

Vyacheslav Z. Grines, Elena Ya. Gurevich, Olga V. Pochinka, On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics, Regul. Chaotic Dyn., 2017, Volume 22, Issue 2, 122-135

DOI: http://dx.doi.org/10.1134/S1560354717020022

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details:
IP: 82.208.100.231
November 13, 2017, 16:20:57

On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics

Vyacheslav Z. Grines*, Elena Ya. Gurevich**, and Olga V. Pochinka***
National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia Received October 10, 2016; accepted November 17, 2016

Abstract

Separators are fundamental plasma physics objects that play an important role in many astrophysical phenomena. Looking for separators and their number is one of the first steps in studying the topology of the magnetic field in the solar corona. In the language of dynamical systems, separators are noncompact heteroclinic curves. In this paper we give an exact lower estimation of the number of noncompact heteroclinic curves for a 3-diffeomorphism with the so-called "surface dynamics". Also, we prove that ambient manifolds for such diffeomorphisms are mapping tori.

MSC2010 numbers: 37D20, 37D15
DOI: 10.1134/S1560354717020022
Keywords: separator in a magnetic field, heteroclinic curves, mapping torus, gradient-like diffeomorphisms

1. INTRODUCTION

It follows from the classical papers [1] and [17] that rough (structurally stable) flows on surfaces have no trajectories which connect two different saddle equilibria (heteroclinic trajectories). In the case where the ambient manifold has dimension three, the structurally stable flows can have such trajectories, and invariant manifolds of different saddle periodic points of structurally stable diffeomorphisms can intersect with curves (they can be either compact or noncompact) that are called heteroclinic curves. Heteroclinic trajectories and curves play a principal role in studying regular processes. For example, in a series of papers by E. Priest and coauthors (see [19, 20] for information), devoted to studying the topology of the magnetic field in the solar corona, considerable attention is paid to the problem of existence of separators. From dynamical systems point of view, separators are just heteroclinic trajectories and curves.

There are a few fundamental results obtained by Ch. Bonatti, V.Grines, V.Medvedev, E. Pecou, O. Pochinka, E. Zhuzhoma on the existence of heteroclinic curves for Morse-Smale 3diffeomorphisms. In [4] the existence of heteroclinic curves was established for every Morse-Smale diffeomorphism given on a closed 3 -manifold distinct from the 3 -sphere \mathbb{S}^{3} and the connected sum of a finite number of copies of $\mathbb{S}^{2} \times \mathbb{S}^{1}$. In [7] the existence of noncompact heteroclinic curves was proved for every polar 3 -diffeomorphism (a diffeomorphism with a unique sink and source) given on an irreducible 3-manifold (a manifold where each bi-collared 2 -sphere bounds a 3-ball), which was effectively applied to find heteroclinic separators of magnetic fields in electrically conducting fluids. By [9], if a polar diffeomorphism is given on a lens $L_{p, q}$ and its nonwandering set contains exactly two saddle points with trivially embedded one-dimensional manifolds, then the wandering set contains at least p heteroclinic curves. In [6], a new sufficient condition for the existence of heteroclinic curves was found for gradient-like systems with surface dynamics on three-dimensional

[^0]manifolds (exact definitions will be given below). In this paper, an exact lower estimation of the number of heteroclinic curves for such systems is given.

Let M^{n} be a closed n-manifold. Recall ([25]) that a diffeomorphism $f: M^{n} \rightarrow M^{n}$ satisfies Axiom A (f is A-diffeomorphism) if the following conditions hold: 1) the nonwandering set Ω_{f} is hyperbolic ${ }^{1)} ; 2$) the periodic points are dense in Ω_{f}. According to Smale's spectral theorem [25], the nonwandering set of an A-diffeomorphism f can be represented as a finite union of pairwise disjoint closed invariant sets, called basic sets, each of which contains a dense trajectory. By [12, 21, 22], Axiom A and the strong transversality condition ${ }^{2)}$ are necessary and sufficient conditions for the structural stability of f. Due to [26], Axiom A and the absence of cycles ${ }^{3)}$ are necessary and sufficient conditions for Ω-stablity of f.

Everywhere below we will assume that f is an orientation preserving Ω-stable diffeomorphism given on an orientable 3-manifold M^{3}.

Definition 1. We say that an Ω-stable diffeomorphism $f: M^{3} \rightarrow M^{3}$ has surface dynamics (is an SD-diffeomorphism) if its nonwandering set Ω_{f} consists of two disjoint families Ω_{+}, Ω_{-}of basic sets such that the sets $\mathcal{A}_{f}=W_{\Omega_{+}}^{u}$ and $\mathcal{R}_{f}=W_{\Omega_{-}}^{s}$ are disjoint and each connected component of \mathcal{A}_{f} and \mathcal{R}_{f} is a locally flat orientable closed surface ${ }^{4)}$.

SD-diffeomorphisms appeared first in [8]. The most completed results concerning SDdiffeomorphisms with nonregular dynamics were obtained in [10] and [18]. It was proved there that every 3 -dimensional structural stable diffeomorphism whose nonwandering set consists of twodimensional basic sets has surface dynamics, moreover, it is a locally direct product of a hyperbolic automorphism of the 2-torus and a structurally stable diffeomorphism of the circle.

The theorem below describes the dynamics of SD-diffeomorphisms.
Theorem 1. Let $f: M^{3} \rightarrow M^{3}$ be an SD-diffeomorphism. Then there exist numbers $g_{f} \geqslant 0$ and $k_{f} \geqslant 1$ such that

1. \mathcal{A}_{f} is an attractor and \mathcal{R}_{f} is a repeller ${ }^{5)}$ of the diffeomorphism f that consist of the same number $k_{f} \geqslant 1$ of the connected components homeomorphic to a closed orientable surface $\mathbb{S}_{g_{f}}$ of genus g_{f}.
2. The closure cl V of each connected component V of the set $M^{3} \backslash\left(\mathcal{R}_{f} \cup \mathcal{A}_{f}\right)$ is homeomorphic to the direct product $\mathbb{S}_{g_{f}} \times[0,1]$.
${ }^{1)}$ A closed f-invariant set $\Lambda \subset M^{n}$ is said to be hyperbolic if there exists a continuous $D f$-invariant decomposition of the tangent subbundle $T_{\Lambda} M^{n}$ into the direct sum $E_{\Lambda}^{s} \oplus E_{\Lambda}^{u}$ of the stable and the unstable subbundles such that $\left\|D f^{k}(v)\right\| \leqslant C \lambda^{k}\|v\|, \quad\left\|D f^{-k}(w)\right\| \leqslant C \lambda^{k}\|w\|, \quad \forall v \in E_{\Lambda}^{s}, \forall w \in E_{\Lambda}^{u}, \forall k \in \mathbb{N}$ for some fixed numbers $C>0$ and $\lambda<1$. The hyperbolicity condition implies existence of stable and unstable manifolds denoted by W_{x}^{s} and W_{x}^{u} for each point $x \in \Lambda$ which are defined as follows $W_{x}^{s}=\left\{y \in M^{3}: d\left(f^{k}(x), f^{k}(y)\right) \rightarrow 0, k \rightarrow+\infty\right\}$, $W_{x}^{u}=\left\{y \in M^{3}: d\left(f^{k}(x), f^{k}(y)\right) \rightarrow 0, k \rightarrow-\infty\right\}$, where d is the metric on Λ induced by the Riemannian metric on $T_{\Lambda} M^{n}$.
${ }^{2)}$ The strong transversality condition means that all intersections of the stable and the unstable manifolds of nonwandering points are transversal.
${ }^{3)} \mathrm{A} k$-cycle $(k \geqslant 1)$ is a collection of mutually disjoint basic sets $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{k}$ such that $\Lambda_{0} \prec \Lambda_{1} \prec \cdots \prec \Lambda_{k} \prec \Lambda_{0}$, where $\Lambda_{i} \prec \Lambda_{j}$ means that $W_{\Lambda_{i}}^{s} \cap W_{\Lambda_{j}}^{u} \neq \emptyset$.
${ }^{4)}$ Let \mathbb{S}_{g} be an orientable surface (closed 2-dimensional manifold) of genus g and $e: \mathbb{S}_{g} \rightarrow M^{3}$ be a topological embedding. A surface $S_{g}=e\left(\mathbb{S}_{g}\right)$ is called locally flat if for every point $p \in S_{g}$ there exists a neighborhood $U_{p} \subset M^{3}$ and a homeomorphism $h_{p}: U_{p} \rightarrow \mathbb{R}^{3}$ such that the set $h_{p}\left(S_{g} \cap U_{p}\right)$ is a coordinate plane in \mathbb{R}^{3}. According to [3], an orientable locally flat surface is bi-collared, that is, there exists a topological embedding $h: \mathbb{S}_{g} \times[-1 ; 1] \rightarrow M^{3}$ such that $h\left(\mathbb{S}_{g} \times\{0\}\right)=S_{g}$.
${ }^{5)}$ Let us recall that a set A_{f} is called attractor of a diffeomorphism $f: M^{3} \rightarrow M^{3}$ if it has a trapping neighborhood, that is, a closed neighborhood $U_{A_{f}} \subset M^{3}$ such that $f\left(U_{A_{f}}\right) \subset \operatorname{int} U_{A_{f}}$ and $A_{f}=\bigcap_{i \in \mathbb{N}} f^{i}\left(U_{A_{f}}\right)$. A set R_{f} is called a repeller of the diffeomorphism f if it is an attractor for f^{-1}.

