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Abstract. The Schrödinger operator for a spinless charge inside a layer with parabolic
confinement profile and homogeneous magnetic field is considered. The Lorentz (cyclotron)
and the confinement frequencies are assumed to be equal to each other. After inclination
of the layer normal from the magnetic field direction there appears a pseudospin su(2)-field
removing the resonance degeneracy of Landau levels. Under deviations of the layer surface
from the plane shape, a longitudinal geometric current is created. In circulations around
surface warping, there is a nontrivial quantum phase transition generated by an element of
the π1-homotopy group and a hidden degree of freedom (spectral degeneracy) associated with
a “charge” of geometric poles on the layer. The quantization rule contains an additional parity
index related to the algebraic number of geometric poles and the Landau level number. The
resonance pseudospin phase-shift represents an example of general Aharonov–Bohm type
topologic phenomena in quantum (semiclassical or adiabatic) systems with delta-function
singularities in symplectic structure.
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1. INTRODUCTION

It is well known that free charge carriers in flat films placed perpendicularly to a homogeneous
magnetic field have infinite degeneracy of the Landau levels. This degeneracy provides the oppor-
tunity for perturbations to create quasiparticles (fast cyclotron vortices) whose phase space is the
given film-surface. For example, an additional small longitudinal electric field applied to the film
produces the Hall current of such quasiparticles and the quantum Hall effect.

Instead of inserting an external electric potential, one can slightly deform the flat geometry of the
film. Then at each Landau level, the effective vortex Hamiltonian appears with the corresponding
current similar to the Hall current [1–6]. The fast vortices formed by free charge carriers move
across the slopes of convexities in a curved film [7]. This current can be called “geometric”1

Actually, this current is given by the deviation of the intrinsic area element of the film from the
Euclidean one. The current density is proportional to the square of the relative variation of the film
surface from the flat shape. Thus, one can speak about the second order geometric conductivity
under small deformations of the film surface.

Now note that for thin enough 3D-layers where the influence of the dimensional quantization
becomes essential in defining the Landau levels, one has to take into account not only the fast
cyclotron rotations of the charges but also their fast transverse oscillations in the confinement
potential. If the confinement potential is parabolic2, then instead of the one-frequency Fock-Landau
oscillator, the two-frequency oscillator over fast vortex variables appears. As we shall demonstrate
below, in such a situation, the geometrically induced current can register a strong growth.

Namely, if the cyclotron frequency and the dimensional frequency of confinement oscillations
are in basic resonance ratio 1:1, then there appears a geometric current of another type which
is proportional to the first (rather than the second) degree of the variation of the layer surface
from the flat shape. Thus in the resonance case, one can speak about the first order geometric

This work was supported by the Program of Basic Research of HSE.
1More accurately, one must use the term “magneto-geometric” since this current also depends on the magnetic field

(its projection onto the surface normal). In our case, the external magnetic field is homogeneous and fixed. Therefore,

in the terminology, we stress the geometric aspect only.
2This approximation works well at low levels for states localized near the middle surface of the layer, where the

anharmonic part of the confinement potential can be taken into account by using standard perturbation theory.
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conductivity of the layer. The resonance geometric current dominates the usual geometric current
for small rippling of the plane layer.

This resonance conductivity is determined by the deviation of the whole normal bundle over the
layer surface from the flat configuration, i.e., by the deformation taking into account the actual
3-dimensionality of the layer.

In more details, due to resonance in the fast 2D-oscillator, there appears a noncommutative
symmetry algebra su(2). Its irreducible representations describe the fast spectral degeneracy. Thus
one obtains the first hidden magneto-dimensional degree of freedom.

A non-Abelian pseudospin su(2)-field couples with a specific “magneto-dimensional” vector field
along the layer. This coupling is an analog of the spin term in the Pauli equation.

The spectrum of the pseudospin is discrete (half-integer or integer) and finite at any given Landau
level. The corresponding hidden quantum number removes the magneto-dimensional degeneracy
mentioned above.

