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Abstract—Separators are fundamental plasma physics objects that play an important role in
many astrophysical phenomena. Looking for separators and their number is one of the first steps
in studying the topology of the magnetic field in the solar corona. In the language of dynamical
systems, separators are noncompact heteroclinic curves. In this paper we give an exact lower
estimation of the number of noncompact heteroclinic curves for a 3-diffeomorphism with the
so-called “surface dynamics”. Also, we prove that ambient manifolds for such diffeomorphisms
are mapping tori.
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1. INTRODUCTION

It follows from the classical papers [1] and [17] that rough (structurally stable) flows on surfaces
have no trajectories which connect two different saddle equilibria (heteroclinic trajectories). In
the case where the ambient manifold has dimension three, the structurally stable flows can have
such trajectories, and invariant manifolds of different saddle periodic points of structurally stable
diffeomorphisms can intersect with curves (they can be either compact or noncompact) that are
called heteroclinic curves. Heteroclinic trajectories and curves play a principal role in studying
regular processes. For example, in a series of papers by E. Priest and coauthors (see [19, 20] for
information), devoted to studying the topology of the magnetic field in the solar corona, considerable
attention is paid to the problem of existence of separators. From dynamical systems point of view,
separators are just heteroclinic trajectories and curves.

There are a few fundamental results obtained by Ch.Bonatti, V.Grines, V. Medvedev,
E.Pecou, O.Pochinka, E. Zhuzhoma on the existence of heteroclinic curves for Morse – Smale 3-
diffeomorphisms. In [4] the existence of heteroclinic curves was established for every Morse – Smale
diffeomorphism given on a closed 3-manifold distinct from the 3-sphere S

3 and the connected sum
of a finite number of copies of S

2 × S
1. In [7] the existence of noncompact heteroclinic curves was

proved for every polar 3-diffeomorphism (a diffeomorphism with a unique sink and source) given
on an irreducible 3-manifold (a manifold where each bi-collared 2-sphere bounds a 3-ball), which
was effectively applied to find heteroclinic separators of magnetic fields in electrically conducting
fluids. By [9], if a polar diffeomorphism is given on a lens Lp,q and its nonwandering set contains
exactly two saddle points with trivially embedded one-dimensional manifolds, then the wandering
set contains at least p heteroclinic curves. In [6], a new sufficient condition for the existence of
heteroclinic curves was found for gradient-like systems with surface dynamics on three-dimensional
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ON THE NUMBER OF HETEROCLINIC CURVES OF DIFFEOMORPHISMS 123

manifolds (exact definitions will be given below). In this paper, an exact lower estimation of the
number of heteroclinic curves for such systems is given.

Let Mn be a closed n-manifold. Recall ([25]) that a diffeomorphism f : Mn → Mn satisfies
Axiom A (f is A-diffeomorphism) if the following conditions hold: 1) the nonwandering set Ωf is
hyperbolic1); 2) the periodic points are dense in Ωf . According to Smale’s spectral theorem [25], the
nonwandering set of an A-diffeomorphism f can be represented as a finite union of pairwise disjoint
closed invariant sets, called basic sets, each of which contains a dense trajectory. By [12, 21, 22],
Axiom A and the strong transversality condition2) are necessary and sufficient conditions for the
structural stability of f . Due to [26], Axiom A and the absence of cycles3) are necessary and
sufficient conditions for Ω-stablity of f .

Everywhere below we will assume that f is an orientation preserving Ω-stable diffeomorphism
given on an orientable 3-manifold M3.

Definition 1. We say that an Ω-stable diffeomorphism f : M3 → M3 has surface dynamics (is an
SD-diffeomorphism) if its nonwandering set Ωf consists of two disjoint families Ω+,Ω− of basic
sets such that the sets Af = W u

Ω+
and Rf = W s

Ω−
are disjoint and each connected component of

Af and Rf is a locally flat orientable closed surface4).

SD-diffeomorphisms appeared first in [8]. The most completed results concerning SD-
diffeomorphisms with nonregular dynamics were obtained in [10] and [18]. It was proved there
that every 3-dimensional structural stable diffeomorphism whose nonwandering set consists of two-
dimensional basic sets has surface dynamics, moreover, it is a locally direct product of a hyperbolic
automorphism of the 2-torus and a structurally stable diffeomorphism of the circle.

The theorem below describes the dynamics of SD-diffeomorphisms.

Theorem 1. Let f : M3 → M3 be an SD-diffeomorphism. Then there exist numbers gf � 0 and
kf � 1 such that

1. Af is an attractor and Rf is a repeller5) of the diffeomorphism f that consist of the same
number kf � 1 of the connected components homeomorphic to a closed orientable surface Sgf

of genus gf .

2. The closure cl V of each connected component V of the set M3 \ (Rf ∪Af ) is homeomorphic
to the direct product Sgf

× [0, 1].

1)A closed f -invariant set Λ ⊂ Mn is said to be hyperbolic if there exists a continuous Df-invariant decomposition
of the tangent subbundle TΛMn into the direct sum Es

Λ ⊕ Eu
Λ of the stable and the unstable subbundles

such that ‖Dfk(v)‖ � Cλk‖v‖, ‖Df−k(w)‖ � Cλk‖w‖, ∀v ∈ Es
Λ,∀w ∈ Eu

Λ,∀k ∈ N for some fixed numbers
C > 0 and λ < 1. The hyperbolicity condition implies existence of stable and unstable manifolds denoted by
W s

x and W u
x for each point x ∈ Λ which are defined as follows W s

x = {y ∈ M3 : d(fk(x), fk(y)) → 0, k → +∞},
W u

x = {y ∈ M3 : d(fk(x), fk(y)) → 0, k → −∞}, where d is the metric on Λ induced by the Riemannian metric
on TΛMn.

