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Abstract We consider d-fold branched coverings of the projective plane RP
2 and

show that the hypergeometric tau function of the BKP hierarchy of Kac and van de
Leur is the generating function for weighted sums of the related Hurwitz numbers.
In particular, we get the RP

2 analogues of the CP
1 generating functions proposed

by Okounkov and by Goulden and Jackson. Other examples are Hurwitz numbers
weighted by theHall–Littlewood and by theMacdonald polynomials.We also consider
integrals of tau functions which generate Hurwitz numbers related to base surfaces
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S. M. Natanzon, A. Y. Orlov

1 Introduction

Okounkov [51] studied ramified coverings of the Riemann sphere, having arbitrary
ramification type over 0 and ∞, and with simple ramifications elsewhere, and made
the seminal observation that the generating function for the related Hurwitz numbers
(numbers of non-equivalent coverings with given ramification type) is a tau function
for the Toda lattice hierarchy. Later, links between the study of covers and integrable
systemswere further developed byOkounkov and Pandharipande [52] and byGoulden
and Jackson [20]. Then a number of papers concerning the topic were written [1,2,
16,24,29,30,44,69]. A review of this topic may be found in [31] and in [35].

On the other hand, it was shown that certain matrix models also generate Hurwitz
numbers [10,22,25,37,69]. This is not so surprising since tau functions used for gen-
erating Hurwitz numbers belong to a special family identified in [38] and [55,57].
These are called tau functions of hypergeometric type, and such tau functions were
used as asymptotic expansions of matrix integrals in [27,28,60,61]. Hypergeomet-
ric tau functions are multivariable generalizations of hypergeometric series, where the
Gauss hypergeometric equation plays the role of the so-called string equation [55] and
matrix integrals may be viewed as analogues of the integral representation of Gauss
hypergeometric series.

All the studies of Hurwitz numbers cited above are devoted to counting covers of
the Riemann sphere and the links between this problem and the Toda lattice (TL) and
Kadomtsev–Petviashvili (KP) hierarchies.

The covering problem of the Riemann sphere (Euler characteristic e = 2) goes
back to classical results by Frobenius and Schur [18,19]. The reader is referred to
the wonderful textbook [39], which considers the general case of the enumeration
of covers of Riemann surfaces of higher genus. The Frobenius-type formula for the
Hurwitz numbers enumerating d-fold branched coverings of connected Riemann or
Klein surfaces (without boundary) of any Euler characteristic e was obtained by A.
Mednykh andG. Pozdnyakova [41,42] and also byGarethA. Jones [33]. It contains the
sumover irreducible representationsλof the symmetric group Sd [18,19,33,39,41,42]

He,f
(
d;�(1) . . . , �(f)

)
=
∑
λ

(
dimλ

d!
)e f∏

i=1

ϕλ(�
(i)), (1)

where e is the Euler characteristic of the base surface �, �(i) are profiles over branch
points on �, dimλ is the dimension of the irreducible representation of Sd , and

ϕλ(�
(i)) := |C�(i) | χλ(�

(i))

dimλ
, dimλ := χλ

(
(1d)

)
. (2)

Here χλ(�) is the character of the symmetric group Sd evaluated on a cycle type �,
and χλ ranges over the irreducible complex characters of Sd , labeled by partitions
λ = (λ1, . . . , λ�). The convenient notion of normalized character, ϕλ, comes from
[1,51]. Each profile �(i) is a partition of d, i.e., the set of nonnegative non-increasing
numbers (d(i)

1 , d(i)
2 , . . . ), which describes the ramification over point number i on the
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BKP and projective Hurwitz numbers

base. The weights of all partitions involved in (1) are equal: |λ| := ∑
j λ j = |�(i)| :=∑

j d
(i)
j = d. The number |C�| is the number of elements in the cycle class � in

Sd . The sum (1) runs over partitions of weight d. We assume that ϕλ(�) vanishes
whenever |λ| �= |�|.

The Hurwitz numbers form a topological field theory [15]. In string theory appli-
cations, the covering surface is the worldsheet of the string, while the base surface is
the target space. Hurwitz numbers are used in mathematical physics (for instance in
[15]) and in algebraic geometry [39]. A lot of interest and also a lot of developments
in these studies arose from [17], which relates Hurwitz numbers to Gromov–Witten
theory.

Our paper deals with the enumeration of the covers of the projective plane RP2 ,
i.e., the case e = 1 in (1). The related Hurwitz numbers will be called projective. The
projective Hurwitz numbers were introduced by Mednykh and Pozdnyakova in [42]
and independently in the context of topological field theory in [5].

In this case, we found that a different hierarchy of integrable equations is related
to the problem: This is the BKP hierarchy, introduced by Kac and van de Leur [34].1

In a certain sense, this hierarchy is very similar to the DKP hierarchy introduced in
[32]. However, the difference between the D and B types is crucial for the counting
problem we discuss here (see Remark 23 in “Appendix”). For some reason, the BKP
hierarchy of Kac and van de Leur is not well known, although it has applications
to the famous orthogonal and symplectic ensembles [64] and some other models of
randommatrices and random partitions [54,58,59,65].We shall show that the BKP tau
function of hypergeometric type introduced in [58,59] generates Hurwitz numbers for
covers of RP2. Up to an unimportant factor, the BKP tau function of hypergeometric
type may be written in the form

τB(N , n,p) =
∑
λ∈P

�(λ)≤N

sλ(p) c|λ| ∏
(i, j)∈λ

r(n + j − i), (3)

where sλ is the Schur function [40] related to a partition λ = (λ1, . . . , λ�), �(λ)

denotes the number of nonvanishing parts of λ, c is a parameter, and P denotes the set
of all partitions. (In what follows, we will omit the summation range P as understood.)
The product on the right-hand side ranges over all nodes of the Young diagram λ, j
indicates the column and i the row of the node of λ when depicted in the English way,
i.e., the diagonal spreads down and right from the origin. The two discrete parameters
N and n and the set p = (p1, p2, . . . ) are called the BKP higher times [34].2 We
suppose that the tau function (3) is equal to 1 if N = 0 and vanishes if N < 0. r is
an arbitrarily chosen function of one variable, which will be specified later according
to our needs. The number j − i is called the content of the node located at the i th

1 This BKP hierarchy was called the “charged” and “fermionic” BKP hierarchy in [34]. We call it the
“large” BKP hierarchy because it includes the KP hierarchy and may be related [65] to the two-component
KP. The “small” KP hierarchy, introduced in [32], is a subhierarchy of the KP hierarchy.
2 In the present paper we use the so-called power sums pm [40] as higher time variables, rather than pm/m
as is common in soliton theory [32].
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row and the j th column of the Young diagram λ, and the product over all nodes
of the Young diagram on the right-hand side of (3) is called the content product
(the generalized Pochhammer symbol). Content products play an essential role in the
study of applications of the symmetric groups (see, for instance, [20,24,25] and the
references therein). The special role of the content product in the study of Hurwitz
numbers generated by the KP hierarchy was observed and worked out in [21].

In the present paper, we chose two different types of parameterizations of the
function r which defines the content product in (3). The first is

(I) r(x) = exp
∑
m>0

1

m
ζmh

mxm . (4)

The second is

(II) r(x) = txξ0 exp
∑
m �=1

1

m
ξmt

mx . (5)

The complex number t and sets {ζm, m > 0} and {ξm, m ∈ Z} are free parameters.
Similarly to [24,51], we introduce auxiliary parameters c and h. The powers of c count
the degree of covering maps, while the powers of the parameter 1/h, which enters (4),
count the Euler characteristic of the covers. In what follows, we may put c = 1 and
h = 1 in cases where we are not interested in the degree and the Euler characteristic,
and hope this does not lead to confusion. Wherever there is no risk of ambiguity, we
also avoid mentioning the dependence of r(x) and τ(N , n,p) on c, h, ζ , ξ , and other
parameters to make the formulae more readable.

Let us note that the use of the parametrization (I) of (4) in applications of the content
product was also considered in [30], in the study of combinatorial Hurwitz numbers
using Cayley graphs and Jusys–Murphy elements, as suggested by the Canadian com-
binatorial school [22] and developed in [24].

One of the results of our paper is explicit expressions for the content products
parameterized by (4) and (5) in terms of the characters of the symmetric groups (see
Propositions 2 and 3).

Let us write down the answer for case (II) [see (5)]:

∏
(i, j)∈λ

r(x + j − i) = tξ0x |λ|+ξ0ϕλ(�) exp
∑
m �=0

1

m
ξmt

mx Dp1 log sλ(p)|p(0,tm ),

|�| = |λ| = d. (6)

Here we first apply the Euler operator Dp1 = p1∂/∂p1 to the Schur function sλ(p),
where p = (p1, p2, . . . ), and then evaluate the result at the point p = p(0,tm) =
(p1(0,tm), p2(0,tm), . . . ), where pk(0,tm) = (1 − tmk)−1. The partition � is
defined as follows. For d ≥ 2, it is the partition (1d−22), and it has length �(�) =
d − 1. We choose the notation � because the Young diagram of the partition (1d−22)
resembles the Greek capital letter gamma. The cycle class labeled by � in Sd consists
of all transpositions. We also keep the notation � for the case d ≤ 1, when � = (d).
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One can see that the content product for a partition λ is expressed in terms of the
Schur functions labeled by the same partition. Thanks to the characteristicmap relation
[40]

sλ(p) = dimλ

d!