As a result, the effective vortex Hamiltonian and the resonance geometric current are found to
be proportional to the discretely varied values of the pseudospin. The zero value of the pseudospin
generates zero current, the sign change of the pseudospin inverts the direction of the current.
Therefore, one may say that the pseudospin of the magneto-dimensional vortex is the very object
which controls the resonance geometric current.

The discreteness of the pseudospin must imply a geometric discretization of the conductance
similar to the discretization due to the Landau level quantization, as in the usual quantum Hall
effect.

We also show that the geometric holonomy under vortex circulation around a compact warping
on the layer surface influences the vortex spectrum. In the quantization rule, a parity index appears
related to the algebraic number of geometric poles and to the Landau level number. This is due to
the Dirac delta-function contribution of poles to the magnetic symplectic structure on the layer.

At the same time, the eigenfunctions depend on an additional quantum number which stays as
a “charge” of geometric poles. We refer to it as to the degree of vortex polarization. This is the
second hidden quantum number due to the magneto-dimensional resonance. It affects the phase of
wave functions but does not affect the spectrum.

The pseudospin phase transition along ring-shape slopes in resonance layers is an analog of the
known persistent current phenomenon in flat rings with boundaries [8–11].

Actually, the pseudospin phase transfer has to appear even in the plane-shape situation just
under adiabatic precession of the magnetic field.

2. TOY MODEL OF RESONANCE SU(2)-PSEUDOSPIN

We assume that the transverse confining potential of the layer is parabolic and deal with the
case of a magneto-dimensional resonance between the cyclotron frequency ω◦ and the frequency
ω⊥ of transverse oscillations of the charge carriers.

Let us first consider the case of flat layer. If the layer surface is perpendicular to the direction of
the magnetic field, then, in the �ω◦-units, the energy of the nonrelativistic spinless charge is given
by the 2D-oscillator Hamiltonian

Ĥ0 =
1

2h

(
(k̂21 + k̂22) +

ω⊥
ω◦

(x̂2 + p̂2)
)

(2.1)

over the algebra with commutation relations

[k̂1, k̂2] = ih, [x̂, p̂] = ih. (2.2)

Here the dimensionless operators x̂ and p̂ in (2.1) represent the transverse coordinate and momen-

tum, while the operators k̂1, k̂2 represent components of the longitudinal kinetic momentum of the
charge in the given strong homogeneous magnetic field.

The dimensionless constant h = �/�⊥ in (2.2) is defined via the Planck action � and the trans-
verse action �⊥ = m⊥ω⊥l

2
⊥, where m⊥ is the transverse mass and l⊥ is the transverse scale of the

layer. One can also represent h in the form

h =
ω◦
ω⊥

· m◦
m⊥

· ( l◦
l⊥

)2,
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where m◦ is the longitudinal mass and l◦ is the magnetic length.
The constant h determines the classicality of the system. The case h ∼ 1 corresponds to the pure

quantum situation (layers with artificially made parabolic profile). In the semiclassical case h � 1,
one can deal with a wider class of profiles (parabolic near the bottom and allowing anharmonic
contributions). In the model parabolic situation, the spectrum of the Hamiltonian (2.1) does not
at all depend on h and is given by the sequence

(n◦ +
1

2
) +

ω⊥
ω◦

(n⊥ +
1

2
)

defined by the integers n◦, n⊥ ∈ Z+.
Now let us analyze what happens if one deviates the direction of the magnetic field from the

layer‘s normal by a small angle ε.

Denote by x′ and q′ = (q′
1
, q′

2
) the Euclidean coordinates along the magnetic field and in

the perpendicular plane, so that dq′
1 ∧ dq′

2 ∧ dx′ represents the standard orientation of R3. The
mid-surface of the layer is now given by the following linear equation

x′ = f(q′), f(q′)
def
= tan(ε) r · q′ (2.3)

where r is the “slant” unit 2-covector. The dimension of coordinates is ignored in this section.
Let us introduce the normal coordinates (q, x) by the linear change

q′ = q − rx sin ε = q − εrx+O(ε2), x′ = f(q) + x cos ε = x+ εr · q +O(ε2). (2.4)

Here x is the coordinate along the layer normals and q = (q1, q2) are the coordinates of the feet of
these normals at the mid-plane of the layer.