2)The strong transversality condition means that all intersections of the stable and the unstable manifolds of
nonwandering points are transversal.

3)A k-cycle (k � 1) is a collection of mutually disjoint basic sets Λ0, Λ1, . . . , Λk such that Λ0 ≺ Λ1 ≺ · · · ≺ Λk ≺ Λ0,
where Λi ≺ Λj means that W s

Λi
∩ W u

Λj
�= ∅.

4)Let Sg be an orientable surface (closed 2-dimensional manifold) of genus g and e : Sg → M3 be a topological

embedding. A surface Sg = e(Sg) is called locally flat if for every point p ∈ Sg there exists a neighborhood Up ⊂ M3

and a homeomorphism hp : Up → R
3 such that the set hp(Sg ∩ Up) is a coordinate plane in R

3. According to [3],

an orientable locally flat surface is bi-collared, that is, there exists a topological embedding h : Sg × [−1; 1] → M3

such that h(Sg × {0}) = Sg.
5)Let us recall that a set Af is called attractor of a diffeomorphism f : M3 → M3 if it has a trapping neighborhood,

that is, a closed neighborhood UAf ⊂ M3 such that f(UAf ) ⊂ int UAf and Af =
�

i∈N

f i(UAf ). A set Rf is called

a repeller of the diffeomorphism f if it is an attractor for f−1.
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124 GRINES et al.

Below, the numbers kf , gf , defined in Theorem 1, will be associated with every SD-
diffeomorphism f .

To describe a topology of the ambient manifold of SD-diffeomorphisms, we recall that a mapping
torus M3

g,τ is a factor space Sg × [0, 1]/ ∼, where (z, 1) ∼ (τ(z), 0) for a homeomorphism τ : Sg → Sg

(gluing map) of the closed surface Sg of genus g. It is easy to prove (see Section 3.1) that the mapping
tori M3

g,τ , M3
g,τ ′ are homeomorphic if the homeomorphisms τ, τ ′ are isotopic. From this fact and the

Dehn – Nielsen and Baer Theorems (see Proposition 2) it follows that the set of nonhomeomorphic
mapping tori is not greater than a countable set. The fact that every homeomorphism of a compact
surface is isotopic to a diffeomorphism (see, for example, [13]) allows us to further assume that the
gluing map τ in the definition of the mapping torus is a diffeomorphism.

Theorem 2. Let f : M3 → M3 be a SD-diffeomorphism. Then there exists a diffeomorphism
τf : Sgf

→ Sgf
such that M3 is diffeomorphic to the mapping torus M3

gf ,τf
.

Below we will focus on gradient-like SD-diffeomorphisms. Let us recall that the diffeomorphism
f : Mn → Mn of a connected closed smooth manifold Mn of dimension n is called a Morse – Smale
diffeomorphism if its nonwandering set Ωf is finite and consists of hyperbolic periodic points, and
for different saddle periodic points p, q ∈ Ωf the invariant manifolds W s

p , W u
q either are disjoint or

intersect transversely. Let p, q be different saddle periodic points of a Morse – Smale diffeomorphism
f : Mn → Mn. If dim(W s

p ∩ W u
q ) = 0, then each point of the set W s

p ∩ W u
q is called a heteroclinic

point. The diffeomorphism f is called gradient-like if the condition W s
p ∩ W u

q �= ∅ leads to the fact
dim W u

p < dim W u
q . So if the wandering set of f does not contain heteroclinic points, then f is

gradient-like.
S. Smale showed in [24] (Theorem A) that a gradient flow generated by a Morse function given

on a manifold Mn can be arbitrarily closely approximated (in C1 topology) with a Morse – Smale
flow without closed trajectories, which proves the existence of a gradient-like diffeomorphism on
any manifold (for example, the time-1 map of such a Morse – Smale flow).

Theorem 3. For any integer g � 0 and a diffeomorphism τ : Sg → Sg there is a gradient-like SD-
diffeomorphism on M3

g,τ .

Remark 1. The result of Theorem 3 contrasts with the result of [10], where it was proved that the
manifold admitting structurally stable SD-diffeomorphisms with only two-dimensional basic sets is
mapping tori M3

1,τ such that the induced homomorphism τ∗ : π1(S1) → π1(S1) is either hyperbolic
or defined by matrix ±Id.

Let f : M3 → M3 be a gradient-like diffeomorphism and let p, q be its different saddle periodic
points such that dim(W s

p ∩W u
q ) = 1. Then every connected component of the set W s

p ∩W u
q is called

a heteroclinic curve.

Theorem 4.

1. Let f : M3
gf ,τf

→ M3
gf ,τf

be a gradient-like diffeomorphism with surface dynamics. Then a
number of noncompact heteroclinic curves is not less than 12gfkf .

2. The estimation is exact, namely, for all integers k > 0, g � 0 there is a gradient-like SD-
diffeomorphism f : Sg × S

1 → Sg × S
1 such that its wandering set contains exactly 12gk

noncompact heteroclinic curves.