Below, the numbers k_{f}, g_{f}, defined in Theorem 1, will be associated with every SDdiffeomorphism f.

To describe a topology of the ambient manifold of SD-diffeomorphisms, we recall that a mapping torus $M_{g, \tau}^{3}$ is a factor space $\mathbb{S}_{g} \times[0,1] / \sim$, where $(z, 1) \sim(\tau(z), 0)$ for a homeomorphism $\tau: \mathbb{S}_{g} \rightarrow \mathbb{S}_{g}$ (gluing map) of the closed surface \mathbb{S}_{g} of genus g. It is easy to prove (see Section 3.1) that the mapping tori $M_{g, \tau}^{3}, M_{g, \tau^{\prime}}^{3}$ are homeomorphic if the homeomorphisms τ, τ^{\prime} are isotopic. From this fact and the Dehn - Nielsen and Baer Theorems (see Proposition 2) it follows that the set of nonhomeomorphic mapping tori is not greater than a countable set. The fact that every homeomorphism of a compact surface is isotopic to a diffeomorphism (see, for example, [13]) allows us to further assume that the gluing map τ in the definition of the mapping torus is a diffeomorphism.
Theorem 2. Let $f: M^{3} \rightarrow M^{3}$ be a SD-diffeomorphism. Then there exists a diffeomorphism $\tau_{f}: \mathbb{S}_{g_{f}} \rightarrow \mathbb{S}_{g_{f}}$ such that M^{3} is diffeomorphic to the mapping torus $M_{g_{f}, \tau_{f}}^{3}$.

Below we will focus on gradient-like SD-diffeomorphisms. Let us recall that the diffeomorphism $f: M^{n} \rightarrow M^{n}$ of a connected closed smooth manifold M^{n} of dimension n is called a Morse-Smale diffeomorphism if its nonwandering set Ω_{f} is finite and consists of hyperbolic periodic points, and for different saddle periodic points $p, q \in \Omega_{f}$ the invariant manifolds W_{p}^{s}, W_{q}^{u} either are disjoint or intersect transversely. Let p, q be different saddle periodic points of a Morse-Smale diffeomorphism $f: M^{n} \rightarrow M^{n}$. If $\operatorname{dim}\left(W_{p}^{s} \cap W_{q}^{u}\right)=0$, then each point of the set $W_{p}^{s} \cap W_{q}^{u}$ is called a heteroclinic point. The diffeomorphism f is called gradient-like if the condition $W_{p}^{s} \cap W_{q}^{u} \neq \emptyset$ leads to the fact $\operatorname{dim} W_{p}^{u}<\operatorname{dim} W_{q}^{u}$. So if the wandering set of f does not contain heteroclinic points, then f is gradient-like.
S. Smale showed in [24] (Theorem A) that a gradient flow generated by a Morse function given on a manifold M^{n} can be arbitrarily closely approximated (in C^{1} topology) with a Morse-Smale flow without closed trajectories, which proves the existence of a gradient-like diffeomorphism on any manifold (for example, the time-1 map of such a Morse-Smale flow).
Theorem 3. For any integer $g \geqslant 0$ and a diffeomorphism $\tau: \mathbb{S}_{g} \rightarrow \mathbb{S}_{g}$ there is a gradient-like SDdiffeomorphism on $M_{g, \tau}^{3}$.
Remark 1. The result of Theorem 3 contrasts with the result of [10], where it was proved that the manifold admitting structurally stable SD-diffeomorphisms with only two-dimensional basic sets is mapping tori $M_{1, \tau}^{3}$ such that the induced homomorphism $\tau_{*}: \pi_{1}\left(\mathbb{S}_{1}\right) \rightarrow \pi_{1}\left(\mathbb{S}_{1}\right)$ is either hyperbolic or defined by matrix $\pm I d$.

Let $f: M^{3} \rightarrow M^{3}$ be a gradient-like diffeomorphism and let p, q be its different saddle periodic points such that $\operatorname{dim}\left(W_{p}^{s} \cap W_{q}^{u}\right)=1$. Then every connected component of the set $W_{p}^{s} \cap W_{q}^{u}$ is called a heteroclinic curve.

Theorem 4.

1. Let $f: M_{g_{f}, \tau_{f}}^{3} \rightarrow M_{g_{f}, \tau_{f}}^{3}$ be a gradient-like diffeomorphism with surface dynamics. Then a number of noncompact heteroclinic curves is not less than $12 g_{f} k_{f}$.
2. The estimation is exact, namely, for all integers $k>0, g \geqslant 0$ there is a gradient-like SDdiffeomorphism $f: \mathbb{S}_{g} \times \mathbb{S}^{1} \rightarrow \mathbb{S}_{g} \times \mathbb{S}^{1}$ such that its wandering set contains exactly $12 g k$ noncompact heteroclinic curves.

Remark 2. Theorem 4 gives an exact lower estimate of the number of noncompact heteroclinic curves. However, for any integers $g \geqslant 0 ; k \geqslant 1$ there is a gradient-like SD-diffeomorphism f : $\mathbb{S}_{g} \times \mathbb{S}^{1} \rightarrow \mathbb{S}_{g} \times \mathbb{S}^{1}$ such that the set $\mathcal{A}_{f} \cup \mathcal{R}_{f}$ consists of $2 k$ surfaces of genus $g \geqslant 0$ and the wandering set contains an arbitrary number (greater than $12 g_{f} k_{f}$) of noncompact heteroclinic curves. Figure 1 shows an idea how to increase the number of noncompact heteroclinic curves in the case $g=0, k=1$. The figure shows phase portraits of diffeomorphisms on unfolding of $\mathbb{S}_{0} \times \mathbb{S}^{1}$. The first of them (Fig. 1a) is a diffeomorphism without heteroclinic curves, the second (Fig. 1b)
is a diffeomorphism with heteroclinic curves (they are marked by the dash-and-dot line). Both diffeomorphisms can be defined as a direct product of a gradient-like diffeomorphism on the 2sphere \mathbb{S}_{0} and a structurally stable diffeomorphism on the circle \mathbb{S}^{1}, whose nonwandering set consists of exactly one sink and one source. Thus, both diffeomorphisms have two invariant spheres A, R, which are an attractor and a repeller, respectively. In the first case the gradientlike diffeomorphism on the 2 -sphere \mathbb{S}_{0} has a nonwandering set consisting of exactly one sink and one source, and the nonwandering set of the resulting diffeomorphism consists of a source α, a $\operatorname{sink} \omega$ and saddles σ_{1}, σ_{2}. In the second case the gradient-like diffeomorphism on the 2 -sphere \mathbb{S}_{0} has a nonwandering set consisting of four points: one source, one saddle and two sinks, so the nonwandering set of the resulting diffeomorphism consists of eight points: a source α, sinks ω_{1}, ω_{2} and saddles $\sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22}, \sigma_{23}$. Heteroclinic curves in this example are generated by the intersections $W_{\sigma_{22}}^{u} \cap W_{\sigma_{12}}^{s}, W_{\sigma_{22}}^{u} \cap W_{\sigma_{11}}^{s}, W_{\sigma_{23}}^{s} \cap W_{\sigma_{21}}^{u}, W_{\sigma_{22}}^{u} \cap W_{\sigma_{23}}^{s}$.