⎛
⎜⎜⎝pd1 +

∑
�

��=1d

ϕλ(�)p�

⎞
⎟⎟⎠ , (7)

formula (6) produces a series in ϕλ. Due to the summation over partitions λ in (3),
this in turn allows us to consider (3) as the generating function for Hurwitz numbers
(1). The content product (6) is expressed in terms of the Schur function, and formula
(7) exhibits the explicit dependence of the Schur functions on dimλ. However, in
expression (6) for the content product, the dependence on dimλ disappears, thanks to
the logarithmic derivative of the Schur function. Then one can suppose that tau function
(3) generates Hurwitz numbers (1) where E = 1 (projective Hurwitz numbers). To be
precise, (3) generates weighted sums of the projective Hurwitz numbers where, as we
shall see later, the weights are defined by specifications of the parameters ξ,t).

Case (I) may be considered as the degenerate limit of case (II) whent → 1, whence
in this case the series (3) also generates projective Hurwitz numbers.

Here and below, p� denotes the product pd1 pd2 · · · , where di are the parts of the
partition �: � = (d1, d2, . . . ). Then the tau function (3) may be written

τB(N , n,p) =
∑
d≥0

cd
∑
�|�|=d

Hr (d;�)p�,

Hr (d;�) =
∑
λ|λ|=d, �(λ)≤N

dimλ

d! ϕλ(�)
∏

(i, j)∈λ

r(n + j − i), (8)

where (for d ≤ N ) Hr (d;�) is a certain series of Hurwitz numbers which describe
d-fold covers with ramification � over a point, say, 0 of RP2, and ramifications over
additional points which are determined by the choice of r , namely the parameters in
(4) or (5). We should keep in mind that, in (3), it is only the part of the sum over λ

conditioned by |λ| ≤ N that generates Hurwitz numbers He,f(d = |λ|; . . . ). Thus
to get Hurwitz numbers for the study of d-fold coverings, one should work with the
series (3) conditioned by N ≥ d. We shall encounter the same restriction in Sect. 8,
when we consider integrals over N × N matrices which generate Hurwitz numbers.

Remark 1 As we can see, the sum

∑
λ

c|λ| ∏
(i, j)∈λ

r(n + j − i) (9)

may also be viewed as the generating function of the Hurwitz numbers when the base
surface has Euler characteristic equal to zero (which corresponds to either the torus or
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the Klein bottle). For the specification (4), such sums may be related to the characters
of the Lie algebra of differential operators on the circle, as has been studied in [11].

Both choices of the content products, (4) and (5), contain the direct analogue of the
Okounkov generating series [51], but now for covers ofRP2. It is enough to put ζm = 0
for all m except m = 1 in (4), or to put all ξm = 0 for all m except m = 0 in (5).

Using respectively (4) and (5), we obtain two different types of generating functions
for the projective Hurwitz numbers. The first, arising from (4), may be compared to
the approach based on completed cycles developed in [1,52] (which studied the case
CP

1). The second, obtained from (5), is related to a “q-deformation” of the previous
case (where instead of q we use the letter t), which in turn may be compared to
the approaches developed independently in [50] and [30]. We will show that, in the
“t-deformed” (or “trigonometric”) case, the Hall–Littlewood andMacdonald polyno-
mials naturally appear as weight functions in weighted sums of the projective Hurwitz
numbers.

The structure of the paper is as follows. In Sect. 2, we explain the notion of Hurwitz
numbers forKlein surfaces. In Sect. 2.2,we present links betweenHurwitz numbers for
base surfaces with different Euler characteristics e. There we also explain the special
role of the ramification described by the one-row Young diagram (d) (maximally
ramified profile) in the enumeration of the d-fold covers presented in Proposition 1.
This means that the BKP hypergeometric function also generates Hurwitz numbers
for the d-fold covers of any Klein surface whenever at least one of the profiles is
maximally ramified.

In Sect. 3, we find the content products for cases (I) and (II) in terms of the characters
of the symmetric groups. The answers are given by Propositions 2 and 3, respectively.3

In Sect. 4, we introduce weighted sums of the projective Hurwitz numbers (which
we will show in further sections to be generated by the BKP tau functions). For the
weighting, we use in particular the Macdonald, Jack, and Hall–Littlewood polynomi-
als, which naturally appear via specifications of the parametrization of r . We will then
be ready to use tau functions.

In Sect. 5, we recall the notion of the BKP hierarchy and the special family of the
BKP tau functions referred to as hypergeometric. We show that the BKP hypergeo-
metric tau function may be obtained from the two-component KP hypergeometric tau
function (which may be related to the semi-infinite TL equations) by an action of a
special heat operator which was introduced in Sect. 2.2. This action relates hierarchies
serving CP

1 and RP
2 Hurwitz counting problems. At the end of this section, we get

hypergeometric BKP tau functions with content products (4) and (5) in terms of an
action of vertex operators on a special tau function τB1 .

Section 6 discusses the examples of hypergeometric tau functions which are related
to the different choices of the parameters in (4) and (5).

Section 7.2 gathers our main results. We show that the tau function (3) together
with either (4) or (5) generates projective Hurwitz numbers and weighted sums of the
projective Hurwitz numbers. We show that, choosing the content product as in (5),

3 Proposition 2 is actually a new version of the known results for completed cycles presented in [1], but
we have not yet written down the correspondence in an explicit way.
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sums weighted by Hall–Littlewood polynomials with the parameter t arise naturally.
We present the BKP tau functions which generate Hurwitz numbers with an arbi-
trary profile over 0 and additional branch points with two types of profile: maximally
ramified profiles and minimally ramified profiles (the simple branch points).

In the last section (Sect. 8), we present certain integrals over matrices, which gen-
erate projective Hurwitz numbers. Note that the well-known β = 2 ensemble (i.e.,
the unitary ensemble or one-matrix model) counts both CP

1 Hurwitz numbers and
ribbon graphs with a given number of faces, vertices, and edges [14], and as shown
in [50, Sect. 6], the simplest way to get it is to present the one-matrix model as a
hypergeometric tau function [26]. We do not succeed in doing the same in the RP2

case. The analogues of the unitary ensemble are the β = 1, 4 (orthogonal and sym-
plectic) ensembles, which produce Feynman graphs. Each may be embedded either
in an orientable surface (if it is a ribbon graph) or a non-orientable one (if it is a
ribbon graph with cross-caps). It was shown in [64] that partition functions of these
ensembles are BKP tau functions. However, the perturbation series written as series
of Schur functions [58,59] are not the series we need.4 To get the projective Hurwitz
numbers, we suggest other matrix integrals. These integrals contain the simplest BKP
tau function τ B

1 in the integration measure, and this is widely used in our paper [see
(18), (70), (74), (77), and (106)]. Such an integral of a BKP tau function may or may
not be another BKP tau function, the latter case occurring when the integral generates
Hurwitz numbers with arbitrary profiles at two or more branch points. We also point
out that the multiple use of the BKP tau function τB1 to deform integration measures of
matrix integrals allows one to get Hurwitz numbers related to base surfaces with arbi-
trary Euler characteristics [see, for instance, (110)]. This approach is further developed
in [62].

To end this introduction, note that if in (3) we take r as in (4) and choose p =
(1, 0, 0, . . . ), then (3) is a discrete version of the partition function of the orthogonal
ensemble of random matrices:

τB = 1

g(n)N !
∑

h1,...,hN≥0

∏
i< j

|hi − h j |
N∏
i=1

eV (p∗,hi )

hi ! , (10)

V (p∗, x) :=
∑
m>0

1

m
xm p∗

m (11)

where as we shall see, the variables ζ and p∗ are related via V (p∗, x−1)−V (p∗, x) =
V (ζ, x). From [64] we know that (10) is the BKP tau function with the variables p∗
playing the role of BKP higher times. The factor g(n) is given in “Appendix B.”

In a similar way, we may obtain a discrete analogue of the circular β = 1 ensemble
by choosing (5), see Remark 20 in Sect. 5 which proves that for a certain specification
of p the series (3) is a BKP tau function with respect to the variables ξ .

4 Recently, paper [13] has investigated the graph counting of the β = 1, 2 ensembles.
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Relation (10) may be interesting because the β = 1 ensemble generates Mobius
graphs related to n-gulations of non-orientable surfaces (see [12,46] and references
therein).

We now study the above in detail. This paper is a development of our preprint [50].

2 Hurwitz numbers

2.1 Definitions and examples

For a partition � of a number d = |�|, let �(�) be the number of nonvanishing
parts. For the Young diagram corresponding to �, the number |�| is the weight of the
diagram and �(�) is the number of rows. Let (d1, . . . , d�) denote the Young diagram
with rows of length d1, . . . , d� and the corresponding partition of d = ∑

di . We shall
need the notion of the colength of a partition �, which is �∗(�) := |�| − �(�).

Let us consider a connected compact surface without boundary � and a branched
covering f : � → � by a connected or non-connected surface �. We will consider
a covering f of degree d. This means that the preimage f −1(z) consists of d points
z ∈ �, except at some finite number of points. These points are called critical values
of f.

Consider the preimage f −1(z) = {p1, . . . , p�} of z ∈ �. Let di be the degree of f
at pi . This means that in the neighborhood of pi the function f is homeomorphic to
x 	→ xdi . The set (d1 . . . , d�) is the partition of d, called the topological type of z.

Now fix points z1, . . . , zf and partitions �(1), . . . , �(f) of d. Let

C̃�(z1...,zf)

(
d;�(1), . . . , �(f)

)

denote the set of all branched coverings f : � → � with critical points z1, . . . , zf of
topological types �(1), . . . , �(f).