For any 1-form a = α′dq′ + β′dx′ = αdq + βdx, we have the following transformation of its
coefficients: α′ = α− εβr +O(ε2), β′ = β + εr · α+O(ε2).

In this way, one can transform the components of the momentum and of the magnetic vector
potential passing from Euclidean to normal coordinates.

The Hamiltonian of the charge carrier in the layer becomes
Ĥ = Ĥ0 + εĤ1 +O(ε2), (2.5)

where

Ĥ1 = −1

2

(
1

h
x̂+

√
ω◦
ω⊥

· m⊥
m◦

p̂

)
k̂ · r∗ +

√
ω⊥
ω◦

(√
m⊥
m◦

−
√

m◦
m⊥

)
p̂ k̂ · r. (2.6)

Here k̂ = (k̂1, k̂2) are the longitudinal kinetic momenta in q-coordinates and p̂ is the transverse
momentum in x-coordinates. The commutation relations between them are canonical (2.2).

The “cross” vector r∗ = Jr in (2.6) is obtained from the slant covector r by applying the matrix

J =
(

0 1

−1 0

)
representing the Poisson structure on the layer due to the magnetic field contribution.

At the next stage, the Hamiltonian (2.5) can be unitarily transformed to a commutative form:

U−1
ε · Ĥ · Ûε = Ĥ0 + εĤ1 +O(ε2), (2.7)

[Ĥ0, Ĥ1] = 0. (2.8)

The summand of order ε in (2.7) will be nonzero if and only if 1:1 resonance takes place: ω⊥ = ω◦.
Otherwise, the averaging of H1 by trajectories of H0 vanishes: H1 = 0.

In the resonance case, the main oscillator

Ĥ0 =
1

2h
(k̂21 + k̂22) +

1

2h
(x̂2 + p̂2) (2.9)

has the following symmetries:

L1 =
1

2h
(k̂1p̂− k̂2x̂), L2 =

1

2h
(k̂1x̂+ k̂2p̂), L3 =

1

4h
(k̂21 + k̂22 − x̂2 − p̂2). (2.10)

They obey the relations
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[Ĥ0, Lj ] = 0 (j = 1, 2, 3), (2.11)

[L1, L2] = −iL3, [L2, L3] = −iL1, [L3, L1] = −iL2, (2.12)

L2
1 + L2

2 + L2
3 = (Ĥ2

0 − 1)/4. (2.13)

The Hamiltonian Ĥ1 in (2.7) is given by

Ĥ1 =
1

2π

∫ 2π

0

eitĤ0Ĥ1e
−itĤ0 dt.

From this formula and (2.6), we derive

Ĥ1 = v · L
→
, L

→
def
= (L1, L2), (2.14)

where the 2-vector v is defined by

v
def
=

(
− 1

2
+ h

(√
m◦
m⊥

−
√

m⊥
m◦

))
r − h

2

√
m⊥
m◦

r∗. (2.15)

In view of (2.12), [L3, v · L→] = iv∗ · L
→
, and therefore

e−iϕL3 v · L
→
eiϕL3 = (eϕJv) · L

→
. (2.16)

Thus, if one chooses ϕ from the relation v1 + iv2 = |v|eiϕ, then eϕJv = |v|
(
1
0

)
, and hence

(v · L
→
)eiϕL3 = |v|eiϕL3L1. (2.17)

Thus Ĥ1 (2.14) is unitary equivalent to the operator |v|L1.

The generator L1 (2.10) is one-half of the “angular-momentum” over the (k1, x)-plane; its spec-
trum is given by half-integer or integer numbers in the nth irreducible representation of the su(2)-

algebra (2.12). The number n is the quantum number for the oscillator Ĥ0 (its eigenvalues are equal
to n = 1, 2, . . . and each eigenvalue is of multiplicity n).