(a)

(b)

Fig. 1. Examples of gradient-like SD-diffeomorphisms on $\mathbb{S}_{0} \times \mathbb{S}^{1}$: a) without heteroclinic curves; b) with heteroclinic curves.

2. DYNAMICS OF SD-DIFFEOMORPHISMS

This section is devoted to a proof of Theorem 1. Let $f \in S D\left(M^{3}\right)$. Without loss of generality we can assume that every connected component of the sets V_{f}, \mathcal{A}_{f} and \mathcal{R}_{f} is f-invariant (in the opposite case one can consider an appropriate degree of the diffeomorphism f that does not change the conclusion). Let us provide the proof by steps.

1. Let us prove that \mathcal{A}_{f} is an attractor and \mathcal{R}_{f} is a repeller of the diffeomorphism f.

According to S . Smale [25], the nonwandering set Ω_{f} is uniquely represented as a disjoint union $\Omega_{f}=\Lambda_{1} \cup \cdots \cup \Lambda_{m}$ of compact invariant and topologically transitive sets, which are called basic sets, and $M^{3}=\bigcup_{i=1}^{m} W_{\Lambda_{i}}^{s}=\bigcup_{i=1}^{m} W_{\Lambda_{i}}^{u}$. Moreover, it is possible to define a partial order among the basic sets as follows: $\Lambda_{i} \prec \Lambda_{j}$ for different basic sets Λ_{i}, Λ_{j} if and only if $W_{\Lambda_{i}}^{s} \cap W_{\Lambda_{j}}^{u} \neq \emptyset$. Since f has no cycles, this partial order can be extended to a complete order relation (we will assume that $\Lambda_{1} \prec \cdots \prec \Lambda_{m}$). In this case the manifold M^{3} admits a filtration (see, for example, [23]), that is, a sequence M_{1}, \ldots, M_{n-1} of n-dimensional submanifolds with a smooth boundary such that $M^{3}=M_{n} \supset M_{n-1} \supset \cdots \supset M_{1} \supset M_{0}=\emptyset$ such that for every $i \in\{1, \ldots, n\}$ the following conditions hold:

1. $f\left(M_{i}\right) \subset$ int M_{i};
2. $\Lambda_{i} \subset \operatorname{int}\left(M_{i} \backslash M_{i-1}\right)$;
3. $\Lambda_{i}=\bigcap_{l \in \mathbb{Z}} f^{l}\left(M_{i} \backslash M_{i-1}\right)$;
4. $\bigcap_{l \geqslant 0} f^{l}\left(M_{i}\right)=\bigcup_{j \leqslant i} W_{\Lambda_{j}}^{u}=\bigcup_{j \leqslant i} c l W_{\Lambda_{j}}^{u}$.

Let $\Lambda_{a} \subset \Omega_{+}$and $\Lambda_{r} \subset \Omega_{-}$be arbitrary basic sets connected by the relation \prec. It follows from the definition of the surface dynamics that $W_{\Lambda_{a}}^{u} \subset \mathcal{A}_{f}$ and $W_{\Lambda_{r}}^{s} \subset \mathcal{R}_{f}$, hence $\Lambda_{a} \prec \Lambda_{r}$. Thus, without loss of generality we can assume that $\Omega_{+}=\bigcup_{j=1}^{i_{*}} \Lambda_{j}$ for some $1<i_{*}<n$. Then $M_{i_{*}}$ is a trapping neighborhood for \mathcal{A}_{f} and \mathcal{A}_{f} is an attractor of the diffeomorphism f. Similar arguments for f^{-1} prove that \mathcal{R}_{f} is a repeller.
2. Let us prove that the boundary of every connected component V of the set $M^{3} \backslash\left(\mathcal{R}_{f} \cup \mathcal{A}_{f}\right)$ consists of exactly one connected component of the set \mathcal{A}_{f} and one connected component of the set \mathcal{R}_{f}.

Let A be a connected component of the set \mathcal{A}_{f} and let U_{A} be a trapping neighborhood of A, which is a closed set such that $f\left(U_{A}\right) \subset$ int U_{A} and $\bigcap_{n \in \mathbb{Z}} f^{n}\left(U_{A}\right)=A$. Let us denote by $Q_{A}=\bigcup_{n \in \mathbb{Z}} f^{n}\left(U_{A}\right)$ the basin of the attractor A. By construction, Q_{A} is a connected open set and the set $M^{3} \backslash \mathcal{R}_{f}$ is a disjoint union of the $Q_{A}, A \in \mathcal{A}_{f}$.

Since A is bi-collared, the set $U_{A} \backslash A$ consists of two connected components U_{+}, U_{-}, so $Q_{A} \backslash A$ also consists of two connected components. Then the boundary of every connected component $V \subset V_{f}$ contains exactly one connected component of the set \mathcal{A}_{f}. Applying similar arguments to f^{-1}, one finds that the boundary of every connected component of $V \subset V_{f}$ contains exactly one connected component of the set \mathcal{R}_{f}.
3. Let us prove that there is an integer $g_{f} \geqslant 0$ such that $\mathrm{cl} V$ is homeomorphic to the direct product $\mathbb{S}_{g_{f}} \times[0,1]$.

To prove the item, we use the following important statements, which were proved in [9] (see Lemma 3.1 and Theorems 3.1 and 3.3) ${ }^{6}$.

Let P^{3} be a 3 -manifold whose boundary consists of two disjoint connected components B_{1}, B_{2}. The boundary components B_{1} and B_{2} are said to be separated by a surface $S \subset$ int P^{3} if B_{1}, B_{2} belongs to different connected components of the set $P^{3} \backslash S$.
Statement 1. The boundary components B_{1} and B_{2} are not separated by a connected orientable surface $S \subset$ int P^{3} if and only if S bounds a domain $D \subset$ int P^{3}.

Statement 2. Let $P_{g^{\prime}}^{3}, g^{\prime}>0$ be a manifold homeomorphic to the direct product $S_{g^{\prime}} \times[0,1]$ and let $S_{g} \subset P_{g^{\prime}}^{3}$ be a locally flat embedded orientable surface of genus $g<g^{\prime}$. Then the connected components of $\partial P_{g^{\prime}}^{3}$ are not separated by S_{g} in $P_{g^{\prime}}^{3}$.
Statement 3. Let P_{g}^{3} be a manifold homeomorphic to the direct product $S_{g} \times[0,1]$ and let $S_{g} \subset P_{g}^{3}$ be a locally flat embedded orientable surface of genus g that does not bound any domain in P_{g}^{3}. Then S_{g} divides P_{g}^{3} into two connected components homeomorphic to $S_{g} \times[0,1]$.

Let V be a connected component of the set V_{f} and $\partial V=A \cup R$. Denote by g_{a}, g_{r} the genus of the surfaces A, R. Since A, R are bi-collared in M^{3}, there are topological embeddings $h_{a}: S_{g_{a}} \times[-1,1] \rightarrow M^{3}, h_{r}: S_{g_{r}} \times[-1,1] \rightarrow M^{3}$ such that $h_{a}\left(S_{g_{a}} \times\{0\}\right)=A, h_{r}\left(S_{g_{r}} \times\{0\}\right)=R$ and $h_{a}\left(S_{g_{a}} \times[-1,1]\right) \cap h_{r}\left(S_{g_{r}} \times[-1,1]\right)=\emptyset$. Let

$$
N_{a}=h_{a}\left(S_{g_{a}} \times[-1,1]\right) \cap c l V, N_{r}=h_{r}\left(S_{g_{r}} \times[-1,1]\right) \cap c l V .
$$

Let us assume for definiteness that the sets $B_{a}=h_{a}\left(S_{g_{a}} \times\{1\}\right), B_{r}=h_{r}\left(S_{g_{r}} \times\{1\}\right)$ belong to V.