The coverings f1 : �1 → � and f2 : �2 → � are said to be isomorphic if there
exists a homeomorphism ϕ : �1 → �2 such that f1 = f2ϕ. Let Aut( f ) be the group
of automorphisms of the covering f . Isomorphic coverings have isomorphic groups
of automorphisms of degree |Aut( f )|.

Consider now the set C�(z1...,zf)(d;�(1), . . . , �(f)) of isomorphic classes in

C̃�(z1...,zf)(d;�(1), . . . , �(f)). This is a finite set. The sum

He,f
(
d;�(1), . . . , �(f)

)
=

∑

f ∈C�(z1 ...,zf)
(d;�(1),...,�(f))

1

|Aut( f )|

does not depend on the location of the points z1 . . . , zf and is called the Hurwitz
number. Here f denotes the number of branch points, and e is the Euler characteristic
of the base surface.

Example Let f : � → RP
2 be a covering without critical points. If � is connected,

then � = RP
2, deg f = 1 or � = S2, deg f = 2. Therefore, if d = 3, then

� = RP
2∐

RP
2∐

RP
2 or � = RP

2∐ S2. Thus H1,0(3) = 1/3! + 1/2! = 2/3.
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TheHurwitz numbers arise in different fields ofmathematics: from algebraic geometry
to integrable systems. They are well studied for orientable�. In this case, the Hurwitz
number coincides with the weighted number of holomorphic branched coverings of a
Riemann surface � by other Riemann surfaces, having critical points z1, . . . , zf ∈ �

of the topological types �(1), . . . ,�(f), respectively. The well-known isomorphism
between Riemann surfaces and complex algebraic curves gives the interpretation of
the Hurwitz numbers as the numbers of morphisms of complex algebraic curves.

Similarly, the Hurwitz number for a non-orientable surface � coincides with the
weighted number of dianalytic branched coverings of theKlein surfacewithout bound-
ary by another Klein surface and coincides with the weighted number of morphisms
of real algebraic curves without real points [7,47,48]. An extension of the theory to
all Klein surfaces and all real algebraic curves leads to Hurwitz numbers for surfaces
with boundaries [5,49].
The Hurwitz numbers have a purely algebraic description. Any branched covering
f : � → � with critical points z1, . . . , zf ∈ � generates a homomorphism φ :
π1(u,�\{z1, . . . zF }) → S� , where u is a point in �, to the group of permutations
of the set � = f −1(u) by the monodromy along contours of π1(u,�\{z1, . . . zF }).
Moreover, if li ∈ π1(u,�\{z1, . . . zF }) is a contour around zi , then the cyclic type of
the permutation φ(li ) is �(i). Let

Hom�(d;�(1), . . . , �(f))

be the group of all homomorphisms φ : π1(u,�\{z1, . . . zF }) → S�
∼= Sd with

this property. Isomorphic coverings generate elements of Hom�(d;�(1), . . . , �(f))

conjugated by Sd . Thus we construct the one-to-one correspondence between
C�(z1...,zf)(d;�(1), . . . , �(f)) and the conjugacy classes of the homomorphism group

Hom�(d;�(1), . . . , �(f)).
Consider the last set inmore detail. Any s ∈ Sd generates the interior automorphism

Is(g) = sgs−1 of Sd . Therefore, Sd acts on Hom�(d;�(1), . . . , �(f)) by s(h) = Ish.
The orbit of this action of I = {Is} corresponds to an equivalence class of coverings.
Moreover, the group A = {s ∈ Sd |s(h) = h} is isomorphic to the group Aut( f ),
where the covering f corresponds to the homomorphism h.

Consider the splittingHom�(d;�(1), . . . , �(f)) = ⋃r
i=1 Hi of orbits by I . Then the

cardinality |Hi | is d!/|A(hi )| = d!/|Aut( fi )|, where hi ∈ Hi . On the other hand, the
orbits Hi are in one-to-one correspondence with the classes of coverings. Therefore,

1

d!
∣∣Hom�(d;�(1), . . . , �(f))

∣∣ = 1

d!
r∑

i=1

|Hi | =
r∑

i=1

1

|Aut( fi )|

is the Hurwitz number H�(d;�(1) . . . , �(f)).
We now find |Hom�(d;�(1), . . . ,�(f))| in terms of the characters of Sd . Recall

that the cyclic type of s ∈ Sd is specified by the cardinalities � = (d1, . . . , d�) of
the subsets into which the permutation s splits the set {1, . . . , d}. Any partition �

of d generates the set C� ⊂ Sd , consisting of permutations of cyclic type �. The
cardinality of C� is equal to
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|C�| = |�|!
z�

, z� =
∞∏
i=1

imi mi !, (12)

where mi denotes the number of parts equal to i in the partition �. The partition �

is often then denoted by (1m12m2 · · · ). Moreover, if s1, s2 ∈ C�, then χ(s1) = χ(s2)
for any complex character χ of Sd . Thus for a partition �, we can define χ(�) by
χ(�) = χ(s) for s ∈ C�.

The Mednykh–Pozdnyakova–Jones formula is [33,39,41,42]

∣∣Hom�(d;�(1), . . . , �(f))
∣∣ = d!

∑
λ

(
dimλ

d!
)e f∏

i=1

|C�(i) | χ(�(i))

dimλ
,

where e = e(�) is the Euler characteristic of � and χ ranges over the irreducible
complex characters of Sd , associated with Young diagrams of weight d. Thus we
obtain (1). In particular, for the projective plane RP2, we get relation (1) with e = 1.

Example Let e = 1, f = 0, and d = 3. Then,

H1,0(3) =
∑
|λ|=3

dimλ

d! = 4

6
= 2

3
.

In general, for the unbranched covering of RP2, we get the following generating
function [compare with (70)]

ec+c2/2 =
∑
d≥0

cd H1,0(d). (13)

The exponent reflects the fact that the connected unbranched covers of the projective
plane may consist of either the projective plane (onefold cover, the term c) or the
Riemann sphere (twofold cover, the term c2/2, where the 2 in the denominator is the
order of the automorphisms of the covering by the sphere). Finally, we write down
a purely combinatorial definition of the projective Hurwitz numbers [33,42]. Let us
consider the symmetric group Sd and the equation

R2X1 · · · Xf = 1, R, Xi ∈ Sd , Xi ∈ C�(i) , i = 1, . . . , f, (14)

where C�(i) , i = 1, . . . , f, are the cycle classes of a given set of partitions �(i),
i = 1, . . . , f, of a given weight d. Then H1,f(d;�(1), . . . , �(f)) is the number of
solutions to (14) divided by d!. Hence, for an unbranched threefold covering, we get 4
solutions to R2 = 1 in S3: the unit element and three transpositions. Thus H1,0 = 4 : 3!
as obtained in the example above. The number of solutions to R2 = 1 in Sd is given
by (13).
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2.2 Remarks on the Mednykh–Pozdnyakova–Jones character formula

We start from the following preliminary:

Remark 2 It follows from paper [15] byDijkgraaf that the Hurwitz numbers for closed
orientable surfaces form a 2D topological field theory. An extension of this result to
the case of Klein surfaces (thus to orientable and non-orientable surfaces) was found
in Theorem 5.2 of [5] (see also Corollary 3.2 in [6]). On the other hand, theMednykh–
Pozdnyakova–Jones formula describes the Hurwitz numbers in terms of characters of
the symmetric groups. In this section, we interpret the axioms of the Klein topological
field theory [5] for Hurwitz numbers in terms of characters of symmetric groups. This
approach differs from the one in [5].

(A) We begin with the following simple statement

Lemma 1

He+e1,f+f1
(
d;�(1), . . . , �(f+f1)

)

=
∑
�

d!
|C�|H

e+1,f+1
(
d;�(1), . . . , �(f),�

)
He1+1,f1+1

×
(
d;�,�(f+1), . . . , �(f1)

)
. (15)

In particular,

He−1,f
(
d;�(1), . . . , �(f)

)
=
∑
�

He,f+1
(
d;�(1), . . . , �(f),�

)
χ(�), (16)

where χ(�) = d!H1,1(d;�)/|C�| are rational numbers explicitly defined in the
following way by a partition �:

χ(�) =
∑
λ|λ|=|�|

χλ(�) =
⎡
⎣ ∏
i>0, even

e
i
2

∂2

∂p2i · pmi
i

∏
i>0, odd

e
i
2

∂2

∂p2i
+ ∂

∂pi · pmi
i

⎤
⎦
p=0

,

(17)

and χλ(�) is the character of the representation λ of the symmetric group Sd , d = |λ|,
evaluated on the cycle class � = (1m12m2 · · · ).

As a corollary,we get that theHurwitz numbers of the projective planemay be obtained
from the Hurwitz numbers of the Riemann sphere, while the Hurwitz numbers of the
torus and the Klein bottle [see (9)] may be obtained from the Hurwitz numbers of the
projective plane.
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First we prove the second equality in (17). It follows from the relations

e

∑
i>0

i
2

∂2

∂p2i
+∑i>0, odd

∂
∂pi =

∑
λ

sλ(∂̃), (18)

[
sλ(∂̃) · sμ(p)

]
p=0

= δλ,μ, pm1
1 pm2

2 · · · =: p� =
∑
λ

χλ(�)sλ(p), (19)

where sλ(∂̃) is sλ(p) and each pi is replaced by i∂/∂pi . The heat operator on the
left-hand side of (18) plays an important role. Relations (19) may be found in [40].
Relation (18) is derived from the known relation

∑
λ

sλ(p(x)) =
∏
i< j

1

1 − xi x j

∏
i

1

1 − xi
, pm(x) :=

∑
i

xmi , (20)

which may also be found in [40].
The equality (15) follows from the orthogonality relation for characters:

∑
�

|C�|χλ(�)χμ(�) = d!δμ,λ,

where |μ| = |λ| = |�| = d, which yields
∑

� ϕλ(�)χ(�) = d!/dim(λ). Then
formula (1) gives (15).