Remark 2. Theorem 4 gives an exact lower estimate of the number of noncompact heteroclinic
curves. However, for any integers g � 0; k � 1 there is a gradient-like SD-diffeomorphism f :
Sg × S

1 → Sg × S
1 such that the set Af ∪Rf consists of 2k surfaces of genus g � 0 and the

wandering set contains an arbitrary number (greater than 12gf kf ) of noncompact heteroclinic
curves. Figure 1 shows an idea how to increase the number of noncompact heteroclinic curves in
the case g = 0, k = 1. The figure shows phase portraits of diffeomorphisms on unfolding of S0 × S

1.
The first of them (Fig. 1a) is a diffeomorphism without heteroclinic curves, the second (Fig. 1b)
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is a diffeomorphism with heteroclinic curves (they are marked by the dash-and-dot line). Both
diffeomorphisms can be defined as a direct product of a gradient-like diffeomorphism on the 2-
sphere S0 and a structurally stable diffeomorphism on the circle S

1, whose nonwandering set
consists of exactly one sink and one source. Thus, both diffeomorphisms have two invariant
spheres A,R, which are an attractor and a repeller, respectively. In the first case the gradient-
like diffeomorphism on the 2-sphere S0 has a nonwandering set consisting of exactly one sink
and one source, and the nonwandering set of the resulting diffeomorphism consists of a source α,
a sink ω and saddles σ1, σ2. In the second case the gradient-like diffeomorphism on the 2-sphere S0
has a nonwandering set consisting of four points: one source, one saddle and two sinks, so the
nonwandering set of the resulting diffeomorphism consists of eight points: a source α, sinks
ω1, ω2 and saddles σ11, σ12, σ21, σ22, σ23. Heteroclinic curves in this example are generated by the
intersections W u

σ22
∩ W s

σ12
, W u

σ22
∩ W s

σ11
, W s

σ23
∩ W u

σ21
, W u

σ22
∩ W s

σ23
.

Fig. 1. Examples of gradient-like SD-diffeomorphisms on S0 × S
1: a) without heteroclinic curves; b) with

heteroclinic curves.

2. DYNAMICS OF SD-DIFFEOMORPHISMS

This section is devoted to a proof of Theorem 1. Let f ∈ SD(M3). Without loss of generality
we can assume that every connected component of the sets Vf , Af and Rf is f -invariant (in the
opposite case one can consider an appropriate degree of the diffeomorphism f that does not change
the conclusion). Let us provide the proof by steps.

1. Let us prove that Af is an attractor and Rf is a repeller of the diffeomorphism f .
According to S. Smale [25], the nonwandering set Ωf is uniquely represented as a disjoint union

Ωf = Λ1 ∪ · · · ∪ Λm of compact invariant and topologically transitive sets, which are called basic

sets, and M3 =
m⋃

i=1
W s

Λi
=

m⋃
i=1

W u
Λi

. Moreover, it is possible to define a partial order among the

basic sets as follows: Λi ≺ Λj for different basic sets Λi,Λj if and only if W s
Λi

∩ W u
Λj

�= ∅. Since
f has no cycles, this partial order can be extended to a complete order relation (we will assume
that Λ1 ≺ · · · ≺ Λm). In this case the manifold M3 admits a filtration (see, for example, [23]), that
is, a sequence M1, . . . ,Mn−1 of n-dimensional submanifolds with a smooth boundary such that
M3 = Mn ⊃ Mn−1 ⊃ · · · ⊃ M1 ⊃ M0 = ∅ such that for every i ∈ {1, . . . , n} the following conditions
hold:

1. f(Mi) ⊂ int Mi;

2. Λi ⊂ int (Mi \ Mi−1);

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 2 2017



126 GRINES et al.

3. Λi =
⋂
l∈Z

f l(Mi \ Mi−1);

4.
⋂
l�0

f l(Mi) =
⋃
j�i

W u
Λj

=
⋃
j�i

cl W u
Λj

.

Let Λa ⊂ Ω+ and Λr ⊂ Ω− be arbitrary basic sets connected by the relation ≺. It follows from the
definition of the surface dynamics that W u

Λa
⊂ Af and W s

Λr
⊂ Rf , hence Λa ≺ Λr. Thus, without

loss of generality we can assume that Ω+ =
i∗⋃

j=1
Λj for some 1 < i∗ < n. Then Mi∗ is a trapping

neighborhood for Af and Af is an attractor of the diffeomorphism f . Similar arguments for f−1

prove that Rf is a repeller.
2. Let us prove that the boundary of every connected component V of the set M3 \ (Rf ∪Af )

consists of exactly one connected component of the set Af and one connected component of the
set Rf .

Let A be a connected component of the set Af and let UA be a trapping neighborhood of A, which
is a closed set such that f(UA) ⊂ int UA and

⋂
n∈Z

fn(UA) = A. Let us denote by QA =
⋃

n∈Z

fn(UA)

the basin of the attractor A. By construction, QA is a connected open set and the set M3 \ Rf is
a disjoint union of the QA, A ∈ Af .

Since A is bi-collared, the set UA \A consists of two connected components U+, U−, so QA \A also
consists of two connected components. Then the boundary of every connected component V ⊂ Vf

contains exactly one connected component of the set Af . Applying similar arguments to f−1, one
finds that the boundary of every connected component of V ⊂ Vf contains exactly one connected
component of the set Rf .