[^1]Let us show that $g_{a}=g_{r}$. Notice that there exists a natural number n_{*} such that $f^{n^{*}}\left(B_{r}\right)$ belongs to int N_{a}. Indeed, every point $p \in B_{r}$ belongs to the basin Q_{A}, hence there exist a closed neighborhood $U(p) \subset B_{r}$ of the point p and a natural number $n(p)$ such that $f^{n}(U(p)) \subset$ int N_{a} for each $n>n(p)$. Since B_{r} is compact, there exists a finite subcovering of the covering $\{U(p)\}_{p \in B_{r}}$. Thus there exists a natural number n^{*} such that $f^{n}\left(B_{r}\right) \subset$ int N_{a} for any $n \geqslant n^{*}$.

Let $B_{r}^{*}=f^{n^{*}}\left(B_{r}\right)$. Show that A and B_{a} are separated by B_{r}^{*} in N_{a}. Assume the contrary. Then, according to Statement $1, B_{r}^{*}$ bounds a domain $D \subset$ int N_{a}. Applying the above arguments, prove that there is a number $m^{*}>0$ such that $f^{-m^{*}}\left(D \cup B_{r}^{*}\right) \subset$ int N_{r}. Then $f^{n^{*}-m^{*}}\left(B_{r}\right)=f^{-m^{*}}\left(B_{r}^{*}\right)$ bounds the disk $f^{-m^{*}}(D)$ in N_{r} and, according to Statement 1, does not separate B_{r} and R in N_{r}. On the other hand, the surfaces $f^{n^{*}-m^{*}}\left(B_{r}\right)$ and R bound the set $f^{n^{*}-m^{*}}\left(N_{r}\right)$, which is homeomorphic to the direct product $\mathbb{S}_{g_{r}} \times[0 ; 1]$. Then B_{r} and R are separated by $f^{n^{*}-m^{*}}\left(B_{r}\right)$ in N_{r}. This contradiction proves that A and B_{a} are separated by B_{r}^{*} in N_{a}. Then, according to Statement 2, $g_{a} \geqslant g_{r}$. Applying the above arguments to B_{a}, prove that $g_{r} \geqslant g_{r}$, so $g_{a}=g_{r}=g$.

Since B_{r}^{*} does not bound a domain in N_{a}, according to Statement 3, it divides N_{a} in two parts homeomorphic to $\mathbb{S}_{g} \times[0,1]$. Let P_{1} be the part that is bounded by A and B_{r}^{*}. Then cl $V=P_{1} \cup f^{n_{*}}\left(N_{r}\right)$ and it is homeomorphic to $\mathbb{S}_{g} \times[0,1]$.

As the component V was chosen arbitrary and the manifold M^{3} is connected, all connected components of the set $\mathcal{A} \cup \mathcal{R}$ have the same genus g_{f}.
4. The fact that the sets \mathcal{A}_{f} and \mathcal{R}_{f} consist of the same number $k_{f} \geqslant 1$ of the connected components each of which is a surface of genus g_{f} immediately follows from items 2 and 3 .

3. CLASSIFICATION OF AMBIENT MANIFOLDS OF DIFFEOMORPHISMS WITH SURFACE DYNAMICS

Let K be a connected component of $\mathcal{A}_{f} \cup \mathcal{R}_{f}$. It follows from item 3 of Theorem 1 that there exists a continuous map $H: \mathbb{S}_{g_{f}} \times[0,1] \rightarrow M^{3}$ such that the restrictions $\left.H\right|_{\mathbb{S}_{g_{f}} \times(0,1)}: \mathbb{S}_{g_{f}} \times(0,1) \rightarrow$ $M^{3} \backslash K, H_{0}=\left.H\right|_{\mathbb{S}_{g_{f}} \times\{0\}}: \mathbb{S}_{g_{f}} \times\{0\} \rightarrow K, H_{1}=\left.H\right|_{\mathbb{S}_{g_{f}} \times\{1\}}: \mathbb{S}_{g_{f}} \times\{1\} \rightarrow K$ are homeomorphisms. Let $H_{0}(z, 0)=\left(h_{0}(z), 0\right), H_{1}(z, 1)=\left(h_{1}(z), 1\right)$ and $\tau_{f}=h_{0}^{-1} h_{1}$. Then by construction the manifold $M_{g_{f}, \tau_{f}}^{3}$ is homeomorphic to the manifold M^{3} by a homeomorphism \check{H} which maps the equivalence class $[(z, t)]$ of $(z, t) \in \mathbb{S}_{g_{f}} \times[0,1]$ to the point $H(z, t) \in M^{3}$.

Thus M^{3} is homeomorphic to a mapping torus.

3.1. On Mapping Tori

Proposition 1. Mapping tori $M_{g, \tau}^{3}, M_{g, \tau^{\prime}}^{3}$ are homeomorphic if the homeomorphisms τ, τ^{\prime} are isotopic.
Proof. Let $H: \mathbb{S}_{g} \times[0 ; 1] \rightarrow \mathbb{S}_{g}$ be an isotopy connecting a map $\tau^{\prime} \tau^{-1}=H(z, 0)$ with the identity map $H(z, 1)$. Let us denote a homeomorphism $h: \mathbb{S}_{g} \times[0 ; 1] \rightarrow \mathbb{S}_{g} \times[0 ; 1]$ by $h(z, t)=(H(z, t), t)$. Then a map $\hat{h}: M_{g, \tau}^{3} \rightarrow M_{g, \tau^{\prime}}^{3}$ that sends an equivalence class $[(z, t)]$ to the equivalence class $[h(z, t)]$ is a homeomorphism.

There are exactly two isotopy classes of homeomorphisms of the sphere \mathbb{S}_{0} that consist of homeomorphisms preserving and reversing an orientation, respectively. For $g \geqslant 1$ the criterion of the existence of an isotopy between two homeomorphisms τ, τ^{\prime} of the surface \mathbb{S}_{g} follows from the Dehn - Nielsen and Baer theorems ($[2,14]$, see also [27], Theorem 5.15.3) and is connected with the induced homomorphisms of the fundamental groups.

More precisely, let $\tau_{*}: \pi_{1}\left(\mathbb{S}_{g}, x_{0}\right) \rightarrow \pi_{1}\left(\mathbb{S}_{g}, \tau\left(x_{0}\right)\right)$ be an isomorphism induced by homeomorphism τ, and let $Q_{\xi}, Q_{\eta}: \pi_{1}\left(\mathbb{S}_{g}, \tau\left(x_{0}\right)\right) \rightarrow \pi_{1}\left(\mathbb{S}_{g}, x_{0}\right)$ be isomorphisms induced by paths ξ, η, respectively. Then there is an inner automorphism ${ }^{7)} \varphi(x)=\xi \eta^{-1} x \eta \xi^{-1}$ such that isomorphisms $Q_{\xi} h_{*}$,

[^2]$Q_{\eta} h_{*}: \pi_{1}\left(\mathbb{S}_{g}, x_{0}\right) \rightarrow \pi_{1}\left(\mathbb{S}_{g}, x_{0}\right)$ satisfy the following relation: $Q_{\xi} \tau_{*}=\varphi Q_{\eta} \tau_{*}$. Thus τ_{*} represents a well-defined element of the quotient group $\operatorname{Out}\left(\pi_{1}\left(\mathbb{S}_{g}, x_{0}\right)\right)=\operatorname{Aut}\left(\pi_{1}\left(\mathbb{S}_{g}, x_{0}\right) / \operatorname{Inn}\left(\pi_{1}\left(\mathbb{S}_{g}, x_{0}\right)\right)\right.$, where $\operatorname{Aut}\left(\pi_{1}\left(\mathbb{S}_{g}, x_{0}\right), \operatorname{Inn}\left(\pi_{1}\left(\mathbb{S}_{g}, x_{0}\right)\right)\right.$ are a group of all automorphisms and a group of inner automorphisms of the group $\pi_{1}\left(\mathbb{S}_{g}, x_{0}\right)$, respectively. This element will be denoted by $\left[\tau_{*}\right]$.
Proposition 2. Homeomorphisms $\tau, \tau^{\prime}: \mathbb{S}_{g} \rightarrow \mathbb{S}_{g}, g \geqslant 1$, are isotopic if and only if $\left[\tau_{*}^{\prime}\right]=\left[\tau_{*}\right]$.
In the case $g=1$ the group $\pi_{1}\left(\mathbb{S}_{1}\right)$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ and the automorphism $\tau_{*}: \pi_{1}\left(\mathbb{S}_{1}\right) \rightarrow$ $\pi_{1}\left(\mathbb{S}_{1}\right)$ is determined by an integer unimodular matrix $J_{\tau_{*}} \in G L_{2}(\mathbb{Z})$. The following criteria for the mapping tori $M_{1, \tau}^{3}, M_{1, \tau^{\prime}}^{3}$ to be homeomorphic follows from [11].