In (72), we shall see that the heat operator which enters (17) also links solutions of
2KP (TL) and BKP hierarchies.
(B) Another remark is as follows. Let us use the so-called Frobenius notation [40] for
a partition λ: λ = (α1, . . . , ακ |β1, . . . , βκ), α1 > · · · > ακ ≥ 0, β1 > · · · > βκ ≥ 0.
The integer κ = κ(λ) denotes the length of the main diagonal of the Young diagram
λ, while the length of λ is denoted by �(λ).

Lemma 2 The normalized character labeled by λ evaluated at the cycle (d) (as usual,
d = |λ|) vanishes if κ(λ) > 1. Moreover,

ϕλ ((d)) = (−1)�(λ)+1
(

d!
dimλ

)
1

d
δ1,κ(λ). (21)

For the proof, we first note that the Schur function of a one-hook partition, say, (αi |β j ),
has the form

s(αi |β j )(p) = 1

d
(−1)β j pαi+β j+1 + · · · ,

where dots denote terms which do not depend on pa , a ≥ αi + β j + 1 [this fact may
be derived, say, from the Jacobi–Trudi formula sλ(p) = det s(λi−i+ j)(p)]. Then from
the Giambelli identity, viz., sλ(p) = det s(αi |β j )(p), it follows that sλ does not depend
on pa , a > α1 + β1 + 1. Thus it does not depend on pa , a ≥ d > α1 + β1 + 1, when
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κ(λ) > 1. Due to the character map relation, this means that ϕλ ((d)) = 0 if κ(λ) > 1.
For a one-hook partition λ = (α1|β1), we have α1 + β1 + 1 = d and the character
map formula (7) yields

s(α1|β1)(p) = dimλ

d! (pdϕλ ((d)) + · · · ),

where dots denote termswhich do not depend on pd .We compare the last two formulae
and get (21).

Relation (21) allows us to equate Hurwitz numbers related to different Euler char-
acteristics of base Klein surfaces if in both cases there are nonvanishing numbers of
ramification profiles (d). Hence, theMednykh–Pozdnyakova–Jones character formula
(1) yields the following:

Proposition 1 For any natural number g

He−2g,f+1
(
d;�(1), . . . , �(f), (d)

)

= d2gHe,f+2g+1

⎛
⎜⎝d;�(1), . . . , �(f), (d), (d), . . . , (d)︸ ︷︷ ︸

2g

⎞
⎟⎠ . (22)

This was first proven by Zagier (for the case of even e), see Appendix A in [39]. We
get it in a different way. For d-fold covers we shall say that a branch point ismaximally
ramified if its ramification profile is (d).

Remark 3 Notice that the presence of the profile (d) means that the Hurwitz num-
bers of the connected and disconnected covering are equal: He,f

connected(d; (d), . . . ) =
He,f(d; (d), . . . ), where dots denote the same set of ramification profiles.

Remark 4 In Appendix A of [39], Zagier considered the polynomial

R�(q) :=
∏��

i=1(1 − qdi )

1 − q
=:
∑
r

(−1)rqrχr (�).

It was shown that χr (0 ≤ r ≤ d − 1) is the character of the irreducible representation
of Sd given by χr (g) = tr(g, πr ), g ∈ Sd , πr = ∧r (Std). Here Std is the vector space
{(x1, . . . , xd) ∈ C

d |x1+· · ·+xd = 0} and Sd acts by permutations of the coordinates.
It can be shown that χr coincides with χλ, where λ = (d − r |r). To do this, let us
consider the Schur function sλ(p(q, 0)), where pm(q, 0) := 1 − qm and λ is not yet
fixed. We get [40]

sλ(p) = (−1)�(λ)−1(1 − q)q�(λ)−1δκ(λ),1.
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In the last relation, let k = �(λ) − 1. Then λ = (d − k|k). On the other hand, (7) tells
us that

s(d−k|k)(p(q, 0)) = (1 − q)
∑
�

|C�|
d! χ(d−k|k)(�)R�(q)

= (1 − q)

d−1∑
r=0

(−q)r
∑
�

|C�|
d! χ(d−k|k)(�)χr (�).

We now compare the above relations. The orthogonality of characters results in χk =
χ(d−k|k). This means that, in the presence of a maximally ramified branch point,
the summation range in (1) is restricted to one-hook partitions λ. Note also that the
polynomials R� are related to the ramification weights in (47).

In what follows, we shall see that tau functions generate Hurwitz numbers containing
the maximally ramified branch points.

3 Content products

The content product which enters (3) may be written in the form of a generalized
Pochhammer symbol

∏
(i. j)∈λ

r(x + j − i) =
�(λ)∏
i=1

rλi (x − i + 1), (23)

where rn(x) := r(x)r(x + 1) · · · r(x + n − 1), and also in the form of a sort of
Boltzmann weight

∏
(i. j)∈λ

r(x + j − i) = e−Uλ(x) :=
�(λ)∏
i=1

eUhi (0)+x−Uhi (λ)+x =
κ(λ)∏
i=1

eUαi+x−U−βi+x ,

(24)

where αi , βi , i = 1, . . . , κ are the Frobenius coordinates of the partition λ, λ =
(α1, . . . ακ |β1, . . . , βκ), with κ = κ(λ) the length of the main diagonal of the Young
diagram of the partition λ, and

hi (λ) := λi − i, r(x) =: exp(Ux−1 −Ux ). (25)

The numbers Ux may be fixed by Ux0 = 0 with a chosen x0. In the present paper, Ux

is chosen as either V (ζ, x) (parametrization I) or V (ξ,tx )+ξ0 logt (parametrization
II).
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3.1 Parametrization I

Consider the sums of all normalized characters ϕλ evaluated on partitions � with a
given weight d = |λ| = |�| and a given length �(�) = d − k :

φk(λ) :=
∑
�

�(�)=d−k

ϕλ(�), k = 0, . . . , d − 1. (26)

Remark 5 Let us note that φ0(λ) = 1. There are two other special cases when the sum
of normalized characters (26) contains a single term:

(a) φ1(λ) = ϕλ(�),� = (1d−22) (for d > 1). This is related to theminimally ramified
profile, i.e., the one with colength equal to 1. It is the profile of the simple branch
point, which is of interest in many applications [15].

(b) φd−1(λ) = ϕλ((d)). This is related to the cyclic profile which describes the
maximally ramified profile. It plays a specific role, as described in Proposition 1.

In what follows, we shall use the sums φk as building blocks to construct weighted
sums of the Hurwitz numbers [see, for instance, (59)]. Then cases (a) and (b) produce,
not the weighted sums, but the Hurwitz numbers themselves [see (97)].

Remark 6 The quantity d − �(λ) used in the definition (26) is called the colength of a
partition λ and will be denoted by �∗(λ). The colength enters the so-called Riemann–
Hurwitz formula, which relates the Euler characteristic e of a base surface to the Euler
characteristic e′ of its d-branched cover by

e′ − de +
∑
i

�∗(�(i)) = 0,

where the sum ranges over all branch points.

Let us introduce

degφk(λ) = k. (27)

This degree is equal to the colength of the ramification profiles in (26), and due to
Remark 6, it will be important later to define the Euler characteristic of the covering
surfaces in the parametrization I cases. Next we need:

Lemma 3 The power sums of the contents of all nodes of a Young diagram λ may be
expressed in terms of the normalized characters and ratios of the Schur functions, and
they are polynomials in the variables φk, k = 1, 2, . . . :
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�m(λ) :=
∑

(i. j)∈λ

( j − i)m (28)

= m

2π i

∮
am

m∏
k=1

(
1 +

∑
�

(
e2π i

k
m a
)−�∗(�)

ϕλ(�)

)
da

a
(29)

= (−1)m+1m
1

2π i

∮
am log

sλ(p(a))

sλ(p∞)

da

a
(30)

= (−1)m+1m
1

2π i

∮
am log

(
1 +

d−1∑
k=1

a−kφk(λ)

)
da

a
(31)

= m
∑
μ

|μ|=m,μ1<d

(−1)�
∗(μ)(�(μ) − 1)!φμ(λ)

Autμ
, (32)

where m ≥ 0, |λ| = |�| and �∗(μ) := |μ| − �(μ) is the colength of the partition μ.
Here,

φμ(λ) :=
d−1∏
i=k

(φk(λ))mk =
�(μ)∏
i=1

φμi (λ),

μ = (1m1 . . . (d − 1)md−1) = (μ1, . . . , μ�). (33)

In (30) p(a) = (a, a, . . . ) and p∞ = (1, 0, 0, . . . ), and in (32) Autμ = ∏�(μ)
i=1 mi !,

where mi denotes the number of times a part i enters the partition μ = (1m12m2 · · · ).