Theorem 2.1. Let the plane layer be placed into the homogeneous magnetic field deviated by
the angle ε from the layer‘s normal. Then under the magneto-dimensional resonance ω◦ = ω⊥,
the Hamiltonian of the free charge carrier, expressed in �ω◦-units, is unitary equivalent to Ĥ0 +
ε Ĥ1 + O(ε2), where Ĥ0 is the oscillator (2.9) and Ĥ1 = v1L1 + v2L2. Here the vector v is given
by (2.15), the Lj are generators of the symmetry su(2)-algebra (2.11)–(2.13). The spectrum of this
Hamiltonian is represented by the sequence

λn,s = n+ εs|v|+O(ε2), n = 1, 2, . . . ; s = −n− 1

2
,−n− 3

2
, . . . ,

n− 3

2
,
n− 1

2
. (2.18)

The eigenfunctions are derived from (2.17):

ψn,s = eiϕL3ψ(1)
n,s +O(ε), (2.19)

where ψ
(1)
n,s is the sth eigenfunction of L1 in the nth irreducible representation of the symmetric

su(2)-algebra3.

The angle ϕ = arctan(v2/v1) in (2.19) is determined by components of the vector v (2.15) related
to the geometric slant and cross directions, r and r∗ = Jr, in the layer.

The case of the lowest quantum number n = 1 (the lowest Landau level) is not interesting for
our consideration since, in this case, the multiplicity equals 1 and the number s takes the only value
s = 0.

The first exited Landau level with n = 2 has multiplicity 2 and the number s ∈ {±1/2} takes
two possible half-integer values. The corresponding irreducible representation of the algebra (2.12)
is given by the Pauli matrices Lj ∼ 1

2σj (j = 1, 2, 3).

In the case n = 3, the number s takes three integer values s ∈ {−1, 0, 1}. And so on.

3Note that ψ
(1)
n,s can be obtained by the standard procedure from the vacuum vector of L2 − iL3 by using powers of

the creation operator L2 + iL3 in the nth irreducible representation of su(2).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 24 No. 3 2017



330 KARASEV

For these reasons, we call the operators (2.10) the pseudospin operators of the charge carrier
under the magneto-dimensional resonance.

The perturbation term εH1 = εv ·L
→

in (2.7) looks like a coupling between the in-plane magnetic

field and the pseudospin. The length κ = |v| is given by

κ =
1

2

[(
1− 2h

(√
m◦
m⊥

−
√

m⊥
m◦

))2

+ h2m⊥
m◦

]1/2

, (2.20)

which contributes to the value of pseudospin “magneton” μ = κ
�e
m◦c

.

Remark 2.1. Note that in the nth irreducible representation the spectrum of the operator L3
is given by the same set of numbers as the spectrum of L1. For instance, for n = 2 the spectrum of
L3 is {±1/2}. Thus the eigenvalues of the unitary transformation in (2.19) are exp{±iϕ/2}. Now
let us adiabatically gyrate the direction of the layer normal around the direction of the magnetic
field. This means that we cyclically turn the vector v in (2.14). Then for the Landau level with
n = 2, after passing the complete 2π-circle in the angle ϕ, we obtain the nontrivial geometric phase
exp{±iπ} in the gauge transformation e2πiL3 of the eigenstates (2.19).

This is the resonance pseudospin manifestation of the general Ehrenberg–Siday–Aharonov–Bohm
phenomenon in gauge field theory. The gauge potential (Berry connection form) here equals L3 dϕ.
The corresponding gauge field (curvature) is zero everywhere outside the origin v = 0. But the
phase shift (holonomy) is nontrivial due to the nonzero total flux generated by the delta-function
contribution to curvature from the singularity at v = 0. This contribution is a multiple of the
eigenvalues of L3. See details in the next section.

3. HIDDEN DEGREE OF FREEDOM AT POLES

Assume now that the layer is not flat anymore but its deviations from the planar shape are
small. Denote by l the longitudinal scale and introduce l̃⊥ =

√
m⊥/m◦ l⊥. The small perturbation

parameter is ε = (l̃⊥/l)
2.

Let the mid-surface of the layer be given by the equation
x′ =

√
ε l̃⊥f(q

′/l), (3.1)

where f is a dimensionless smooth function.

