On embedding Morse–Smale diffeomorphisms on the sphere in topological flows

V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka

One important indicator of the adequacy of a numerical solution of an autonomous system of differential equations is the topological conjugacy of the discrete model obtained to the time-one shift map of the original flow. The most significant results in this direction have been obtained for structurally stable flows. In particular, it was shown in [1] and [2] that the Runge–Kutta discretization of a Morse–Smale flow \((n \geq 2)\) without periodic trajectories on the \(n\)-disk is topologically conjugate to the time-one shift (for a sufficiently small step size). In this connection the question, going back to Palis [3], of necessary and sufficient conditions for embedding a Morse–Smale diffeomorphism in a topological flow arises naturally.

Recall that a diffeomorphism \(f\) on a closed manifold \(M^n\) is called a Morse–Smale diffeomorphism if its non-wandering set \(\Omega_f\) is finite and consists of hyperbolic periodic points, and for any two points \(p, q \in \Omega_f\) the intersection of the stable manifold \(W^s_p\) of \(p\) and the unstable manifold \(W^u_q\) of \(q\) is transversal. In [3] the following necessary conditions for embedding a Morse–Smale diffeomorphism \(f : M^n \to M^n\) in a topological flow were stated, and we call them the Palis conditions: 1) the non-wandering set \(\Omega_f\) coincides with the set of fixed points; 2) the restriction of the diffeomorphism \(f\) to each invariant manifold of each fixed point \(p \in \Omega_f\) preserves its orientation; 3) if for any distinct saddle points \(p, q \in \Omega_f\) the intersection \(W^s_p \cap W^u_q\) is non-empty, then it contains no compact connected components.

According to [3], in the case when \(n = 2\) these conditions are not only necessary but also sufficient. In [4] examples of Morse–Smale diffeomorphisms on the three-dimensional sphere were constructed that satisfy the Palis conditions but do not embed in topological flows, and also necessary and sufficient conditions were obtained for embedding a three-dimensional Morse–Smale diffeomorphism in a topological flow. An additional obstruction to embedding such diffeomorphisms in topological flows is connected with the possibility of a non-trivial embedding of the separatrices of saddle points in the ambient manifold. In the present paper we show that for the class \(G(S^n)\) of Morse–Smale diffeomorphisms without heteroclinic intersections defined on the sphere \(S^n\) of dimension \(n \geq 4\) and satisfying the Palis conditions no such obstruction exists and the following theorem holds.

Theorem 1. Any diffeomorphism \(f \in G(S^n), n \geq 4\), is embedded in a topological flow.

The main tool of the proof is the scheme of a diffeomorphism, defined below. Let \(f \in G(S^n)\). It follows from the connection between the dynamics of the diffeomorphism \(f\) and the homologies of the sphere \(S^n\) that for any saddle point of \(f\) either the stable or the unstable manifold has dimension 1. Denote by \(A_f\) and \(R_f\) the unions of the closures...
of the unstable and the stable one-dimensional invariant manifolds of the saddle points, respectively; if \(f \) has no saddle points with one-dimension unstable (stable) manifolds, then it has a unique sink (source) fixed point, which we also denote by \(A_f (R_f) \). Let \(V_f = M^n \setminus (A_f \cup R_f) \). According to [5], the sets \(A_f, R_f, \) and \(V_f \) are connected, and \(A_f \) is an attractor, \(R_f \) is a repeller, and \(V_f \) consists of the wandering points of \(f \) going from \(R_f \) to \(A_f \) and contains all the saddle separatrices of codimension 1.