As we can see from (32)–(33), each integer �m is a quasi-homogeneous polynomial
in the rational numbers φk , and according to (27), we assign the degree as follows:

deg�m(λ) = m. (34)

Let us write down the first three �m(λ) for |λ| = d ≥ 4 in terms of normalized
characters ϕλ, using (26), (32), and (33). We obtain

�1(λ) = ϕλ(�), �2(λ) = (ϕλ(�))2 − 2ϕλ

((
1d−422

))
− 2ϕλ

((
1d−331

))
,

�3(λ) = (ϕλ(�))3 − 3ϕλ(�)
(
ϕλ

((
1d−422

))
+ ϕλ

((
1d−331

)))

+ 3ϕλ

((
1d−441

))
+ 3ϕλ

((
1d−52131

))
+ 3ϕλ

((
1d−623

))
. (35)

We assume that d > 2, m > 2. As we can see from (26), (32), and (33), each
�m(λ) has the form (ϕλ(�))m + · · · , where the dots denote the contribution of cyclic
classes marked by partitions, say �, whose lengths �(�) belong either to the interval
[d − 2, d − m] if m < d, or to the interval [d − 2, 1] if m ≥ d.
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The proof that the right-hand side of (28) is equal to (29) is based on the two
relations

lim
n→∞

m∏
k=1

(
1 − n− 1

m e2π i
k
m x
)n = e−xm

and

∏
(i. j)∈λ

(a + j − i) = a|λ|
(
1 +

∑
�

ϕλ(�)a�(�)−|λ|
)

= a|λ|
(
1 +

d−1∑
k=1

φk(λ)a−k

)
, (36)

which may be obtained from relations in [40]. This relation is important and will be
further exploited to get Hurwitz numbers and weighted sums of Hurwitz numbers.

The proof that the right-hand side of (28) is equal to (31) follows from (36):

∏
i, j∈λ

e−∑m>0
1
m (−a)−m( j−i)m =

∏
i, j∈λ

(
1 + j − i

a

)
= 1 +

d−1∑
k=1

φk(λ)a−k .

Remark 7 By comparing the first and last terms in (36), we conclude that

φk(λ) = 0, if k > d − κ(λ),

where κ(λ) in the length of the main diagonal of the Young diagram of the partition λ.
Now take k = d−1 as in (b) of Remark 5. Then it follows that ϕλ ((d)) is nonvanishing
only for one-hook Young diagrams λ = (d − a, 1a), a = 0, 1, . . . , d.

Remark 8 It follows from (36) that

ad
(
1 +

d−1∑
k=1

φk(λ)a−k

)
= 0,

if a is integer and also if −λ1 < a < �(λ).

Remark 9 From (36) we see that

s(1k) (�(λ)) = φk(λ), (37)

where �(λ) = (�1(λ),�2(λ), . . . ).

Proposition 2 Let

r(ζ, h; x) = exp V (ζ, hx), (38)
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where ζ is the infinite set of parameters ζ = (ζ1, ζ2, . . . ) and V is defined by (11). Then
the related content product may be expressed in terms of characters in the following
explicit way:

∏
(i. j)∈λ

r(ζ, h; j − i) = exp
∑
m>0

1

m
hmζm�m . (39)

From (24) we get

∏
(i. j)∈λ

r(ζ, j − i) =
κ(λ)∏
i=1

eV (p∗,αi )−V (p∗,−βi−1) =
L∏

i=1

eV (p∗,hi (λ))−V (p∗,0), (40)

where hi (λ) = λi − i and αi , βi are the Frobenius coordinates of the partition λ =
(α|β). Then the variables p∗ = (p∗

1, p
∗
2, . . . ) are related to the variables ζ by the

triangle transformation given by

V (ζ, x) = V (p∗, x − 1) − V (p∗, x). (41)

In particular, we get the discrete version of the orthogonal ensemble given by (10).

Remark 10 With the help of (40), Proposition 2 may be related to the well-known
results [1,52] on Hurwitz numbers and completed cycles as follows. In [1], the gen-
erating function for Hurwitz numbers of covers of CP1 was studied in the form

τTL(p(1),p(2)|p∗) =
∑
λ

e
∑

m>0
1
m p∗

mCλ(m)sλ(p(1))sλ(p(2)), (42)

and identified with a specification of the KP hypergeometric tau function [38,57].
The exponential prefactor in this KP hypergeometric tau function coincides with the
right-hand side of (40). Then it follows from (41) that

�(λ)∑
i=1

(
(λi − i)m − (−i)m

) =: Cλ(m) =
m−1∑
k=1

(−1)m−k

(m − k)!
(m − 1)!
(k − 1)! �k(λ).

We may collect several further remarks on (42).

Remark 11 (A) Let p(1) = p(2) = (1, 0, 0, . . . ) in (42). Then the variables p∗ may be
identifiedwith theKPhigher times, because expression (42) yields a discrete version of
the one-matrix model (the unitary ensemble), in a similar way to (10), which describes
a discrete model of the orthogonal ensemble. (B) If we choose p(1) = p(2) = p(0,t)

(see introduction for the notation) and specify p∗
m , we obtain the partition functions

of theU (N ) Chern–Simons model on S3 with coupling constant gs = − logt [8,63].
(C) If we take p(2) = p(0,t) and p∗

m = 0, m > 2, then the right-hand side of (42)
generates the Marino–Vafa relations for the Hodge integrals [68] (where p, λτ , and λ

are p(1), p∗
2 , and

√−1 logt, respectively, in our notation). (D) It was first noticed in

123

Author's personal copy



BKP and projective Hurwitz numbers

[38] (see also [60]) that, for the choice p(1) = (1, 0, 0, . . . ), p(2)
m = ∑

xmi , the series
(42) is a discrete version of the Kontsevich model:

τTL(x,p∗) = 1

N !
∑

h1,...,hN

∏
i< j

(hi − h j )

N∏
i=1

1

hi !e
V (p∗,hi )+li hi , xi = eli .

3.2 Parametrization II

If j − i is the content of the node of λ, the number t j−i is called the quantum content
of the node.

Lemma 4 The power sum of the quantum contents t j−i of all nodes of the Young dia-
gram λ is expressed in terms of the parts of λ, the Schur functions, and the normalized
characters ϕλ by

Tλ(t) :=
∑

(i. j)∈λ

t j−i (43)

=
�(λ)∑
i=1

t1−i 1 − tλi

1 − t
= t

t − 1

�(λ)∑
i=1

(
thi (λ) − thi (0)

)
(44)

= p1
∂

∂p1
log sλ(p)|p=p(0,t) (45)

= d +∑′
� m1(�)A�(λ,t)

1 +∑′
� A�(λ,t)

, A�(λ,t) = ϕλ(�)
(1 − t)d∏�(�)

j=1

(
1 − td j

) ,

(46)

where hi (λ) = λi − i , |λ| = |�| = d, and
∑′ denotes the sum over all partitions

except the partition (1d). The partition � is written either as (d1, . . . , d�(�)) or as
(1m12m2 · · · ), and mi = mi (�) denotes the number of parts of � equal to i . In (45),
we first take the derivative with respect to p1, then evaluate the power sum variables
p as p = p(0,tm) = (p1, p2, . . . ), where pk = pk(0,tm) = (1 − tkm)−1.

The proof is similar to the previous case, but instead of (36) we use another relation:

∏
(i. j)∈λ

1 − qt j−i

1 − q̃t j−i
= sλ(p(q,t))

sλ(p(q̃,t))
=
(
1 − q

1 − q̃

)|λ| 1 +∑′
� ϕλ(�)w(�,q,t)

1 +∑′
� ϕλ(�)w(�, q̃,t)

,

(47)

where p(q,t) = (p1(q,t), p2(q,t), . . . ), with

pm(q,t) = 1 − qm

1 − tm
, (48)
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and

w(�,q,t) = (1 − t)d

(1 − q)d

�(�)∏
i=1

1 − qdi

1 − tdi
(49)

may be called the q,t-ramification weight. We have w(�, eah, eh) → a�∗(�) as
h → 0. Equation (47) is easily obtained from known relations presented in [40].
For the proof we put q̃ = 0, replace q → q/n, and consider the n th power of (47),
obtaining (46) from the right-hand side of (47), wherewe insert (49). Then (45) follows
from (46).

Remark 12 Apart from (43)–(46), we may also write

Tλ(t
m) = 1

2π i

∮
q−1−m log

sλ(p(q,t))

sλ(p(0,t))
dq, m > 0,

which is the analogue of (31).

Remark 13 We get �m(λ) = (t∂/∂t)m · Tλ(t)|t=1 .

Proposition 3 Let

r(ξ, x |t) = eV (ξ+,tx )+ξ0x logt+V (ξ−,t−x ) = e
∑

m �=0
1−tm

mtm p∗
mt

mx+ξ0x logt, (50)

where ξ is the collection of parameters ξ0 and ξ± = (ξ±1, ξ±2, . . . ), and where V is
defined by (11). Then

∏
(i. j)∈λ

r(ξ, x + j − i |t) = eξ0(ϕλ(�)+|λ|x) logt+∑m �=0
1
m ξmtmx Tλ(tm ) (51)

=
�(λ)∏
i=1

e
ξ0 logt

2

(
(x+hi (λ))2+(x+hi (λ))−(x+hi (0))2−(x+hi (0))

)+∑m �=0
1
m p∗

m

(
t(hi (λ)+x)m−t(hi (0)+x)m

)
,

(52)

with p∗
m = ξm

tm

tm−1 , hi (λ) = λi − i , and hi (0) = −i .