Here, as before, we denote by q′ = (q′
1
, q′

2
) the Euclidean coordinates along the plane perpen-

dicular to the direction of the magnetic field, and x′ is the Euclidean coordinate along the magnetic
field. However, the coordinates are no longer dimensionless; they are measured in units of length.

We introduce the normal coordinates (q, x) by formulas similar to (2.4),

q′ = q − ε
∇f(q/l)x√

1 + ε2|∇f(q/l)|2
= q − ε∇f(q/l)x+O(ε2),

x′ =
x√

1 + ε2|∇f(q/l)|2
+

√
ε l̃⊥f(q/l) = x+

√
ε l̃⊥f(q/l) +O(ε2).

The Hamiltonian of a charge carrier in (q, x)-coordinates has the form (2.5) with the covector
r = ∇f(q/l).

Now let us introduce the (dimensionless) guiding center coordinates

Q̂
def
= q/l +

√
εJk̂. (3.2)

Then [k̂j , Q̂
l] = [x̂, Q̂l] = [p̂, Q̂l] = 0 (j, l = 1, 2), and

[Q̂1, Q̂2] = −ihε. (3.3)

Therefore, one can replace the coordinates q/l by the new coordinates Q̂ with accuracy O(
√
ε) at

least4. These new coordinates commute with all “fast” operators k̂, x̂, p̂, and with the operators
(2.10).

4Actually, the accuracy is O(ε) since the
√
ε-order corrections contain odd powers of the fast operators k̂, x̂, p̂ and

vanish after the averaging by H0-trajectories in (3.4).
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So our Hamiltonian takes the form (2.5) with the covector r = ∇f(Q̂) depending on the “slow”
operators whose mutual commutator (3.3) is small. Thus, following the usual adiabatic approxima-
tion algorithm, we have to compute the eigenvalues and eigenfunctions of the Hamiltonian under
frozen slow coordinates Q.

Applying the results of the previous section, under the resonance condition ω◦ = ω⊥, we first
transform the Hamiltonian to a commutative form similar to (2.7), (2.14):

Ĥ0 + εĤ1 +O(ε2), Ĥ1 = v(Q̂) · L̂
→

(3.4)

with zero commutation relations [Ĥ0, Q̂
l] = 0, [Q̂l, L̂j ] = 0.

In (3.4) the “magneto-dimensional” vector field v is defined similarly to (2.15):

v
def
=

(
− 1

2
+ h

(√
m◦
m⊥

−
√

m⊥
m◦

))
I∇f − h

2

√
m⊥
m◦

J∇f, (3.5)

where J =
(

0 1

−1 0

)
is the Poisson tensor generated by the inverse magnetic strength tensor on the

layer surface and I =
(

1 0

0 1

)
is up to O(ε2) the inverse metric tensor on the surface written in

Euclidean coordinates.
The pseudospin L

→
in (3.4) can be regarded as the operator-valued differential 1-form on the layer

surface L
→

= L1 dQ
1 + L2 dQ

2, where the generators Lj (2.10) represent the su(2)-algebra (2.12)

with the Casimir element (2.13) given by the oscillator Ĥ0 (2.9). This pseudospin 1-form is coupled
in (3.4) with the magneto-dimensional vector field v along the layer.

The adiabatic terms are obtained by formula (2.18)

λn,s(Q̂) = n+ εs|v|(Q̂) +O(ε2). (3.6)

Now if one takes into account the noncommutativity of the slow coordinates Q̂ and the presence
of a small parameter in (3.3), then we conclude that in the “classical limit” ε → 0 the terms (3.6)
generate the classical Hamiltonian flow5 in the layer

dQ

dt
= J∇|v(Q)|. (3.7)

In view of (3.5), since the vectors I∇f and J∇f are mutually orthogonal, we have |v| = κ|∇f |
with the constant κ given by (2.20). So, the geometric flow equation (3.7) reads

dQ

dt
= κJD2f(Q)

∇f(Q)

|∇f(Q)| . (3.7a)

Actually the pseudospin value s has to remain as a multiplier at the right of (3.7),(3.7a).