Denote by \(\tilde{V}_f = V_f / f \) the orbit space of the \(f \)-action on \(V_f \), by \(p_f : V_f \to \tilde{V}_f \) the natural projection, and by \(\eta_f : \pi_1(\tilde{V}_f) \to \mathbb{Z} \) the epimorphism induced by \(p_f \). Let \(\tilde{L}^s_i \) and \(\tilde{L}^u_i \) denote the unions of the projections onto \(\tilde{V}_f \) of all the stable and unstable separatrices of the saddle points, respectively. The set \(S_f = (\tilde{V}_f, \eta_f, \tilde{L}^s_i, \tilde{L}^u_i) \) is called the scheme of the diffeomorphism \(f \in G(S^n) \). The schemes \(S_f \) and \(S_{f'} \) of diffeomorphisms \(f, f' \in G(S^n) \) are said to be equivalent if there exists a homeomorphism \(\tilde{\varphi} : \tilde{V}_f \to \tilde{V}_{f'} \) with the following properties: 1) \(\eta_f = \eta_{f'} \tilde{\varphi} \); 2) \(\tilde{\varphi}(\tilde{L}^s_i) = \tilde{L}^s_{i'}, \) and \(\tilde{\varphi}(\tilde{L}^u_i) = \tilde{L}^u_{i'} \).

According to [6], the scheme is a complete topological invariant for diffeomorphisms in \(G(S^n) \). The key and most non-trivial point for embedding a diffeomorphism \(f \in G(S^n) \), \(n \geq 4 \), in a flow is the equivalence of the scheme \(S_f \) to the following standard object. Let \(a^0_0 \) be a flow on \(\mathbb{R}^n \setminus \{O\} \) defined by the formula \(a^0_0(x_1, \ldots, x_n) = (2^{-t}x_1, \ldots, 2^{-t}x_n) \), let \(a_0 \) be the time-one shift along trajectories of \(a^0_0 \), let \(\overline{V}_{a_0} \) be the orbit space of the \(a_0 \)-action on \(\mathbb{R}^n \setminus \{O\} \) (which is diffeomorphic to \(S^{n-1} \times S^1 \)), and let \(p_{\overline{V}_{a_0}} : \mathbb{R}^n \setminus \{O\} \to \overline{V}_{a_0} \) be the natural projection. On the unit sphere \(S^{n-1} \subset \mathbb{R}^n \) we choose smooth pairwise disjoint \((n - 2)\)-spheres \(S^{n-2}_1, \ldots, S^{n-2}_k \). Let \(\overline{c}_i = \bigcup_{t \in \mathbb{R}} a^0_0(S^{n-2}_i) \) and \(c_i = p_{\overline{V}_{a_0}}(\overline{c}_i) \). We choose an integer \(m \in [0, k] \) and let \(\overline{L}^s_{a_0} = \bigcup_{i=1}^{m} c_i \) and \(\overline{L}^u_{a_0} = \bigcup_{i=m+1}^{k} c_i \). The set \(S_{a_0} = (\overline{V}_{a_0}, \eta_{\overline{V}_{a_0}}, \overline{L}^s_{a_0}, \overline{L}^u_{a_0}) \) is called the standard scheme.

Lemma. The scheme \(S_f \) of a diffeomorphism \(f \in G(S^n) \), \(n \geq 4 \), is equivalent to the standard scheme for some \(k \) and \(m \).

This lemma allows one to use the method in [4] to construct a flow \(X^t \) whose time-one shift has a scheme equivalent to \(S_f \). Since the scheme is a complete invariant, there exists a homeomorphism \(h : S^n \to S^n \) such that \(f = hX^1h^{-1} \). Hence \(f \) is embedded in the flow \(Y^t = hX^t h^{-1} \).

Bibliography

Vyacheslav Z. Grines
National Research University
Higher School of Economics;
Lobachevski State University of Nizhni Novgorod
E-mail: vgrines@hse.ru

Elena Ya. Gurevich
National Research University
Higher School of Economics
E-mail: egurevich@hse.ru

Olga V. Pochinka
National Research University
Higher School of Economics
E-mail: opochinka@hse.ru

Presented by Yu. S. Ilyashenko
Accepted 12/OCT/16
Translated by E. GUREVICH