Remark 14 The right-hand side of (47) may be obtained by specifying the parameters:
x = 0, ξm = 0, m ≤ 0, and ξm = q̃m − qm, m > 0 in (51). Relation (47) can be
used to get Hurwitz numbers in special cases. However, we need to explain how we
would treat the denominator on the right-hand side. Among others, let us consider two
different ways to do this.
(A) Let us fix q̃. Then w(�, q̃,t) tends to zero if t → 1 for � �= (1d). This allows
us to expand the denominator on the right-hand side of (47) and also Tλ(t) in (46)
as Taylor series in the normalized characters of Sd for t close to 1. The limit t → 1
returns us to the case studied in Sect. 3.1.
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There is a different limiting procedure which allows us to get rid of the infinite sum
arising from the character expansion of sλ(p(q̃,t)) in the denominator of the right-
hand side of (47) when the leading term in the denominator is the term with � = (d):
(B) Here we take q̃ to be close to 1.

Lemma 5 Let ε be a small parameter. Then

ϕλ ((d))
∏

(i, j)∈λ

1 − qt j−i

1 − eεt j−i
= 1

ε
δ1,κ(λ)

1 − td

d

sλ(p(q,t))

sλ(p∞)
+ O(1), (53)

where we use the notation of Lemma 2, and where O(1) denotes terms of order
εk, k = 0, 1, . . . .

The lemma follows from (47), from sλ(p∞) = dimλ/d!, and from (7), where the
power sums are specified by (48). In particular, we have

sλ(p(eε,t)) = ε
dimλ

d! ϕλ ((d))
d

1 − td
+ o(ε). (54)

Note the similarity between the relations (48)–(49) and the scalar product of the power
sum symmetric functions, where the Macdonald symmetric functions are orthogonal
[40]. We have

Remark 15 For ξ0 = ξ− = 0, let us rewrite (51) in the form

∏
(i. j)∈λ

r(ξ, x + j − i |t) = e
∑

m>0
1
m (1−tm )p∗

mt
mx−mTλ(tm )

=
∑
μ

t(x−1)|λ|Pμ(p∗; 0,t)Qμ

(
Tλ,t; 0,t

)
, (55)

where Pμ and Qμ are Macdonald polynomials with parameters q and t evaluated
at q = 0 (so these are the Hall–Littlewood polynomials). Here the notation is the
same as in [40], but Pμ and Qμ are written as functions of power sum variables. The
latter are p∗ = (p∗

1,p
∗
2,p

∗
3, . . . ) for Pμ and Tλ,t = (

Tλ(t), Tλ(t2), Tλ(t3), . . .
)

for the second Hall–Littlewood polynomial Qμ. The polynomials Qμ may also be
viewed as symmetric functions of the d variables which are the quantum contents
t j−i , (i, j) ∈ λ. We note also that the scalar products of the power sums and of the
Macdonald polynomials with the parameters q and t may be written as [40]

〈pλ, pμ〉 = zμ

�(μ)∏
i=1

1 − qμi

1 − tμi
δμ,λ, 〈Pλ, Qμ〉 = δμ,λ.

Thenumber zμ is definedby (12). The reason for the appearance of theHall–Littlewood
polynomials is not clear.
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4 Weighted sums of Hurwitz numbers

Below we will consider combinations of normalized characters written as

∑
|λ|=d

�(λ)≤N

(∗)ϕλ(�)
dimλ

d! ,

where (*) denotes a chosen (polynomial or non-polynomial) function in many vari-
ables, and the role of the variables is played by the normalized characters ϕλ evaluated
at all possible different partitions of the number d. According to (1), when d ≤ N ,
this is a weighted sum of the projective Hurwitz numbers. However, the parameter
N is an arbitrary integer and may be chosen large enough, so in this work we do not
need to care about this inequality. The point is that the sums below may obtained as
specifications of Hr (d,�) in (8) resulting from the choice of r in either (4) or (5).
Other examples of specifications are also presented in Sect. 6.

The weighted sums below may be compared with the weighted sums in [25,29],
which investigate the statistics of the CP

1 Hurwitz numbers compatible with the
property of integrability of the related generating series. Note that, although we can-
not choose functions (*) arbitrarily, there are infinitely many ways to choose them,
and we are interested in those which are related to BKP tau functions in a natural
way. The factor (*) appears due to the content product in the formula for the hyper-
geometric tau functions. The weighted sums below are labeled by a given partition
μ = (μ1, μ2, . . . ). Our examples are as follows.

4.1 Parametrization I

This is the case described in (4). Here we weight the Hurwitz numbers with sym-
metric functions of the contents viewed as functions of the power sum variables, the
role of the power sums being played by (�1(λ),�2(λ), . . . ) as defined in (32) and
(φ1(λ), φ2(λ), . . . ) as defined in (26).
(a) Hurwitz numbers weighted by power sum monomials built from (�1(λ),�2(λ),

. . . ), where �μ(λ) := ∏�(μ)
i=1 �μi (λ):

Cμ(d;�) :=
∑
λ|λ|=d

�μ(λ) ϕλ(�)
dimλ

d! . (56)

This is a linear combination of Hurwitz numbers of (both connected and disconnected)
d-fold covers with the profile� at∞ and �(μ) different branch points. The Euler char-
acteristic of the covers is E′ = �(�)−d−|μ|. This follows from the Hurwitz formula
E′−Ed = ∑

i (�(�i )−d) for a d-fold covering, where the sum ranges over all branch
points, andE′ andE are the Euler characteristics of the cover and the base, respectively.

If we choose μ = (1b), the integer Cμ(d;�) counts the number of non-equivalent
branched coverings of the projective plane with a given ramification profile at some
point and b simple branch points:
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C(1b)(�) = H1,b+1

⎛
⎝d;�, . . . , �︸ ︷︷ ︸

b

,�

⎞
⎠ , |�| = |�| = d. (57)

For μ = (1b2), by (35), we obtain

C(1b2)(�) = H1,b+3

⎛
⎝d;�, . . . , �︸ ︷︷ ︸

b+2

,�

⎞
⎠− 2H1,b+2

⎛
⎝d;�, . . . , �︸ ︷︷ ︸

b

,
(
1d−422

)
,�

⎞
⎠

−2H1,b+2

⎛
⎝d;�, . . . , �︸ ︷︷ ︸

b

,
(
1d−331

)
,�

⎞
⎠ .

(b) Hurwitz numbers weighted by Jack polynomials. In our case, the Jack polynomials
are homogeneous symmetric polynomials in d variableswhich are integers, namely the
contents of all nodes of λ. At the same time, the Jack polynomials may be rewritten as
(quasi-homogeneous) polynomials in the power sum variables, that is, in the integers
(�1(λ),�2(λ), . . . ), which in turn are also quasi-homogeneous in the variables φk(λ)

according to (32). The last fact allows us to use the content product to define the
weighted Hurwitz numbers as follows:

J(α)
μ (d;�) :=

∑
λ|λ|=d

Q(α)
μ (�(λ)) ϕλ(�)

dimλ

d! , (58)

where Q(α)
μ is the (dual) Jack polynomial in the notation of [40, Sect. 10, Chap. VI].

The Euler characteristic of the cover is e′ = �(�) − d − |μ|, similarly to the previous
example.
(c) Perhaps the most important example is the sum of Hurwitz numbers which may
be called projective Goulden–Jackson Hurwitz numbers [20]:

Sμ(d;�) :=
∑
λ

dimλ

d! ϕλ(�)

k∏
s=1

φμs (λ)

=
∑

�(1),...,�(s)

�∗(�(s))=μs , s=1,...,k

H1,k+1(d;�(1), . . . , �(k),�), (59)

recalling that φi were introduced in (26). This is the sum of the Hurwitz numbers of
all d-branched covers of RP2 with k + 1 ramification profiles, given by an arbitrary
partition � and partitions �(s), s = 1, . . . , k, whose lengths are given numbers:
�(�(s)) = d − μs . The Euler characteristic of the cover is e′ = �(�) − d − |μ|. Each
weighted sum ofHurwitz numbers obtained fromBKP is actually a linear combination
of (59).
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Remark 16 Let us consider the casewhere the sum Sμ reduces to a single term,whence
it is not a sum of Hurwitz numbers, but a Hurwitz number itself. This occurs if we
choose the partition μ to be μ(b,m) := (1b(d − 1)m). We get

Sμ(b,m)(d,�) = H1,b+m+1

⎛
⎝d;�,�, . . . , �︸ ︷︷ ︸

b

, (d), . . . , (d)︸ ︷︷ ︸
m

⎞
⎠ , (60)

which counts d-fold covers of RP2 with the following set of ramification profiles: an
arbitrary profile�, say, over 0, then b simple branch points andm maximally ramified
profiles. When m > 0, this Hurwitz number coincides with the Hurwitz numbers of
connected covers. This follows from Remarks 3 and 5.

4.2 Parametrisation II

This is the case described in (4). Here we weight the Hurwitz numbers with symmetric
functions viewed as functions of the power sum variables, the role of the set of power
sums being played by the set (Tλ(t), Tλ(t2), . . . ) as defined in (43). We denote this
set by Tλ,t. In this case, the weighted sums contain Hurwitz numbers for covers with
different Euler characteristics, so there is no sense in introducing the analogue of the
constant h. In the examples below, the prefactor (*) is not a polynomial function of
ϕλ. For a given partition μ, we introduce t-dependent sums.
(d) Hurwitz numbers weighted by the power sum monomials built from (Tλ(t),

Tλ(t2), . . . ):

Kμ(d;�|t) :=
∑
λ|λ|=d

Tλ(μ|t) ϕλ(�)
dimλ

d! , |�| = d, (61)

where Tλ(μ|t) = ∏�(μ)
i=1 Tλ(tμi ) and Tλ(tμi ) are defined by (43).

