefore, AE increases as
&y decreases for small g,

Smaller values of AE indicate that fluid atoms in the FFL
hop more frequently between minima of the surface potential.
Hence, slip increases as &, decreasing. Similarly, after e,
decreases below a certain value, increasing AE leads to smaller
hopping rate of fluid atoms in the FFL, and, thus, smaller slip.
Therefore, the non-monotonic dependence of the slip length
on g, is recovered.

The influence of T on slip is more complicated. On the
one hand, at high T atoms in the FFL possess a greater kinetic
energy and overcome energy barriers more easily, hence larger
slip. On the other hand, atoms in the FFL are displaced towards
the wall with increasing T at the same &,,;. [see Figs. 5(b1) and
5(b2)]. In other words, AE increases with 7, hence smaller
slip. Therefore, the dependence of slip on T is a competition
between the increase of the energy barrier and kinetic energy
of atoms with increasing 7.

The simulation results for the factor exp(—ﬁ/(kg T)) ver-
sus &, for different 7 are plotted in Fig. 6(c). At large €.,
T has insignificant effect on the density distribution in the
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FFL [see Fig. 5(bl)] owing to the strong WFI. In this case,
the kinetic energy (kg7') mostly contributes to changes of
exp(—ﬁ/(lqg T)), shown in Fig. 6(c), leading to larger slip at
higher 7. At small &, the FFL moves significantly closer to
the wall with increasing T [see Fig. 5(b)], which results in a
considerable increment of AE. Consequently, AE dominates
the factor exp(—ﬁ/ (kgT)) [see Fig. 6(c)], thus showing that
increasing T decreases slip. We conclude that the positive cor-
relation between £ and T shown in Fig. 3 originates from
the fact that the FFL is displaced towards the wall at larger &
and higher 7.

It can be noticed that the FFL is displaced closer towards
the walls and the density profile in the FFL becomes sharper
with increasing 7 at small &, [see Fig. 5(b2)]. As discussed
above, AE increases as the FFL is displaced closer towards the
walls and fluid atoms become more broadly distributed within
the FFL. Therefore, with increasing T at small €, the varia-
tion of AE is a combined effect of FFL towards the walls and
the shaper density profile in the FFL. This phenomenon under-
lines the advantage of using AE to quantify the energy barrier,
since AE includes both the position of the FFL and features
of the fluid density profile in the FFL. It can be observed that
there is a difference between the values of sICR of intersection
in Figs. 2 and 6(c). Also, the trends of curves in Fig. 2 are
different from the corresponding ones in Fig. 6(c). These two
mismatches might be attributed to the missing factor of shear
stress in the term exp(—ﬁ/ (kgT)).

At T =0.8 and 1.0¢/kg, the magnitude of AE in Fig. 6(a)
remains nearly identical when F) is varied from 0.005¢/0 to
0.0075¢/0. At low shear rates, F, has negligible influence on
the density distribution of the adjacent fluid at large and small
values of g, [see Figs. 5(bl) and 5(b2)], which is consistent
with the previous results.!”?? At other conditions remaining
the same, increasing driving force leads to a larger slip velocity
which is described by the term in front of the exponential
factor in Eq. (3). The increase of the slip length with driving
force shows that the slip length is rate-dependent in our cases.

As discussed above, the critical value sz‘sax is determined by

the exponential factor of AE. Thus, slrflsax remains unchanged
with Fy since driving force influences the term in front of the
exponential factor in Eq. (3) at low shear rates.

We finally comment that the fluid density in the bulk
changes slightly (the maximum deviation of bulk fluid den-
sity is less than 5% from the expected value of 0.813073),
since the effective height of the channel depends on &, (see
Fig. 5), which in turn might affect the fluid viscosity and the
slip length. In our study, the bulk viscosity was computed using

the following equation:

_ FMYAYTL pi 5
(71 - 7}1)A

where Ay is the thickness of the slice parallel to the lattice
plane, A is the area of simulation domain in the xz plane. Indices
i =1 and n correspond to the y-coordinates, y; and y, (y, > y1).
v1 and y, are the shear rates of the fluid phase at y; and y,,
respectively. y; and y, are located in the bulk region and y,
is less than half of the channel height. In our work, y; and y,
equals to 7.010 and 14.010.
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FIG. 7. The fluid viscosity (u) versus the wall-fluid interaction energy &y
for different temperatures (7') and driving forces (Fy). The units of 7" and
F, are g/kg and &/o, respectively. The error bars were estimated from five
independent runs.

The relationship between u and ey, at different 7 and
F, is presented in Fig. 7. The value of y computed using
Eq. (5)is consistent with the previous results.'® It can be seen in
Fig. 7 that the bulk viscosity is nearly constant in the weak WTI
regime (g, <0.1¢) and it varies slightly at large &,,. when
fluid and solid structures are locked together at interfaces. We
note that the variation of the friction coefficient (k = u/Lg) as
afunction of ;. displays the same strong- and weak-WFI slip
regimes (as in Fig. 2) and the critical value of &, is identical
to the one reported in Fig. 6(b) (not shown).

IV. SUMMARY

In this paper, the slip behavior of a simple fluid was inves-
tigated in a wide range of the wall-fluid interaction (WFI)
energies for force-driven flows using non-equilibrium molec-
ular dynamics simulations. Two slip regimes were observed:
the strong-WFI and weak-WFI regimes. In the strong-WFI
regime, the slip length increases with WFI decreasing, while
slip depends on WFI in an opposite way in the weak-WFI
regime. The critical value of the WFI energy when the slip
length is maximum increases with temperature but remains
unchanged with driving force at low shear rates. Interestingly,
we observed that L — &, curves intersect each other at differ-
ent temperatures. However, the physical meaning of such an
intersection point is at present not clear and it will be addressed
in our future study.

Furthermore, we demonstrated that the variation of the slip
length can be understood by examining the density-weighted
average energy barrier (AE) encountered by fluid atoms in
the first fluid layer during their hopping between minima of
the surface potential. The relationship between slip and WFI
is a combined effect of the reduced WFI energy and different
density distributions of FFL on AE. At the same WFI and driv-
ing force, temperature affects AE by influencing the density
distribution of fluid in the FFL and kinetic energy of atoms.
At different WFIs and temperatures, the slip length is well
correlated with the exponential factor exp(—ﬁ/ (kgT)), which
determines the critical value of WFIL.
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