Proposition 3. Manifolds $M_{1, \tau}^{3}, M_{1, \tau^{\prime}}^{3}$ are diffeomorphic iff there exists a matrix $A \in G L_{2}(\mathbb{Z})$ such that either $J_{\tau_{*}^{\prime}}=A J_{\tau_{*}} A^{-1}$ or $J_{\tau_{*}^{\prime}}=A J_{\tau_{*}^{\prime}}^{-1} A^{-1}$.

3.2. Construction of a Diffeomorphism with Surface Dynamics on a Mapping Torus

In this section we prove the second item of Theorem 4 and Theorem 3. First for all integers $k>0, g \geqslant 0$ we construct a gradient-like SD-diffeomorphism $f: \mathbb{S}_{g} \times \mathbb{S}^{1} \rightarrow \mathbb{S}_{g} \times \mathbb{S}^{1}$ such that its wandering set contains exactly $12 g k$ noncompact heteroclinic curves.

Fig. 2. Morse - Smale diffeomorphism on a surface of genus g.
Let $\psi:[0 ; 1] \rightarrow[0,1]$ be the time- 1 map of the flow $\dot{r}=\sin 2 \pi k r$, and let $\varphi_{g}^{t}: \mathbb{S}_{g} \rightarrow \mathbb{S}_{g}$ be a gradient-like flow whose nonwandering set consists of exactly one $\operatorname{sink} \omega$, one source α and $2 g$ saddle equilibria $\sigma_{1}, \ldots, \sigma_{2 g}$. Figure 2 shows an unfolding of the surface \mathbb{S}_{g} as a $2 g$-gon and a phase portrait of the flow φ_{g}^{t} on it. Let $\Gamma^{u}=\bigcup_{i=1}^{2 g} W_{\sigma_{i}}^{u}, \Gamma^{s}=\bigcup_{i=1}^{2 g} W_{\sigma_{i}}^{s}$. Denote by f_{0} the time-1 map of the flow φ_{g}^{t} and define a diffeomorphism $F: \mathbb{S}_{g} \times[0 ; 1] \rightarrow \mathbb{S}_{g} \times[0 ; 1]$ by the formula $F(z, r)=\left(f_{0}(z), \psi(r)\right)$. To get $\mathbb{S}_{g} \times \mathbb{S}^{1}$, take an identical gluing map. Then the diffeomorphism F induces a gradient-like diffeomorphism $f: \mathbb{S}_{g} \times \mathbb{S}^{1} \rightarrow \mathbb{S}_{g} \times \mathbb{S}^{1}$ that maps an equivalence class $[(z, r)]$ of point $(z, r) \in \mathbb{S}_{g} \times[0 ; 1]$ to equivalence class $[F(z, r)]$. To prove Theorem 3, for arbitrary integers $g \geqslant 0 ; k \geqslant 1$ and an orientation preserving diffeomorphism $\tau: \mathbb{S}_{g} \rightarrow \mathbb{S}_{g}$, we construct a gradient-like SD-diffeomorphism on $M_{g, \tau}^{3} \rightarrow M_{g, \tau}^{3}$ whose nonwandering set belongs to exactly $2 k$ disjoint closed surfaces, each has genus g. As a small perturbation of τ does not chain the isotopy class, without loss of generality we assume that
(*) Γ^{u} is transversal to $\tau\left(\Gamma^{s}\right)$;
$(* *) \tau(\alpha) \notin\left(\Gamma^{u} \cup \omega\right)$ and $\omega \notin \tau\left(\Gamma^{s} \cup \alpha\right)$.

Let $f_{1}=\tau^{-1} f_{0} \tau$ and denote by $\varphi_{g}^{[t]}$ a time- t map along the trajectories of φ_{g}^{t}.
Choose $r_{0} \in\left(1-\frac{1}{2 k}, 1\right)$, put $r_{1}=\psi^{-1}\left(r_{0}\right), r_{2}=\psi^{-1}\left(r_{1}\right)\left(r_{0}<r_{1}<r_{2}\right)$ and define a diffeomorphism $F: \mathbb{S}_{g} \times[0 ; 1] \rightarrow \mathbb{S}_{g} \times[0 ; 1]$ by the formula

$$
F(z, r)=\left\{\begin{array}{l}
\left(f_{0}(z), \psi(r)\right), r \in\left[0 ; r_{0}\right] \\
\left(\varphi_{g}^{\left[\frac{r_{1}-r}{r_{1}-r_{0}}\right]}(z), \psi(r)\right), r \in\left[r_{0} ; r_{1}\right] \\
\left(\tau^{-1} \varphi_{g}^{\left[\frac{r-r_{1}}{r_{1}-r_{1}}\right]} \tau(z), \psi(r)\right), r \in\left[r_{1} ; r_{2}\right] \\
\left(f_{1}(z), \psi(r)\right), r \in\left[r_{2} ; 1\right]
\end{array}\right.
$$

By construction, the nonwandering set of diffeomorphism F is finite, hyperbolic and belongs to surfaces $\mathbb{S}_{g} \times\left\{\frac{i}{2 k}\right\}, i \in\{0, \ldots, 2 k\}$. The diffeomorphism F can be projected as a SD-diffeomorphism \widetilde{F} on $M_{g, \tau}^{3}$. To show that diffeomorphism \widetilde{F} is gradient-like, it is enough to show that twodimensional manifolds of saddle points of F have a transversal intersection and one-dimensional saddle separatrices do not intersect any other saddle separatrices in $\mathbb{S}_{g} \times\left(1-\frac{1}{2 k}, 1\right)$.

For this purpose notice that a region $D=\mathbb{S}_{g} \times\left[r_{1} ; r_{2}\right]$ is a fundamental domain of the restriction $\left.F\right|_{\mathbb{S}_{g} \times\left(1-\frac{1}{2 k}, 1\right)}$. It follows from the construction of the diffeomorphism F that the two-dimensional stable separatrices intersect D along $\Gamma^{s} \times\left[r_{1} ; r_{2}\right]$, two-dimensional unstable separatrices intersect D along $\tau^{-1}\left(\Gamma^{u}\right) \times\left[r_{1} ; r_{2}\right]$, one-dimensional stable separatrices intersect D along $\alpha \times\left[r_{1} ; r_{2}\right]$ and onedimensional unstable separatrices intersect D along $\tau^{-1}(\omega) \times\left[r_{1} ; r_{2}\right]$. Due to (*) two-dimensional manifolds of saddle points of F have a transversal intersection in D and hence in $\mathbb{S}_{g} \times\left(1-\frac{1}{2 k}, 1\right)$. Due to $\left({ }^{* *}\right)$ one-dimensional saddle separatrices do not intersect any other saddle separatrices in D and hence in $\mathbb{S}_{g} \times\left(1-\frac{1}{2 k}, 1\right)$.