3. Let us prove that there is an integer gf � 0 such that cl V is homeomorphic to the direct
product Sgf

× [0, 1].
To prove the item, we use the following important statements, which were proved in [9] (see

Lemma 3.1 and Theorems 3.1 and 3.3)6).
Let P 3 be a 3-manifold whose boundary consists of two disjoint connected components B1, B2.

The boundary components B1 and B2 are said to be separated by a surface S ⊂ int P 3 if B1, B2

belongs to different connected components of the set P 3 \ S.

Statement 1. The boundary components B1 and B2 are not separated by a connected orientable
surface S ⊂ int P 3 if and only if S bounds a domain D ⊂ int P 3.

Statement 2. Let P 3
g′ , g′ > 0 be a manifold homeomorphic to the direct product Sg′ × [0, 1] and

let Sg ⊂ P 3
g′ be a locally flat embedded orientable surface of genus g < g′. Then the connected

components of ∂P 3
g′ are not separated by Sg in P 3

g′ .

Statement 3. Let P 3
g be a manifold homeomorphic to the direct product Sg × [0, 1] and let Sg ⊂ P 3

g

be a locally flat embedded orientable surface of genus g that does not bound any domain in P 3
g .

Then Sg divides P 3
g into two connected components homeomorphic to Sg × [0, 1].

Let V be a connected component of the set Vf and ∂V = A ∪ R. Denote by ga, gr the
genus of the surfaces A, R. Since A, R are bi-collared in M3, there are topological embeddings
ha : Sga × [−1, 1] → M3, hr : Sgr × [−1, 1] → M3 such that ha(Sga × {0}) = A, hr(Sgr × {0}) = R
and ha(Sga × [−1, 1]) ∩ hr(Sgr × [−1, 1]) = ∅. Let

Na = ha(Sga × [−1, 1]) ∩ cl V, Nr = hr(Sgr × [−1, 1]) ∩ cl V.

Let us assume for definiteness that the sets Ba = ha(Sga × {1}), Br = hr(Sgr × {1}) belong to V .

6)Notice that in [9] all embeddings are supposed to be smooth, but the proofs of the statements below are based
only on the locally flatness of the embedding.

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 2 2017



ON THE NUMBER OF HETEROCLINIC CURVES OF DIFFEOMORPHISMS 127

Let us show that ga = gr. Notice that there exists a natural number n∗ such that fn∗
(Br)

belongs to int Na. Indeed, every point p ∈ Br belongs to the basin QA, hence there exist a closed
neighborhood U(p) ⊂ Br of the point p and a natural number n(p) such that fn(U(p)) ⊂ int Na for
each n > n(p). Since Br is compact, there exists a finite subcovering of the covering {U(p)}p∈Br .
Thus there exists a natural number n∗ such that fn(Br) ⊂ int Na for any n � n∗.

Let B∗
r = fn∗

(Br). Show that A and Ba are separated by B∗
r in Na. Assume the contrary. Then,

according to Statement 1, B∗
r bounds a domain D ⊂ int Na. Applying the above arguments, prove

that there is a number m∗ > 0 such that f−m∗
(D ∪ B∗

r ) ⊂ int Nr. Then fn∗−m∗
(Br) = f−m∗

(B∗
r )

bounds the disk f−m∗
(D) in Nr and, according to Statement 1, does not separate Br and R

in Nr. On the other hand, the surfaces fn∗−m∗
(Br) and R bound the set fn∗−m∗

(Nr), which is
homeomorphic to the direct product Sgr × [0; 1]. Then Br and R are separated by fn∗−m∗

(Br)
in Nr. This contradiction proves that A and Ba are separated by B∗

r in Na. Then, according to
Statement 2, ga � gr. Applying the above arguments to Ba, prove that gr � gr, so ga = gr = g.

Since B∗
r does not bound a domain in Na, according to Statement 3, it divides Na in two

parts homeomorphic to Sg × [0, 1]. Let P1 be the part that is bounded by A and B∗
r . Then

cl V = P1 ∪ fn∗(Nr) and it is homeomorphic to Sg × [0, 1].
As the component V was chosen arbitrary and the manifold M3 is connected, all connected

components of the set A∪R have the same genus gf .
4. The fact that the sets Af and Rf consist of the same number kf � 1 of the connected

components each of which is a surface of genus gf immediately follows from items 2 and 3.

3. CLASSIFICATION OF AMBIENT MANIFOLDS OF DIFFEOMORPHISMS
WITH SURFACE DYNAMICS

Let K be a connected component of Af ∪Rf . It follows from item 3 of Theorem 1 that there
exists a continuous map H : Sgf

× [0, 1] → M3 such that the restrictions H|Sgf
×(0,1) : Sgf

× (0, 1) →
M3 \ K, H0 = H|Sgf

×{0} : Sgf
× {0} → K, H1 = H|Sgf

×{1} : Sgf
× {1} → K are homeomorphisms.

Let H0(z, 0) = (h0(z), 0), H1(z, 1) = (h1(z), 1) and τf = h−1
0 h1. Then by construction the manifold

M3
gf ,τf

is homeomorphic to the manifold M3 by a homeomorphism Ȟ which maps the equivalence
class [(z, t)] of (z, t) ∈ Sgf

× [0, 1] to the point H(z, t) ∈ M3.
Thus M3 is homeomorphic to a mapping torus.

3.1. On Mapping Tori

Proposition 1. Mapping tori M3
g,τ , M3

g,τ ′ are homeomorphic if the homeomorphisms τ, τ ′ are
isotopic.