(e) t-dependent sums weighted by Jack polynomials:

J(α)
μ (d;�|t) :=

∑
λ|λ|=d

Q(α)
μ (Tλ,t) ϕλ(�)

dimλ

d! , |�| = d, (62)

where Q(α)
μ is the Jack polynomial. It may be viewed either as the homogeneous

symmetric function of the d variables which are the quantum contents of the diagram
λ, or alternatively as quasi-homogeneous functions of power sum variables Tλ,t =(
Tλ(t), Tλ(t2), Tλ(t3), . . .

)
, expressed in terms of Sd characters via Lemma 4 (see

also Remark 15).
(f) Sums weighted by Macdonald polynomials:

Mq,t
μ (d;�) :=

∑
λ|λ|=d

Qq,t
μ (Tλ,t) ϕλ(�)

dimλ

d! , |�| = d, (63)
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where Qq,t
μ (Tλ,t) are Macdonald polynomials viewed as functions of the power sum

variablesTλ,t = (
Tλ(t), Tλ(t2), Tλ(t3), . . .

)
(seeRemark 15). Here the polynomials

Qq,t
μ may also be written as symmetric functions in the d variables which are the

quantum contents of the diagram λ.
Note that the idea of weighting (theCP1) Hurwitz numbers by symmetric functions

was first worked out in [25], where {hμ,mμ}, {eμ, fμ}, and also {sμ}, {pμ} were
used as basis sets [40]. In our approach, the notion of q-deformed Hurwitz numbers
introduced in [25] is based on q-dependent specifications of the parameters ζ in the
parametrization I (4), while the parametrization II (5) was not considered in [25].
(g)Remark 14 suggests considering the followingweighted sums ofHurwitz numbers:

F(d,�, (d), {qs,ts}) :=
∑
λ|λ|=d

ϕλ ((d)) ϕλ(�)
dimλ

d!
k∏

s=1

sλ(p(qs,ts))

sλ(p∞)

=
∑
λ|λ|=d

ϕλ ((d)) ϕλ(�)
dimλ

d!
k∏

s=1

⎛
⎝1 +

∑

μ�=1d

ϕλ(μ)w(�(s),qs,ts)

⎞
⎠ . (64)

As we can see this sum describes covers with the following set of profiles on RP
2:

an arbitrary profile � over 0, the maximally ramified profile (d) over another point,
special weighted sums of profiles �(s), s = 1, . . . , k, over each of k additional branch
points with the ramification weights w(�(s),qs,ts) of (49). (Here we skip the details
because thiswill be published in amore detailedway in another paper. Such sums allow
us to count the d-fold covers whose profiles �(s) over the additional branch points
contain given numbers of parts which are multiples of other given numbers playing
the role of a chosen set of degrees of roots of unity. This is achieved by studying limits
where the parameters qs and ts are chosen to be close to the roots of unity.)

We shall show below that the numbers Cμ(d;�), Jμ(d;�), S(d;�), and
Kμ(d;�|t), Mq,t

μ (d;�), and F(d,�, (d), {qs,ts}) are generated by the special BKP
tau functions considered in Sects. 6 and 7. For instance, the number (59) is generated
by (82) and the number (64) is generated by (94).

5 BKP tau functions

5.1 BKP hierarchy of Kac and van de Leur

There are two different BKP hierarchies of integrable equations. One was introduced
by the Kyoto group in [32] and the other by Kac and van de Leur [34]. We shall need
the last one here. This hierarchy includes the celebrated KP hierarchy as a particular
reduction. In a certain sense (see [65]), the BKP hierarchy may be related to the
three-component KP hierarchy introduced in [32] (described earlier in [66,67] using
L–A pairs of differential operators with matrix-valued coefficients). For a detailed
description of the BKP hierarchies, we refer readers to the original work [34]. Here we
write down the first non-trivial equations (Hirota equations) for the BKP tau function:
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1

2

∂τ(N , n,p)

∂p2
τ(N + 1, n + 1,p) − 1

2
τ(N , n,p)

∂τ (N + 1, n + 1,p)

∂p2

+1

2

∂2τ(N , n,p)

∂2 p1
τ(N + 1, n + 1,p) + 1

2
τ(N , n,p)

∂2τ(N + 1, n + 1,p)

∂2 p1

−∂τ(N , n,p)

∂p1

∂τ(N + 1, n + 1,p)

∂p1
= τ(N + 2, n + 2,p)τ (N − 1, n − 1,p). (65)

The BKP tau functions depend on the set of higher times tm = pm/m, m > 0, and
the discrete parameter N . In [58,59], a second discrete parameter n was included, and
the simplest Hirota equation relating the BKP tau functions for neighboring values of
n is

1

2
τ(N , n + 1,p)

∂2τ(N + 1, n + 1,p)

∂2 p1
− 1

2

τ(N , n + 1,p)

∂2 p1
τ(N + 1, n + 1,p)

= ∂τ(N + 2, n + 2,p)

∂p1
τ(N − 1, n,p) − ∂τ(N + 1, n + 2,p)

∂p1
τ(N , n,p).

(66)

The complete set of Hirota equations with two discrete parameters is written down in
“Appendix.”

The general solution to the BKP Hirota equations may be written as

τ (N , n,p) =
∑
λ

Aλ(N , n)sλ(p), (67)

where Aλ satisfies the Plucker relations for an isotropic Grassmannian and may be
written in Pfaffian form (as one can show using the Wick formula).

5.2 BKP tau function of hypergeometric type

We are interested in a certain subclass of the BKP tau functions (67) introduced in
[58,59] and called BKP hypergeometric tau functions. These may be compared with
a similar class of TL and KP tau functions found in [38,55].

Similarly to [55], we proceed as follows. Suppose that λ is a Young diagram. Given
an arbitrary function r of one variable, we construct the product

rλ(x) :=
∏

(i. j)∈λ

r(x + j − i), (68)

which is called the content product (or, sometimes, the generalized Pochhammer sym-
bol attached to a Young diagram λ). Examples were considered above.

Remark 17 (1) If r = f g, then rλ(x) = fλ(x)gλ(x). (2) If r̃(x) = (r(x))n , n ∈ C,
then r̃λ(x) = (rλ(x))n .
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We consider sums over partitions of the form

∑
λ

�(λ)≤N

rλ(n)c|λ|sλ(p) =: τBr (N , n,p), (69)

where sλ are the Schur functions [40] and p denotes the semi-infinite set (p1, p2, . . . ).
It was shown in [58,59] that, up to a factor, (69) defines the BKP tau function:

Proposition 4 For any given r , the tau function g(n)τBr (N , n,p) solves the BKP
Hirota equations. Here g(n) is a function of the parameter n defined by (118) in
“Appendix B.”

Let us make two points. Although discrete parameters enter the Hirota equations, for
our purposes (a) the factor g(n) is unimportant, and (b) the cutoff N should be chosen
large enough, and we can take N = +∞.

We call such tau functions hypergeometric because both the so-called generalized
hypergeometric functions and the basic hypergeometric functions of one variable may
be obtained as special cases of (69). For instance, one can choose pm = xm . Then
a rational function r in (69) yields the generalized hypergeometric function, while a
trigonometric r results in the basic hypergeometric function. However, the key tau
function is the simplest one.

Example Consider r(x) = 1 for any x . The resulting tau function does not depend
on n and will be denoted by τ1(N ,p). Other hypergeometric tau functions may be
obtained by action of a specially chosen vertex operator on τ1(N ,p), e.g., see (74). If
we take N = +∞, we obtain

τB1 (∞,p) =
∑
λ

c|λ|sλ(p) = e
∑

m>0

(
c2
2m p2m+c

p2m−1
2m−1

)
. (70)

Remark 18 Each tau function τBr may be expressed as a Pfaffian [58,59].

2KP and BKP hypergeometric tau functions The role of the hypergeometric func-
tions of matrix argument in the form of KP tau functions presented in [57] was
discussed in [20] in the context of combinatorial problems. The hypergeometric tau
function of the two-component KP (2KP) may be written as

∑
λ

�(λ)≤N

rλ(n) c|λ| sλ(p) sλ(p̄) =: τ 2KPr (N , n,p, p̄), (71)

where rλ(n) is the same as in (69). Here two independent sets p = (p1, p2, . . . ) and
p̄ = ( p̄1, p̄2, ) and two discrete parameters N and n play the role of 2KP higher times.
(We do not indicate the dependence of the right-hand side on the constant c, since it
is trivial.) Then the hypergeometric tau functions of the 2KP and BKP hierarchies are
related:
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[
e

∑
i>0

i
2

∂2

∂ p̄2i
+∑i>0, odd

∂
∂ p̄i · τ 2KPr (N , n,p, p̄)

]

p̄=0

= τBr (N , n,p), (72)

which follows from (18) and (19):

[
e

∑
i>0

i
2

∂2

∂p2i
+∑i>0, odd

∂
∂pi · sλ(p)

]

p=0

= 1. (73)

Hypergeometric tau functions via the vertex operators From the bosonization for-
mulae given in [32], the tau functions (3) were presented in [58,59] in terms of an
action of the vertex operators. For r given by (5) [or indeed by (50)], the tau function
(3) may be written as

τ B
r (N , n,p) = 1

g(n)
eξ0 ĥ2(n) logt+∑m �=0 p

∗
mĥ(n,tm ) ·

∑
λ

�(λ)≤N

c|λ|sλ(p), (74)

where ĥ(n,tm), m ∈ Z, are commuting operators defined as vertex operators:

ĥ(n,t) := tn res
z

dz

z
e
∑

i>0(t
i−1)

zi pi
i e

−∑i>0(t
−i−1)z−i ∂

∂pi , (75)

and where ĥ2(n) is determined by the generating series ĥ(n, eε) =: 1+∑i≥0
εi+1

(i+1)! ĥi
(n). The operators ĥi (n) were written down in [1,45] in the most explicit way. From
(75), we get

ĥ0(n) = n, ĥ1(n) = n2 +
∑
i>0

i pi
∂

∂pi
,

ĥ2(n) = n3 +
∑
i, j

(
(i + j)pi p j

∂

∂pi+ j
+ i j pi+ j

∂2

∂pi∂p j

)
. (76)

In particular, the operator ĥ2(0) is known as the cut-and-join operator, first introduced
in [21].