4. ON HETEROCLINIC CURVES OF GRADIENT-LIKE SD-DIFFEOMORPHISMS

Theorem 4 directly follows from Lemmas $1-3$ and Corollaries $1-3$ below. To prove these lemmas, we use the following two important statements. The first is proved in [25] (see Theorem 2.3), the second is a strong form of the λ-lemma proved in [16, Remarks, p. 85].
Statement 4. If $f: M^{n} \rightarrow M^{n}$ is a Morse-Smale diffeomorphism, then for every point $p \in \Omega_{f}$ and a connected component l^{u} of the set $W_{p}^{u} \backslash p$ the equality

$$
c l l_{p}^{u} \backslash\left(l_{p}^{u} \cup p\right)=\bigcup_{q \in \Omega_{f}: W_{q}^{s} \cap l_{p}^{u} \neq \emptyset} W_{q}^{u}
$$

holds.
Statement 5 (λ-lemma). Let $f: M^{n} \rightarrow M^{n}$ be a diffeomorphism of an n-manifold, and let p be a fixed point of f, $\operatorname{dim} W_{p}^{u}=m, 0<m<n$. Let B^{s} be a compact subset of W_{p}^{s} (containing p or not) and let $F: B^{s} \rightarrow C^{1}\left(\mathbb{D}^{m}, X\right)$ be a continuous family of embedded closed m-disks of class C^{1} transverse to $W_{p}^{s} ; \operatorname{set} F(x):=D_{x}^{u}$. Let $D^{u} \subset W_{p}^{u}$ be a compact m-disk and let $V \subset X$ be a compact n-ball such that D^{u} is a connected component of $W_{p}^{u} \cap V$. Then, as k goes to $+\infty$, the sequence $f^{k}\left(D_{x}^{u}\right) \cap V$ converges to D^{u} in the C^{1} topology uniformly for $x \in B^{s}$.

Let $f: M^{3} \rightarrow M^{3}$ be a gradient-like SD-diffeomorphism, $g_{f} \geqslant 1$. Without loss of generality we can assume that the set Ω_{f} consists only of fixed points (in the opposite case one can consider an appropriate degree of the diffeomorphism f that does not change the number of heteroclinic curves). For a connected component A of the attractor \mathcal{A}_{f} let

$$
\Omega_{A}=\Omega_{f} \cap A \quad \text { and } \quad \Omega_{A}^{i}=\Omega_{f}^{i} \cap A, \quad i \in\{0,1,2\}
$$

Fig. 3. Illustration to the λ-lemma.

It follows from the definition of the surface A that

$$
A=\bigcup_{p \in \Omega_{A}} W_{p}^{u}
$$

Since the diffeomorphism f is gradient-like and A is a closed surface, for any point $q \in \Omega_{A}^{1}$ the set ($c l W_{q}^{u} \backslash W_{q}^{u}$) belongs to Ω_{A}^{0}. Therefore the set $c l W_{\Omega_{A}^{1}}^{u}$ consists of a finite number of compact curves. Moreover, each connected component of the set $A \backslash c l W_{\Omega_{A}^{1}}^{u}$ is W_{p}^{u} for some point $p \in \Omega_{A}^{2}$. Thus the decomposition

$$
A=\Omega_{A}^{0} \cup W_{\Omega_{A}^{1}}^{u} \cup W_{\Omega_{A}^{2}}^{u}
$$

is a cellular decomposition of the surface A with genus g_{f}. Then, according to the Euler formula,

$$
\left|\Omega_{A}^{2}\right|-\left|\Omega_{A}^{1}\right|+\left|\Omega_{A}^{0}\right|=2-2 g_{f},
$$

hence

$$
\begin{equation*}
\left|\Omega_{A}^{1}\right| \geqslant 2 g_{f} . \tag{4.1}
\end{equation*}
$$

Fig. 4. Illustration to a proof of the absence of compact heteroclinic curves.

Lemma 1. The surface A does not contain compact heteroclinic curves.
Proof. Suppose the contrary: there are saddle points $p \in \Omega_{A}^{2}, q \in \Omega_{f}^{1}$ such that the intersection $W_{p}^{u} \cap W_{q}^{s}$ contains a compact connected component γ. Then, by Statement $4, W_{q}^{u} \subset c l W_{p}^{u}$ and hence $q \in \Omega_{A}^{1}$. Since W_{p}^{u} is homeomorphic to \mathbb{R}^{2}, the curve γ bounds a unique disk d in W_{p}^{u}. As the surface A is bi-collared in M^{3}, there exists a neighborhood U_{q} of the point q in M^{3} such that the intersection $D=U_{q} \cap A$ is homeomorphic to a 2-disk. Since γ is a subset of W_{q}^{s}, there exists a number $n_{0} \in \mathbb{N}$ such that $f^{n}(\gamma) \subset U_{q}$ for all $n>n_{0}$. Thus $f^{n}(\gamma)$ belongs to D, and hence $f^{n}(\gamma)$ bounds a unique disk d_{n}, therefore $d_{n}=f^{n}(d)$.

Let us denote by B_{q} a compact arc in W_{q}^{u} such that $q \in$ int B_{q} and $B_{q} \backslash U_{q} \neq \emptyset$, and by V_{q} a neighborhood of the arc B_{q}, similar to the neighborhood V in the statement of the λ-lemma. Let
us choose a compact arc $l \subset W_{p}^{u}$ which transversally intersects the arc γ (see Fig. 4) at a unique point x and such that one of the connected components of the set $l \backslash x$ belongs to the disk d. By construction, the arc l is transversal to the manifold W_{q}^{s}. It follows from the λ-lemma that for any $\varepsilon>0$ there exists a number $k_{0} \in \mathbb{N}$ such that for all $k>k_{0}$ a connected component l_{k} of the set $f^{k}(l) \cap V_{q}$, containing the point $x_{k}=f^{k}(x)$, is ε-close to the arc B_{q}.

Let us choose a number $k>\max \left\{k_{0}, n_{0}\right\}$. The set $B_{q} \backslash q\left(l_{k} \backslash x_{k}\right)$ consists of two connected components $B_{q}^{+}, B_{q}^{-}\left(l_{k}^{+}, l_{k}^{-}\right)$, then the ε-closeness of the $\operatorname{arcs} l_{k}$ and B_{q} leads to the fact that for any point $y \in B_{q}^{\delta} \backslash U_{q}, \delta \in\{+,-\}$ there exists a neighborhood $u_{y} \subset V_{q}$ which has a nonempty intersection with l_{k}^{δ}. This contradicts the fact that one of the components l^{+}, l^{-}belongs to the disk $d_{k} \subset U_{q}$.

Lemma 2. For each point $q \in \Omega_{A}^{1}$ the set $\left(W_{q}^{s} \backslash q\right) \cap A$ consists of exactly two noncompact heteroclinic curves.

Proof. Let $q \in \Omega_{A}^{1}$. Since A is a surface, it is possible to choose a neighborhood V_{q} of the point q in A such that the set $V_{q} \backslash W_{q}^{u}$ is a union of two connected components. Then there are points $p_{1}, p_{2} \in \Omega_{A}^{2}$ (it is possible that $p_{1}=p_{2}$) such that $W_{q}^{u} \subset c l W_{p_{i}}^{u}$ for all $i \in\{1,2\}$. According to Statement 4, the intersection $W_{p_{i}}^{u} \cap W_{q}^{s}, i \in\{1,2\}$ is not empty, and hence the intersection $W_{q}^{s} \cap A$ contains heteroclinic curves. Denote by Γ_{q} the union of these curves. According to Lemma 1, the set Γ_{p} does not contain compact curves. Then, due to a result in [5], Γ_{q} consists of a finite number of connected components.

Fig. 5. Heteroclinic curves in W_{q}^{s}.
As the surface A is a bi-collared in M^{3}, there exists a neighborhood U_{q} of the point q in M^{3} such that the intersection $D=U_{q} \cap A$ is homeomorphic to a 2-disk. Let us choose a disk $D_{q}^{s} \subset\left(W_{q}^{s} \cap U_{q}\right), q \in \operatorname{int} D_{q}^{s}$, such that each curve from Γ_{q} intersects the boundary of the disk D_{q}^{s} at a unique point (see Fig. 5). As the intersection $D_{q}^{s} \cap W_{p_{i}}^{u}$ is transversal, the set $D_{q}^{s} \backslash\left(\Gamma_{q} \cup q\right)$ intersects both connected components of the set $U_{q} \backslash D$. Thus the set Γ_{q} contains at least two noncompact heteroclinic curves.

Let us show that Γ_{q} consists of exactly two curves. Suppose the contrary: the number k of curves in Γ_{q} is greater than two. Without loss of generality we can assume that every curve in Γ_{q} is f invariant (in the opposite case one can consider an appropriate degree of the diffeomorphism f that does not change the number of heteroclinic curves). Moreover, we assume that every curve from Γ_{q} intersects the boundary of the disk V_{q} at a unique point (in the opposite case we can choose on V_{q} a 2-disk with required properties). Then the set $V_{q} \backslash\left(\Gamma_{q} \cup q\right)$ contains a connected component avoiding W_{q}^{u}. Suppose that this component belongs to $W_{p_{1}}^{u}$ and denote it by d_{1}. Let $\gamma_{1}, \gamma_{2} \subset \Gamma_{q}$ be heteroclinic curves which bound d_{1} and let $D_{1} \subset W_{p_{1}}^{u}$ be a 2-disk which is bounded by $\gamma_{1} \cup p_{1} \cup \gamma_{2}$ and contains d_{1} (see Fig. 6).