Proof. Let H : Sg × [0; 1] → Sg be an isotopy connecting a map τ ′τ−1 = H(z, 0) with the identity
map H(z, 1). Let us denote a homeomorphism h : Sg × [0; 1] → Sg × [0; 1] by h(z, t) = (H(z, t), t).
Then a map ĥ : M3

g,τ → M3
g,τ ′ that sends an equivalence class [(z, t)] to the equivalence class [h(z, t)]

is a homeomorphism. �

There are exactly two isotopy classes of homeomorphisms of the sphere S0 that consist of
homeomorphisms preserving and reversing an orientation, respectively. For g � 1 the criterion of
the existence of an isotopy between two homeomorphisms τ, τ ′ of the surface Sg follows from the
Dehn – Nielsen and Baer theorems ([2, 14], see also [27], Theorem 5.15.3) and is connected with the
induced homomorphisms of the fundamental groups.

More precisely, let τ∗ : π1(Sg, x0) → π1(Sg, τ(x0)) be an isomorphism induced by homeomor-
phism τ , and let Qξ, Qη : π1(Sg, τ(x0)) → π1(Sg, x0) be isomorphisms induced by paths ξ, η, respec-
tively. Then there is an inner automorphism7) ϕ(x) = ξη−1xηξ−1 such that isomorphisms Qξh∗,

7)An isomorphism ϕγ : G → G of a group G is called inner if there exists an element γ ∈ G such that ϕγ(x) = γ−1xγ
for any x ∈ G.
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128 GRINES et al.

Qηh∗ : π1(Sg, x0) → π1(Sg, x0) satisfy the following relation: Qξτ∗ = ϕQητ∗. Thus τ∗ represents
a well-defined element of the quotient group Out(π1(Sg, x0)) = Aut(π1(Sg, x0)/Inn(π1(Sg, x0)),
where Aut(π1(Sg, x0), Inn(π1(Sg, x0)) are a group of all automorphisms and a group of inner
automorphisms of the group π1(Sg, x0), respectively. This element will be denoted by [τ∗].

Proposition 2. Homeomorphisms τ, τ ′ : Sg → Sg, g � 1, are isotopic if and only if [τ ′
∗] = [τ∗].

In the case g = 1 the group π1(S1) is isomorphic to Z × Z and the automorphism τ∗ : π1(S1) →
π1(S1) is determined by an integer unimodular matrix Jτ∗ ∈ GL2(Z). The following criteria for the
mapping tori M3

1,τ , M3
1,τ ′ to be homeomorphic follows from [11].

Proposition 3. Manifolds M3
1,τ , M3

1,τ ′ are diffeomorphic iff there exists a matrix A ∈ GL2(Z) such
that either Jτ ′∗ = AJτ ′∗A

−1 or Jτ ′∗ = AJ−1
τ ′
∗

A−1.

3.2. Construction of a Diffeomorphism with Surface Dynamics on a Mapping Torus

In this section we prove the second item of Theorem 4 and Theorem 3. First for all integers
k > 0, g � 0 we construct a gradient-like SD-diffeomorphism f : Sg × S

1 → Sg × S
1 such that its

wandering set contains exactly 12gk noncompact heteroclinic curves.

Fig. 2. Morse – Smale diffeomorphism on a surface of genus g.

Let ψ : [0; 1] → [0, 1] be the time-1 map of the flow ṙ = sin 2πkr, and let ϕt
g : Sg → Sg be

a gradient-like flow whose nonwandering set consists of exactly one sink ω, one source α and
2g saddle equilibria σ1, . . . , σ2g. Figure 2 shows an unfolding of the surface Sg as a 2g-gon

and a phase portrait of the flow ϕt
g on it. Let Γu =

2g⋃
i=1

W u
σi

, Γs =
2g⋃
i=1

W s
σi

. Denote by f0 the

time-1 map of the flow ϕt
g and define a diffeomorphism F : Sg × [0; 1] → Sg × [0; 1] by the formula

F (z, r) = (f0(z), ψ(r)). To get Sg × S
1, take an identical gluing map. Then the diffeomorphism F

induces a gradient-like diffeomorphism f : Sg × S
1 → Sg × S

1 that maps an equivalence class [(z, r)]
of point (z, r) ∈ Sg × [0; 1] to equivalence class [F (z, r)]. To prove Theorem 3, for arbitrary integers
g � 0; k � 1 and an orientation preserving diffeomorphism τ : Sg → Sg, we construct a gradient-like
SD-diffeomorphism on M3

g,τ → M3
g,τ whose nonwandering set belongs to exactly 2k disjoint closed

surfaces, each has genus g. As a small perturbation of τ does not chain the isotopy class, without
loss of generality we assume that

(∗) Γu is transversal to τ(Γs);

(∗∗) τ(α) /∈ (Γu ∪ ω) and ω /∈ τ(Γs ∪ α).
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Let f1 = τ−1f0τ and denote by ϕ
[t]
g a time-t map along the trajectories of ϕt

g.

Choose r0 ∈ (1 − 1
2k , 1), put r1 = ψ−1(r0), r2 = ψ−1(r1) (r0 < r1 < r2) and define a diffeomor-

phism F : Sg × [0; 1] → Sg × [0; 1] by the formula

F (z, r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(f0(z), ψ(r)), r ∈ [0; r0];

(ϕ
[

r1−r
r1−r0

]

g (z), ψ(r)), r ∈ [r0; r1];

(τ−1ϕ
[

r−r1
r2−r1

]

g τ(z), ψ(r)), r ∈ [r1; r2];
(f1(z), ψ(r)), r ∈ [r2; 1].