Thus one obtains the effective electric field E = sκ ·D2f ∇f
|∇f | which is the covector field along the

layer given in the magnetic Darboux coordinates. It is proportional to the extrinsic torsion of the
layer mid-surface. The flow generated by the cross-field E∗ = JE is an analog of the Hall current.
It is controlled by the inverse magnetic tensor J which changes the direction of the torsion by 90◦.
It is directed across the slopes on the layer‘s mid-surface. One obtains ring circuits of free charge
carriers around compact hills and dimples, or even saddles on the layer. We refer to this current as
to the resonance geometric current.

In order to derive the rule for the quantum phase transition along trajectories of such a pseu-
dospin flow, one needs to deal with the complete Hamiltonian v(Q̂) · L

→
taking the coordinates

Q̂ = (Q̂1, Q̂2) as semiclassical operators obeying relation (3.3).
The semiclassical theory is very sensitive to the global topology of the phase space, namely, to

the nontriviality of its homotopy groups π1 or π2 [12]. Of course, under small deformations of the
planar shape of the layer, a nontrivial group π2 cannot arise. But the π1-group appears if the vector
field v degenerates somewhere, i.e., if v = 0 or ∇f = 0.

5Ignoring the value and the sign of the pseudospin.
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At degeneracy points, the magnetic field is perpendicular to the layer surface. For instance, these
are tops of hills (bottoms of dimples) or saddle points. Such isolated points of degeneracy we call
geometric poles, of positive or negative sign respectively.

But let us first consider the situation with a simply connected domain on the layer where there are
no degeneracies, ∇f 	= 0. In such a domain, one can determine a smooth angle function ϕ = ϕ(Q)
such that v1 + iv2 = |v| exp(iϕ).

We denote by ĝ = g(Q̂) the Weyl-symmetrized functions in the set of operators Q̂ = (Q̂1, Q̂2)
with commutation relation (3.3). As in (2.17), we derive

v̂ · L
→

eiϕ̂L3 = eiϕ̂L3L1 |̂v|+O(h2ε2). (3.8)

Thus, in the nth irreducible representation of the algebra su(2) (2.12) and at the sth eigenlevel of
L1, we reduce the Hamiltonian to

v̂ · L
→

∼ s|̂v|+O(h2ε2), (3.9)

i.e., to a Hamiltonian in slow quantum coordinates Q̂ only.
If the energy levels of |v| = κ|∇f | are closed curves, then the semiclassical quantization rule for

the eigenvalues of the operator (3.9) is standard:
1

2πhε

∮

|v|=ν

Q1 dQ2 = k +
1

2
. (3.10)

Here the quantum numbers k are integers and big enough, k ∼ 1/hε. Recalling the definition of h,
ε and Q, we rewrite this rule in physical dimensional units as

1

2πl2◦

∫

Σν

dq1 ∧ dq2 = k +
1

2
. (3.10a)

The left-hand side of (3.10a) is the magnetic flux in London’s flux units through the layer area Σν

enclosed by the curve {|v| = ν}.

Lemma 3.1. In the absence of poles, the spectrum of v̂ ·L
→

is given by the sequence sνk+O(h2ε2),

where ν = νk are obtained from (3.10) or (3.10a).

But these formulas become incorrect if the layer area contains poles, since the angle ϕ is not
globally defined in such a domain and one cannot perform the transformation (3.8). At poles where
|v| = κ|∇f | is zero, the eigenvalues of the operator-valued symbol v(Q) · L

→
change their own

multiplicity from 1 to n (at the nth Landau level).
Assume that the domain under consideration on the layer contains a finite number of simple

poles (at which the curvature D2f does not vanish). In this case, one can apply the quantum

adiabatic scheme [13–17] and reduce the pseudospin Hamiltonian to the term s|̂v| plus a correction
given by the adiabatic “gauge potential” A as follows:

v̂ · L
→

∼ s|̂v|+ hε
(
sV̂ · Â+

i

2
〈ÂJ [v̂ · L

→
, Â]〉s

)
+O(h2ε2). (3.11)

Here the field V = −J∇|v| corresponds to the leading effective Hamiltonian |v|, the angle brackets
〈. . . 〉s denote the average with respect to the action operator Lv = v

|v| · L→ at its eigenlevel s.