Let us choose a curve $l \subset W_{p_{1}}^{u}$ which transversely intersects the arc γ_{1} (see Fig. 6) at a unique point x and such that one of the connected components of the set $l \backslash x$ belongs to the disk D_{1}.

Fig. 6. Heteroclinic curves in $W_{p_{1}}^{u} \cup W_{p_{2}}^{u}$

Applying arguments similar to those used in the proof of Lemma 1, we get a contradiction with the λ-lemma.

Applying inequality (1) together with Lemma 2, we get the following result.
Corollary 1. The number of noncompact heteroclinic curves on the surface A is not less than $4 g_{f}$.
Applying Lemma 2 to diffeomorphism f^{-1} brings an estimation similar to Corollary 1 for every connected component of the attractor \mathcal{R}_{f}. Bearing in mind that the set $\mathcal{A}_{f} \cup \mathcal{R}_{f}$ contains $2 k_{f}$ connected components, we get the following result.
Corollary 2. The number of noncompact heteroclinic curves in the set $\mathcal{A}_{f} \cup \mathcal{R}_{f}$ is not less than $8 g_{f} k_{f}$.

Let V be a connected component of the set $M^{3} \backslash\left(\mathcal{A}_{f} \cup \mathcal{R}_{f}\right), A \subset \mathcal{A}_{f}$ and let $R \subset \mathcal{R}_{f}$ be connected components of the set $c l V \backslash V$.
Lemma 3. The number of noncompact heteroclinic curves in the set V is not less than $2 g_{f}$.

Fig. 7. Illustration to Lemma 3

Proof. It follows from Lemma 2 that it is possible to define a cellular decomposition of the surface A which is dual to the decomposition by the unstable manifolds of the points from Ω_{A} and such that the union of the heteroclinic curves and the saddle points from the set Ω_{A}^{1} form one-dimensional cells, and the saddle points from the set Ω_{A}^{2} form null-dimensional cells. Hence, on the surface A there exists a connected 1-dimensional complex containing $2 g_{f}$ closed curves with a unique common point z_{0}, which are nonhomotopic to each other and to zero, and consisting of closures of traces
of stable manifolds of points from Ω_{A}^{1}. Let γ be an arbitrary curve with such a property. Put $\Gamma=\left(\bigcup_{\sigma \in \gamma} W_{\sigma}^{s}\right) \cap V$.

According to Theorem 1 there is an integer $g_{f} \geqslant 1$ such that the set $c l V$ is homeomorphic to the direct product $\mathbb{S}_{g_{f}} \times[0,1]$. Then the set $c l V$ can be represented as an orbit space of the set $\mathbb{U} \times[0 ; 1]$, where \mathbb{U} is the universal cover for $\mathbb{S}_{g_{f}}$, with respect to a motion group G (for $g_{f} \geqslant 2$, non-Euclidean) that acts freely on the set $\mathbb{U} \times[0 ; 1]$ and is isomorphic to the fundamental group of the surface $\mathbb{S}_{g_{f}}$. Let $\Theta: \mathbb{U} \times[0 ; 1] \rightarrow c l V$ be a natural projection such that $\Theta(\mathbb{U} \times\{0\})=A, \Theta(\mathbb{U} \times\{1\})=R$ and let $F: \mathbb{U} \times[0 ; 1] \rightarrow \mathbb{U} \times[0 ; 1]$ be a lift of $\left.f\right|_{c l} V$ with respect to the cover Θ.

For a set $X \in c l V$ let $\Theta^{-1}(X)$ be the complete preimage of X. Let $p \in \Omega_{f} \cap c l V$ and let \tilde{p} be a point in $\Theta^{-1}(p)$. Denote by $W_{\tilde{p}}^{s}\left(W_{\tilde{p}}^{u}\right)$ a connected component of $\Theta^{-1}\left(W_{p}^{s} \cap c l V\right)\left(\Theta^{-1}\left(W_{p}^{u} \cap c l V\right)\right)$ passing through the point \tilde{p}. We will say that \tilde{p} is a sink, source or saddle point for F if p is a such point for f.

Let us show that a set $c l \Gamma$ contains at least one one-dimensional manifold $W_{r}^{u} \subset R$ of some saddle point $r \in R$.

Since the curve γ is nonhomologous to zero, for any two preimages $\tilde{p}_{i}, \tilde{p}_{j}$ of a point $p \in \Omega_{A}^{2} \cap \gamma$ the sets $c l W_{\tilde{p}_{i}}^{s}, c l W_{\tilde{p}_{j}}^{s}$ contain different source points $\tilde{\alpha}_{i}, \tilde{\alpha}_{j}$, respectively. It is clear that points $\tilde{\alpha}_{i}$, $\tilde{\alpha}_{j}$ belong to the set $c l \Gamma$. If the set $\Theta^{-1}(c l \Gamma \backslash \Gamma)$ consists only of source points $\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots$ of the homeomorphism F, then the set $\Theta^{-1}(\Gamma)$ is a disjoint union of subsets, each of which belongs to the unstable manifold of a point from the set $\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots$, which contradicts the connectivity of the set Γ. Then, as homeomorphism F has no heteroclinic points, there exists a point $r \in \Omega_{R}^{2}$ such that $W_{r}^{s} \subset c l \Gamma \backslash \Gamma, \alpha \subset c l W_{r}^{s}$, so $W_{r}^{s} \subset c l W_{q}^{s}$ for some point $q \in \Omega_{A}^{1}$. Then, according to Statement 4, $W_{r}^{u} \cap W_{q}^{s} \neq \emptyset$.

Let us prove that the set $W_{r}^{u} \cap W_{q}^{s} \cap V$ contains at least one noncompact curve. Suppose the contrary. Then the set $W_{r}^{u} \cap W_{q}^{s} \cap V$ consists of a countable set of smooth closed curves. Since A and R are an attractor and a repeller, respectively, there exist disjoint neighborhoods N_{A}, N_{R} in $c l V$ of the sets A, R, respectively, and natural numbers n^{*}, m^{*} such that $f^{n}(c) \subset N_{a}, f^{-m}(c) \subset N_{r}$ for any $n>n^{*}, m>m^{*}$ and for any connected component $c \in W_{r}^{s} \cap W_{q}^{s} \cap V$. Therefore the set $W_{r}^{u} \cap W_{q}^{s} \cap\left(V \backslash\left(N_{a} \cup N_{r}\right)\right)$ consists of a finite number of compact connected components. Let $p_{1}, p_{2} \in \gamma$ be points such that $W_{p_{i}}^{u} \cap W_{q}^{s} \neq \emptyset$ for $i \in\{1,2\}$. Show that it is possible to choose a simple compact arc $l \subset\left(W_{q}^{s} \cap V\right) \backslash\left(N_{a} \cup N_{r}\right)$ with end points on $W_{p_{1}}^{s}$, $W_{p_{2}}^{s}$ such that $l \cap W_{r}^{u}=\emptyset$ (see Fig. 7).