By construction, the nonwandering set of diffeomorphism F is finite, hyperbolic and belongs to
surfaces Sg ×{ i

2k}, i ∈ {0, . . . , 2k}. The diffeomorphism F can be projected as a SD-diffeomorphism
F̃ on M3

g,τ . To show that diffeomorphism F̃ is gradient-like, it is enough to show that two-
dimensional manifolds of saddle points of F have a transversal intersection and one-dimensional
saddle separatrices do not intersect any other saddle separatrices in Sg × (1 − 1

2k , 1).
For this purpose notice that a region D = Sg × [r1; r2] is a fundamental domain of the restriction

F |
Sg×(1− 1

2k
,1). It follows from the construction of the diffeomorphism F that the two-dimensional

stable separatrices intersect D along Γs × [r1; r2], two-dimensional unstable separatrices intersect D
along τ−1(Γu) × [r1; r2], one-dimensional stable separatrices intersect D along α × [r1; r2] and one-
dimensional unstable separatrices intersect D along τ−1(ω) × [r1; r2]. Due to (*) two-dimensional
manifolds of saddle points of F have a transversal intersection in D and hence in Sg × (1 − 1

2k , 1).
Due to (**) one-dimensional saddle separatrices do not intersect any other saddle separatrices in D

and hence in Sg ×
(
1 − 1

2k , 1
)
.

4. ON HETEROCLINIC CURVES OF GRADIENT-LIKE SD-DIFFEOMORPHISMS

Theorem 4 directly follows from Lemmas 1–3 and Corollaries 1–3 below. To prove these lemmas,
we use the following two important statements. The first is proved in [25] (see Theorem 2.3), the
second is a strong form of the λ-lemma proved in [16, Remarks, p. 85].

Statement 4. If f : Mn → Mn is a Morse – Smale diffeomorphism, then for every point p ∈ Ωf

and a connected component lu of the set W u
p \ p the equality

cl lup \ (lup ∪ p) =
⋃

q∈Ωf :W s
q ∩lup �=∅

W u
q

holds.

Statement 5 (λ-lemma). Let f : Mn → Mn be a diffeomorphism of an n-manifold, and let p be
a fixed point of f , dim W u

p = m, 0 < m < n. Let Bs be a compact subset of W s
p (containing p or

not) and let F : Bs → C1(Dm,X) be a continuous family of embedded closed m-disks of class C1

transverse to W s
p ; set F (x) := Du

x. Let Du ⊂ W u
p be a compact m-disk and let V ⊂ X be a compact

n-ball such that Du is a connected component of W u
p ∩ V . Then, as k goes to +∞, the sequence

fk(Du
x) ∩ V converges to Du in the C1 topology uniformly for x ∈ Bs.

Let f : M3 → M3 be a gradient-like SD-diffeomorphism, gf � 1. Without loss of generality we
can assume that the set Ωf consists only of fixed points (in the opposite case one can consider
an appropriate degree of the diffeomorphism f that does not change the number of heteroclinic
curves). For a connected component A of the attractor Af let

ΩA = Ωf ∩ A and Ωi
A = Ωi

f ∩ A, i ∈ {0, 1, 2}.
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Fig. 3. Illustration to the λ-lemma.

It follows from the definition of the surface A that

A =
⋃

p∈ΩA

W u
p .

Since the diffeomorphism f is gradient-like and A is a closed surface, for any point q ∈ Ω1
A the

set (cl W u
q \ W u

q ) belongs to Ω0
A. Therefore the set cl W u

Ω1
A

consists of a finite number of compact

curves. Moreover, each connected component of the set A \ cl W u
Ω1

A
is W u

p for some point p ∈ Ω2
A.

Thus the decomposition

A = Ω0
A ∪ W u

Ω1
A
∪ W u

Ω2
A

is a cellular decomposition of the surface A with genus gf . Then, according to the Euler formula,

|Ω2
A| − |Ω1

A| + |Ω0
A| = 2 − 2gf ,

hence
|Ω1

A| � 2gf . (4.1)

Fig. 4. Illustration to a proof of the absence of compact heteroclinic curves.

Lemma 1. The surface A does not contain compact heteroclinic curves.

Proof. Suppose the contrary: there are saddle points p ∈ Ω2
A, q ∈ Ω1

f such that the intersection
W u

p ∩ W s
q contains a compact connected component γ. Then, by Statement 4, W u

q ⊂ cl W u
p and

hence q ∈ Ω1
A. Since W u

p is homeomorphic to R
2, the curve γ bounds a unique disk d in W u

p . As
the surface A is bi-collared in M3, there exists a neighborhood Uq of the point q in M3 such that
the intersection D = Uq ∩ A is homeomorphic to a 2-disk. Since γ is a subset of W s

q , there exists
a number n0 ∈ N such that fn(γ) ⊂ Uq for all n > n0. Thus fn(γ) belongs to D, and hence fn(γ)
bounds a unique disk dn, therefore dn = fn(d).

Let us denote by Bq a compact arc in W u
q such that q ∈ int Bq and Bq \ Uq �= ∅, and by Vq a

neighborhood of the arc Bq, similar to the neighborhood V in the statement of the λ-lemma. Let
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us choose a compact arc l ⊂ W u
p which transversally intersects the arc γ (see Fig. 4) at a unique

point x and such that one of the connected components of the set l \ x belongs to the disk d. By
construction, the arc l is transversal to the manifold W s

q . It follows from the λ-lemma that for any
ε > 0 there exists a number k0 ∈ N such that for all k > k0 a connected component lk of the set
fk(l) ∩ Vq, containing the point xk = fk(x), is ε-close to the arc Bq.