The su(2)-valued covector field A = (A1, A2) in (3.11) is determined on the layer‘s surface by the
Lax-type equation

∇Lv = i[A,Lv ] (3.12)

together with the zero average condition 〈A〉 = 0. See the details, for instance, in [18] (and formulas
(23) and (24) therein).

Lemma 3.2. (i) The solution of (3.12) is given by A = i[Lv ,∇Lv] = ∇ϕL3.

(ii) The “gauge field” dA− i
2
[A∧, A] (the curvature of Berry’s connection) corresponding to the

adiabatic gauge potential A is equal to

2πL3δ(v) dv
1 ∧ dv2 = 2πL3

(
Σ�(−1)σ�δ�(Q)

)
dQ1 ∧ dQ2.
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Here δ is the Dirac delta-function at zero, δ� is the delta-function at the pole 
, the sum Σ� is taken
over all poles, and their signs are denoted by (−1)σ� . Thus this gauge field equals zero everywhere
on the layer surface outside the poles.

Note that the second summand in the circle brackets at hε in (3.11) vanishes since we have
∇ϕJ∇ϕ = 0. Thus, by this lemma, we can rewrite the pseudospin Hamiltonian as

v̂ · L
→

∼ s
(
|̂v| − hεL3

̂∇ϕ · J∇|v|
)
+O(h2ε2). (3.13)

The integral of the hε-correction in (3.13) along trajectories Q = Q(t) (3.7) of the leading
Hamiltonian |v| can be written as

L3

∫ t

0

∇ϕ(Q) · J∇|v|(Q) dt = L3

∫ t

0

∇ϕ(Q)
dQ

dt
dt = L3

∫ Q

Q0

∇ϕ.

The last integral might be not be equal to ϕ(Q)−ϕ(Q0), since the value ϕ is not globally smoothly
defined (although the covector field ∇ϕ = (v1∇v2 − v2∇v1)|v|−2 is globally defined outside the
poles). Therefore, in the semiclassical approximation, the contribution to the phase of the wave

function from the hε-correction in (3.13) has the form exp{im
∫ Q

Q0
∇ϕ} at the mth eigenlevel of the

operator L3.
Thus, in view of Lemma 3.2 (ii), after passing around the closed curve {|v| = ν} enclosing an

area Σν on the layer, the phase shift will be given by a topological invariant:

exp

{
im

∮
∇ϕ

}
= exp

{
im

∫

Σν

d(∇ϕ)

}
= exp

{
2πim

∫

Σν

δ(v) dv1 ∧ dv2
}

= exp{2πimN}.

(3.14)
Here N is the algebraic number of poles (counted with their signs) inside the area. This number is
equal to the topological degree of the map Q → v(Q).

Note that m is an eigenvalue of the operator L3 in the nth irreducible representation of su(2),
i.e.,

m ∈
{
− (n− 1)/2,−(n − 3)/2, . . . , (n − 3)/2, (n − 1)/2

}
. (3.15)

In particular, for the second Landau level with n = 2, the number m takes two possible values
m = ±1/2.

Consequently the parity σ(n)
def
= (1− (−1)n)/2 determines whether the number m in the phase

factor (3.14) is either half-integer or integer. This topological factor comes to stationary states and
changes the Planck–Bohr–Sommerfeld quantization rule.

Theorem 3.1. (a). If in the considered domain, there are no singular points where v = 0
and so ∇ϕ is an exact 1-form, then the summand of order hε can be removed from (3.13) by the
transformation (3.8), the quantization rule has the standard form (3.10), (3.10a) and the eigenstates

ψ
(1)
n,s of v̂ ·L→ (3.9) are not related to any particular eigenvalue m of the operator L3; they are obtained

by the transformation eiϕ̂L3 (3.8) from the eigenstates ψ
(1)
n,s of L1 |̂v|, similarly to (2.19).