As the diffeomorphism f does not contain heteroclinic points, $W_{r}^{u} \cap W_{p_{i}}^{s}=\emptyset$ for $i \in\{1,2\}$, and hence there is a 2-disk $D_{i} \subset \operatorname{int} V \backslash\left(N_{a} \cup N_{r} \cup W_{r}^{u}\right)$ that transversally intersects $W_{p_{i}}^{s}$ at a unique point x_{i}. Also, there is a closed strip (homeomorphic image of the product $[0 ; 1] \times[0 ; 1]$) $K_{i} \subset$ $\left(W_{q}^{s} \backslash W_{r}^{u}\right) \cap c l(V)$ with the boundary consisting of arcs $e_{i 1}, e_{i 2}, e_{i 3}, e_{i 4}$ such that $e_{i 1} \subset W_{p_{i}}^{u} \cap W_{q}^{s}$, $e_{i 2}, e_{i 3}$ are transversal to $W_{p_{i}}^{u} \cap W_{q}^{s}$ in W_{q}^{s} and $e_{i 3}=f\left(e_{i 2}\right)$. It follows from the λ-lemma that there exists a number $k_{i}^{*}>0$ such that for any $k \geqslant k_{i}^{*}$ the intersection of D_{i} and a connected component of $f^{-k}\left(K_{i}\right)$, containing the set $f^{-k}\left(e_{i 1}\right)$, is a closed arc $b_{i k}$. Put $l_{i}=\bigcup_{k=k_{i}^{*}}^{\infty} b_{i k} \cup x_{i}$. The set l_{i} is a closed arc with end points x_{i} and y_{i}. As the set $W_{r}^{u} \cap W_{q}^{s} \cap\left(V \backslash\left(N_{a} \cup N_{r}\right)\right)$ consists of a finite number of compact connected components, there is a simple compact arc $l_{0} \subset W_{q}^{s} \backslash W_{r}^{u}$ joining the points y_{1}, y_{2} and such that the curve $l=l_{0} \cup l_{1} \cup l_{2}$ is the required curve.

Since W_{q}^{s}, W_{r}^{u} are invariant, $f^{-\nu}(l) \cap W_{r}^{u}=\emptyset$ for any $\nu>0$. On the other hand, for any neighborhood N_{r} of W_{r}^{s} in $c l V$ there exists ν^{*} such that $f^{-\nu}(l) \subset N_{r}$ for any $\nu>\nu^{*}$. Since the intersection $W_{r}^{s} \cap W_{r}^{u}$ is transversal, the intersection $f^{\nu}(l) \cap W_{r}^{u}$ must be nonempty for some sufficiently large ν, which contradicts the definition of curve l. Hence the set $W_{r}^{s} \cap W_{q}^{s} \cap V$ contains at least one noncompact curve.

Bearing in mind that the set $M^{3} \backslash\left(\mathcal{A}_{f} \cup \mathcal{R}_{f}\right)$ contains $2 k_{f}$ connected components, we get the following result.
Corollary 3. The number of noncompact heteroclinic curves in the set $M^{3} \backslash\left(\mathcal{A}_{f} \cup \mathcal{R}_{f}\right)$ is not less than $4 g_{f} k_{f}$.

ACKNOWLEDGMENTS

The publication was supported by the Russian Foundation for Basic Research (project No. 15-01-03687-a, 16-51-10005-Ko a), Russian Science Foundation (project No. 14-41-00044) and the Basic Research Program at the HSE (project 90) in 2017.

REFERENCES

1. Andronov, A. A. and Pontryagin, L. S., Rough Systems, Dokl. Akad. Nauk SSSR, 1937, vol. 14, no. 5, pp. 247-250 (Russian).
2. Baer, R., Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. Reine Angew. Math., 1928, vol. 159, pp. 101-116.
3. Brown, M., Locally Flat Imbeddings of Topological Manifolds, Ann. of Math. (2), 1962, vol. 75, pp. 331341.
4. Bonatti, C., Grines, V., Medvedev, V., and Pécou, E., Three-Manifolds Admitting Morse-Smale Diffeomorphisms without Heteroclinic Curves, Topology Appl., 2002, vol. 117, no. 3, pp. 335-344.
5. Bonatti, C., Grines, V., Medvedev, V., and Pécou, E., Topological Classification of Gradient-Like Diffeomorphisms on 3-Manifolds, Topology, 2004, vol. 43, no. 2, pp. 369-391.
6. Grines, V., Gurevich, E., Zhuzhoma, E., and Zinina, S., Heteroclinic Curves of Morse-Smale Diffeomorphisms and Separators in the Magnetic Field of the Plasma, Nelin. Dinam., 2014, vol.10, no. 4, pp. 427-438 (Russian).
7. Grines, V., Medvedev, T., Pochinka, O., and Zhuzhoma, E., On Heteroclinic Separators of Magnetic Fields in Electrically Conducting Fluids, Phys. D, 2015, vol. 294, pp. 1-5.
8. Grines, V.Z., Medvedev, V.S., and Zhuzhoma, E. V., On Surface Attractors and Repellers in 3Manifolds, Math. Notes, 2005, vol. 78, nos. 5-6, pp. 757-767; see also: Mat. Zametki, 2005, vol. 78, no. 6, pp. 813-826.
9. Grines, V.Z., Zhuzhoma, E. V., and Medvedev, V.S., New Relations for Morse-Smale Systems with Trivially Embedded One-Dimensional Separatrices, Sb. Math., 2003, vol. 194, nos. 7-8, pp. 9791007; see also: Mat. Sb., 2003, vol. 194, no. 7, pp. 25-56.
10. Grines, V., Pochinka, O., Medvedev, V., and Levchenko, Yu., The Topological Classification of Structural Stable 3-Diffeomorphisms with Two-Dimensional Basic Sets, Nonlinearity, 2015, vol. 28, no. 11, pp. 40814102.
11. Ghys, E. and Sergiescu, V., Stabilité et conjugaison différentiable pour certains feuilletages, Topology, 1980, vol. 19, no. 2, pp. 179-197.
12. Mañé, R., A Proof of the C^{1} Stability Conjecture, Publ. Math. Inst. Hautes Études Sci., 1987, vol. 66, pp. 161-210.
13. Moise, E.E., Geometric Topology in Dimensions 2 and 3, Grad. Texts in Math., vol. 47, New York: Springer, 1977.
14. Nielsen, J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math., 1927, vol. 50, pp. 189-358.
15. Palis, J., On Morse-Smale Dynamical Systems, Topology, 1969, vol. 8, no. 4, pp. 385-404.
16. Palis, J. Jr. and de Melo, W., Geometric Theory of Dynamical Systems: An Introduction, New York: Springer, 1982.
17. Peixoto, M. M., Structural Stability on Two-Dimensional Manifolds, Topology, 1962, vol. 1, no. 2, pp. 101120.

Peixoto, M. M., Structural Stability on Two-Dimensional Manifolds: A Further Remark, Topology, 1963, vol. 2, nos. 1-2, pp. 179-180.
18. Grines, V. Z., Levchenko, Yu. A., Medvedev, V.S., and Pochinka, O. V., On the Dynamical Coherence of Structurally Stable 3-Diffeomorphisms, Regul. Chaotic Dyn., 2014, vol. 19, no. 4, pp. 506-512.
19. Priest, E., Solar Magnetohydrodynamics, Dordrecht: Reidel, 1982.
20. Priest, E. R. and Forbes, T. G., Magnetic Reconnection: MHD Theory and Applications, Cambridge: Cambridge Univ. Press, 2007.
21. Robbin, J. W., A Structural Stability Theorem, Ann. of Math. (2), 1971, vol. 94, pp. 447-493.
22. Robinson, C., Structural Stability of C^{1} Diffeomorphisms, J. Differential Equations, 1976, vol. 22, no. 1, pp. 28-73.
23. Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics,Chaos, 2nd ed., Stud. Adv. Math., vol. 28, Boca Raton, Fla.: CRC, 1998.
24. Smale, S., On Gradient Dynamical Systems, Ann. of Math. (2), 1961, vol. 74, pp. 199-206.
25. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747-817.
26. Smale, S., The Ω-Stability Theorem, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 289-297.
27. Zieschang, H., Vogt, E., and Coldewey, H.-D., Surfaces and Planar Discontinuous Groups, Lecture Notes in Math., vol. 835, Berlin: Springer, 1980.

[^0]: **-mail: vgrines@hse.ru
 ${ }^{* *}$ E-mail: egurevich@hse.ru
 *** E-mail: opochinka@hse.ru

[^1]: ${ }^{6)}$ Notice that in [9] all embeddings are supposed to be smooth, but the proofs of the statements below are based only on the locally flatness of the embedding.

[^2]: ${ }^{7)}$ An isomorphism $\varphi_{\gamma}: G \rightarrow G$ of a group G is called inner if there exists an element $\gamma \in G$ such that $\varphi_{\gamma}(x)=\gamma^{-1} x \gamma$ for any $x \in G$.