Let us choose a number k > max {k0, n0}. The set Bq \ q (lk \ xk) consists of two connected
components B+

q , B−
q (l+k , l−k ), then the ε-closeness of the arcs lk and Bq leads to the fact that

for any point y ∈ Bδ
q \ Uq, δ ∈ {+,−} there exists a neighborhood uy ⊂ Vq which has a nonempty

intersection with lδk. This contradicts the fact that one of the components l+, l− belongs to the
disk dk ⊂ Uq. �

Lemma 2. For each point q ∈ Ω1
A the set (W s

q \ q) ∩ A consists of exactly two noncompact
heteroclinic curves.

Proof. Let q ∈ Ω1
A. Since A is a surface, it is possible to choose a neighborhood Vq of the point

q in A such that the set Vq \ W u
q is a union of two connected components. Then there are points

p1, p2 ∈ Ω2
A (it is possible that p1 = p2) such that W u

q ⊂ cl W u
pi

for all i ∈ {1, 2}. According to
Statement 4, the intersection W u

pi
∩W s

q , i ∈ {1, 2} is not empty, and hence the intersection W s
q ∩ A

contains heteroclinic curves. Denote by Γq the union of these curves. According to Lemma 1, the
set Γp does not contain compact curves. Then, due to a result in [5], Γq consists of a finite number
of connected components.

Fig. 5. Heteroclinic curves in W s
q .

As the surface A is a bi-collared in M3, there exists a neighborhood Uq of the point q in
M3 such that the intersection D = Uq ∩ A is homeomorphic to a 2-disk. Let us choose a disk
Ds

q ⊂ (W s
q ∩ Uq), q ∈ int Ds

q, such that each curve from Γq intersects the boundary of the disk Ds
q

at a unique point (see Fig. 5). As the intersection Ds
q ∩ W u

pi
is transversal, the set Ds

q \ (Γq ∪ q)
intersects both connected components of the set Uq \ D. Thus the set Γq contains at least two
noncompact heteroclinic curves.

Let us show that Γq consists of exactly two curves. Suppose the contrary: the number k of curves
in Γq is greater than two. Without loss of generality we can assume that every curve in Γq is f -
invariant (in the opposite case one can consider an appropriate degree of the diffeomorphism f that
does not change the number of heteroclinic curves). Moreover, we assume that every curve from
Γq intersects the boundary of the disk Vq at a unique point (in the opposite case we can choose on
Vq a 2-disk with required properties). Then the set Vq \ (Γq ∪ q) contains a connected component
avoiding W u

q . Suppose that this component belongs to W u
p1

and denote it by d1. Let γ1, γ2 ⊂ Γq be
heteroclinic curves which bound d1 and let D1 ⊂ W u

p1
be a 2-disk which is bounded by γ1 ∪ p1 ∪ γ2

and contains d1 (see Fig. 6).
Let us choose a curve l ⊂ W u

p1
which transversely intersects the arc γ1 (see Fig. 6) at a unique

point x and such that one of the connected components of the set l \ x belongs to the disk D1.
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Fig. 6. Heteroclinic curves in W u
p1 ∪ W u

p2

Applying arguments similar to those used in the proof of Lemma 1, we get a contradiction with
the λ-lemma. �

Applying inequality (1) together with Lemma 2, we get the following result.

Corollary 1. The number of noncompact heteroclinic curves on the surface A is not less than 4gf .

Applying Lemma 2 to diffeomorphism f−1 brings an estimation similar to Corollary 1 for every
connected component of the attractor Rf . Bearing in mind that the set Af ∪Rf contains 2kf

connected components, we get the following result.

Corollary 2. The number of noncompact heteroclinic curves in the set Af ∪Rf is not less
than 8gfkf .

Let V be a connected component of the set M3 \ (Af ∪Rf ), A ⊂ Af and let R ⊂ Rf be
connected components of the set cl V \ V .

Lemma 3. The number of noncompact heteroclinic curves in the set V is not less than 2gf .

Fig. 7. Illustration to Lemma 3

Proof. It follows from Lemma 2 that it is possible to define a cellular decomposition of the surface
A which is dual to the decomposition by the unstable manifolds of the points from ΩA and such that
the union of the heteroclinic curves and the saddle points from the set Ω1

A form one-dimensional
cells, and the saddle points from the set Ω2

A form null-dimensional cells. Hence, on the surface A
there exists a connected 1-dimensional complex containing 2gf closed curves with a unique common
point z0, which are nonhomotopic to each other and to zero, and consisting of closures of traces
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of stable manifolds of points from Ω1
A. Let γ be an arbitrary curve with such a property. Put

Γ = (
⋃

σ∈γ
W s

σ) ∩ V .

According to Theorem 1 there is an integer gf � 1 such that the set cl V is homeomorphic to the
direct product Sgf

× [0, 1]. Then the set cl V can be represented as an orbit space of the set U× [0; 1],
where U is the universal cover for Sgf

, with respect to a motion group G (for gf � 2, non-Euclidean)
that acts freely on the set U × [0; 1] and is isomorphic to the fundamental group of the surface Sgf

.
Let Θ : U × [0; 1] → cl V be a natural projection such that Θ(U × {0}) = A,Θ(U × {1}) = R and
let F : U × [0; 1] → U × [0; 1] be a lift of f |cl V with respect to the cover Θ.