(b). Otherwise, in the presence of poles, the summand of order hε cannot be removed from (3.13).
It contributes to the quantization rule via a parity index so that (3.10), (3.10a) is changed as follows

1

2πl2◦

∫

Σν

dq1 ∧ dq2 = k − σ((n+ 1)N)

2
+

1

2
. (3.16)

Here n is the Landau level number, N is the algebraic number of poles in the area Σν enclosed by
the curve {|v| = ν}.

The asymptotics of the eigenvalues of v̂ ·L
→
, where v is the magneto-dimensional vector field (3.5)

along the layer, is given by the sequence sνk,n +O(h2ε2), where ν = νk,n are obtained from (3.16).

If n is even and N is odd, then the set of values νk,n does not coincide with the set determined
by (3.10a) (since the Maslov index is cancelled by the parity index ).

The eigenvalues of L3, i.e., the numbers m in the set (3.15), do not affect the spectral sequence
sνk,n, but generate different phase-factors exp{im

∫
∇ϕ} in the quantum states and determine

nontrivial phase transition around poles.
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The explicit asymptotics χm,k,n for the eigenfunctions of the operator v̂ · L
→

by the semiclassical

parameter hε can be obtained via the coherent states technique, as in [18] (see formula (11) therein)
or [19]:

χm,k,n =
1√
2πhε

∮

|v|=νk,n

exp

{
i

∫ t

0

(
1

hε
Q1 ∇Q2 +m∇ϕ(Q)

)}√
Ż |Z〉 ⊗ em,n dt. (3.17)

Here em,n is the mth eigenvector of L3 in nth irreducible representation of the su(2)-algebra (2.12),
Q = Q(t) is the trajectory of (3.7) on the level |v| = νk,n, the complex structure is introduced by
Z = Q2 + iQ1, the upper dot denotes the derivative in t, and |·〉 denotes the standard coherent
states family over the complex plane for the algebra (3.3).

We can call the new quantum number m the degree of vortex polarization. Formula (2.10) for L3

demonstrates that m = 1
2
(n◦ − n⊥) measures the difference between longitudinal and transverse

contributions to the vortex energy. Positive values of m mean that the charge carrier mostly rotates
around the magnetic field direction and slightly oscillates in the transverse confinement. The nega-
tive values of m, on the contrary, mean that the charge carrier mostly oscillates in the confinement
and weakly rotates around the field direction.

The appearance of the number m in (3.17) detects a degeneracy (of multiplicity n) which can
be removed only in higher adiabatic approximation orders.

Thus we observe a hidden quantum number, and actually a whole hidden degree of freedom whose
phase space is the coadjoint orbit in su(2)∗, corresponding to the nth irreducible representation.

Theorem 3.2. The energy levels of charge carriers in a layer with the magneto-dimensional
resonance regime in the presence of compact distortion of the layer‘s surface are given in the �ω◦-
units by

n+ εs νk,n +O(ε2), (3.18)

where νk,n are obtained from (3.16). The corresponding stationary states are parametrized by four
quantum numbers rather than three: n (Landau level), s (pseudospin), k (magnetic flux ), and an
additional m (polarization) taking values in the set (3.15). The asymptotics of these states is given
by two transformations (2.7) and (3.11)(controlled by the quantum number s) which are applied to
the functions χm,k,n (3.17).

The polarization quantum number m remains in (3.17) as a charge (winding number) at the
scalar gauge potential ∇ϕ of the Aharonov–Bohm type; the corresponding scalar gauge field is given
by the δ-function at geometric poles on the layer. It deforms the usual magnetic symplectic structure
1
2l2◦

J−1dq ∧ dq (the flux 2-form in London’ units) on the layer up to the following one:

1

2
J−1dq ∧ dq

(
l−2
◦ + mΣ�(−1)σ�δ�(q)

)
.

In the first adiabatic order, the energy levels (3.18) do not depend on the quantum number m.

The described two-dimensional pseudospin topologic mechanism works due to the magneto-
dimensional resonance in the layer. Similar systems are well known in the framework of the gener-
alized Dirac monopole and the Aharonov–Bohm string (solenoid) phenomena [20–26].
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