For a set X ∈ cl V let Θ−1(X) be the complete preimage of X. Let p ∈ Ωf ∩ cl V and let p̃ be a
point in Θ−1(p). Denote by W s

p̃ (W u
p̃ ) a connected component of Θ−1(W s

p ∩ cl V ) (Θ−1(W u
p ∩ cl V ))

passing through the point p̃. We will say that p̃ is a sink, source or saddle point for F if p is a such
point for f .

Let us show that a set cl Γ contains at least one one-dimensional manifold W u
r ⊂ R of some

saddle point r ∈ R.

Since the curve γ is nonhomologous to zero, for any two preimages p̃i, p̃j of a point p ∈ Ω2
A ∩ γ

the sets cl W s
p̃i

, cl W s
p̃j

contain different source points α̃i, α̃j, respectively. It is clear that points α̃i,
α̃j belong to the set cl Γ. If the set Θ−1(cl Γ \ Γ) consists only of source points α̃1, α̃2, . . . of the
homeomorphism F , then the set Θ−1(Γ) is a disjoint union of subsets, each of which belongs to
the unstable manifold of a point from the set α̃1, α̃2, . . ., which contradicts the connectivity of the
set Γ. Then, as homeomorphism F has no heteroclinic points, there exists a point r ∈ Ω2

R such that
W s

r ⊂ cl Γ \ Γ, α ⊂ cl W s
r , so W s

r ⊂ cl W s
q for some point q ∈ Ω1

A. Then, according to Statement 4,
W u

r ∩ W s
q �= ∅.

Let us prove that the set W u
r ∩ W s

q ∩ V contains at least one noncompact curve. Suppose the
contrary. Then the set W u

r ∩ W s
q ∩ V consists of a countable set of smooth closed curves. Since A

and R are an attractor and a repeller, respectively, there exist disjoint neighborhoods NA, NR in
cl V of the sets A,R, respectively, and natural numbers n∗,m∗ such that fn(c) ⊂ Na, f−m(c) ⊂ Nr

for any n > n∗,m > m∗ and for any connected component c ∈ W s
r ∩ W s

q ∩ V . Therefore the set
W u

r ∩ W s
q ∩ (V \ (Na ∪ Nr)) consists of a finite number of compact connected components. Let

p1, p2 ∈ γ be points such that W u
pi
∩ W s

q �= ∅ for i ∈ {1, 2}. Show that it is possible to choose a
simple compact arc l ⊂ (W s

q ∩ V ) \ (Na ∪ Nr) with end points on W s
p1

,W s
p2

such that l ∩ W u
r = ∅

(see Fig. 7).
As the diffeomorphism f does not contain heteroclinic points, W u

r ∩ W s
pi

= ∅ for i ∈ {1, 2}, and
hence there is a 2-disk Di ⊂ int V \ (Na ∪ Nr ∪ W u

r ) that transversally intersects W s
pi

at a unique
point xi. Also, there is a closed strip (homeomorphic image of the product [0; 1] × [0; 1]) Ki ⊂
(W s

q \ W u
r ) ∩ cl(V ) with the boundary consisting of arcs ei1, ei2, ei3, ei4 such that ei1 ⊂ W u

pi
∩ W s

q ,
ei2, ei3 are transversal to W u

pi
∩ W s

q in W s
q and ei3 = f(ei2). It follows from the λ-lemma that there

exists a number k∗
i > 0 such that for any k � k∗

i the intersection of Di and a connected component

of f−k(Ki), containing the set f−k(ei1), is a closed arc bik. Put li =
∞⋃

k=k∗
i

bik ∪ xi. The set li is a

closed arc with end points xi and yi. As the set W u
r ∩ W s

q ∩ (V \ (Na ∪ Nr)) consists of a finite
number of compact connected components, there is a simple compact arc l0 ⊂ W s

q \W u
r joining the

points y1, y2 and such that the curve l = l0 ∪ l1 ∪ l2 is the required curve.
Since W s

q ,W u
r are invariant, f−ν(l) ∩ W u

r = ∅ for any ν > 0. On the other hand, for any
neighborhood Nr of W s

r in cl V there exists ν∗ such that f−ν(l) ⊂ Nr for any ν > ν∗. Since
the intersection W s

r ∩ W u
r is transversal, the intersection f ν(l) ∩ W u

r must be nonempty for some
sufficiently large ν, which contradicts the definition of curve l. Hence the set W s

r ∩W s
q ∩ V contains

at least one noncompact curve. �
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Bearing in mind that the set M3 \ (Af ∪Rf ) contains 2kf connected components, we get the
following result.

Corollary 3. The number of noncompact heteroclinic curves in the set M3 \ (Af ∪Rf ) is not less
than 4gfkf .

ACKNOWLEDGMENTS

The publication was supported by the Russian Foundation for Basic Research (project No. 15-01-
03687-a, 16-51-10005-Ko a), Russian Science Foundation (project No. 14-41-00044) and the Basic
Research Program at the HSE (project 90) in 2017.

REFERENCES
1. Andronov, A. A. and Pontryagin, L. S., Rough Systems, Dokl. Akad. Nauk SSSR, 1937, vol. 14, no. 5,

pp. 247–250 (Russian).
2. Baer, R., Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der
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