For r given by (4) [or indeed by (38)], the tau function (3) may be written as

τ B
r (N , n,p) = 1

g(n)
e
∑

m>0 p∗
mĥm (n) ·

∑
λ, �(λ)≤N

c|λ|sλ(p).

Example For N = +∞, n = 0, and r(x) = eζ1x , i.e., p∗
m = 0, m > 2 [see (41)], we

get

τBr (p) =
∑
λ

eζ1ϕλ(�)c|λ|sλ(p) = eζ1ĥ2(0) · e
∑

m>0
c2
2m p2m+ c

2m−1 p2m−1 . (77)
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6 Examples of the BKP hypergeometric tau functions

When we use parameters to describe r , say, the parameters ζ in (4), we shall write
τB(N , n,p|ζ ) instead of τ B

r (N , n,p). Let us use Propositions 2 and 3 and the relations
(36), (47) to construct examples of BKP tau functions. In view of (8), each example
may be considered as the generating function for certain sums of Hurwitz numbers.
More specific examples will be discussed in Sect. 7, where the tau functions generate
the sums introduced in Sect. 4.

Example 0 The simplest hypergeometric tau function
∑

�(λ)≤N sλ(p) is related to
ζ = 0.

Example I First we choose (38) for the content product. Using (17), we write down
the following example:

τB(N , 0,p|h, ζ ) =
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p) exp
∑
m>0

1

m
hmζm�m(λ). (78)

If h = 1 it may be suitable to introduce the dependence on the variable n after per-
forming the triangular change in variables ζ → p∗ given by V (x −1, ζ )−V (x, ζ ) =
V (x,p∗). Then

τB(N , n,p|p∗) =
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

N∏
i=1

eV (hi+n(λ),p∗), (79)

where hi (λ) = λi − i .

Remark 19 The specialization pm = trRm = ∑N
a=1 x

m
a , where xi = eyi , allows (78)

to be rewritten as

τB(N , 0,p|ζ ) = 1

�N (x)

M∑
h1,...,hN=1

eV (h,p∗) det
(
ey j hi

)
sgn�N (h), (80)

which is a discrete analogue of the two-matrix integral

∫
dU

∫
dR exp

(
Tr

(
UYU †R +

∑
m �=0

1

m
p∗
m Rm

))
, (81)

where the first integral represents integration over unitary matrices and the second is
the integral over real symmetric ones, dU and dR denoting the corresponding Haar
measures. Y is any diagonal matrix (a source). The matrices are N × N . This integral
may be viewed as an analogue of the Kontsevich integral.
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Example Ia In (78), one can specify the variables ζ as

ζm =
k∑

s=1

ns(−as)
−m, ζ0 = −ns logas,

where as ∈ C. If we restore the dependence of the tau function on n, we obtain

τB(N , n,p|h, {as,ns})

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

k∏
s=1

∏
(i. j)∈λ

(
1 + h

n + j − i

as

)−ns

, (82)

where a and n are respectively the collections of complex parameters a1, . . . ,ak and
n1, . . . ,nk . Forns = ±, we obtain the Pfaffian version of the hypergeometric function
of a matrix argument [57].

Example Ib Let us take all the ns equal to n(α) = 1/α in the previous example. We
then obtain

τB(N , n,p|h,a,n(α))

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)
∑
μ

h|μ|P(α)
μ (−a(n)) Q(α)

μ (�(λ)) , (83)

where Pα
μ and Qα

μ is the pair of dual Jack polynomials written in the notation of [40,
Chap. IV]. Here the first Jack polynomial Pα

μ is a symmetric function of the variables
−a(n) = (−a1 − n, . . . ,−ak − n), while the second Jack polynomial Qα

μ (�(λ))

may be viewed either as a quasi-homogeneous polynomial in the power sum variables
� = (�1(λ),�2(λ), . . . ), or alternatively as a symmetric function in d variables, viz.
the contents of the diagram λ.

Example II Next we use (50) and (17) to obtain

τB
(
N , n,p

∣∣∣
{
p∗(s),ts

})

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

k∏
s=1

eξ0(ϕλ(�)+nd) logts+∑m �=0 ξ
(s)
m tmn

s Tλ(tms ) (84)

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

k∏
s=1

eξ0(ϕλ(�)+nd) logts−∑m �=0
1
m (1−tms )p

∗(s)
m tmx−m

s Tλ(tms ).

(85)

The variables p∗(s) are related to the variables ξ (s) by p∗
m = ξm

tm

tm−1 .
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For k = 1 (here we will write p∗(1) → −p∗) and p∗
m = 0, m < 0, we have

τB(N , n,p|p∗, t) =
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

k∏
s=1

tξ0ϕλ(�)+dξ0

×
∑
μ

P0,t
μ (p∗)Q0,t

μ (Tλ,t), (86)

where P0,t
λ and Q0,t

λ are the Macdonald polynomials specified by q = 0
(Hall–Littlewood polynomials), which may be written either as quasi-homogeneous
polynomials of the power sum variables Tλ,t = (Tλ(t), Tλ(t2), . . . ), or as symmetric
polynomials in d variables, viz. the quantum contents of λ (see Remark 15).

Remark 20 Given s, let us specify p = p(q,t) according to (48). Then the series
(84) solves the BKP Hirota equations with respect to the variables p∗. When |t| = 1
and is not a root of 1, τB in (84) is basically a discrete version of the circular β = 1
ensemble, viz.,

1

N !
∑

h1,...,hN

∏
i< j

|thi − th j |
N∏
i=1

eV
(
p∗,thi

)
μ(h1;q,t),

with a certain weight function μ independent of p∗ [58,59]. Compare with Remark
11 and the discrete version of the orthogonal ensemble (10).

Consider three specifications of the variables ξ in (84).

Example IIa First, we put each ξ
(s)
m = 0, s = 1, . . . , k. Then the content product

depends only on the parameter ξ0. We obtain the BKP analogue of Okounkov’s TL
tau function presented in [51]:

τB(N , n,p|ξ0) =
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)
∏

(i. j)∈λ

e(n+ j−i)ξ0 . (87)

Example IIb Now taking ξ0 = 0 and

ξ (s)
m = tm − 1

tm
p∗(s)
m = nsq

m
s , m > 0, (88)

we obtain

τB(N , n,p|{ts,qs,ns})

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

k∏
s=1

∏
(i. j)∈λ

(
1 − qst

n+ j−i
s

)−ns
, (89)
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where t,q,n are sets of complex numbers ts,qs,ns , s = 1, . . . , k. When ns = ±1,
s = 1, . . . , k, the tau function (89) is the Pfaffian version of Milne’s hypergeometric
function [43,56].

Example IIc Next, taking ξ0 = 0 and

ξ
(s)
±m = t±m − 1

t±m
p∗(s)

±m = (−1)mns
q

m
2
s t±asm

s

1 − qms
, s = 1, . . . , k, m > 0,

and putting qs = e2π iτs , ts = e2csπ i , the relation (84) takes the form

τB(N , n,p|{cs, τs,as,ns})

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

k∏
s=1

(θλ(cs(n + as), τs))
−ns , (90)

where {c, τ,a,n} are sets of complex numbers {cs, τs,as,ns , s = 1, . . . , k}, and
where

θλ(cs(n + as), τs) :=
∏

(i. j)∈λ

θ(cs(n + as + j − i), τs)

is the elliptic version of the Pochhammer symbol, and θ is the Jacobi theta function

θ(cs x, τs) :=
∑
k∈Z

exp(π ik2τs + 2csπ ikx)

= (qs;qs)∞
∞∏
k=1

(
1 + q

k− 1
2

s tx
s

)(
1 + q

k− 1
2

s t−x
s

)
,

with (qs;qs)∞ the Dedekind function. For this example, we chose c = (qs;qs)∞
in (84). For ns = ±1, we obtain the Pfaffian version of the elliptic hypergeometric
function considered in [55].

Example IId In (86) we choose k = 1, n = 1. Taking

ξm = 1 − tm

1 − qm

k∑
i=1

ymi , m > 0,

all other variables vanish. This may be viewed as a limiting case of Example Ib, where
we send k → ∞. Then

r(x) =
∏
m>0

k∏
i=1

1 − yiqmtx+1

1 − yiqmtx
.
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The content product is equal to

∏
(i. j)∈λ

∏
m>0

k∏
i=s

1 − yiqmtx+1+ j−i

1 − ysqmtx+ j−i
= e

∑
m>0

1
m

1−tm

1−qm tmx Tλ(tm )
∑k

i=1 y
m
i

=
∑
μ

tx |μ|Pq,t
μ (Y )Qq,t

μ (Tλ,t), (91)

where theMacdonald function Pq,t
μ is the symmetric polynomial in Y = (y1, . . . , yk),

and the Macdonald function Qq,t
μ may be written either as the quasi-homogeneous

polynomial of the power sum variables Tλ,t = (Tλ(t), Tλ(t2), . . . ), or as the sym-
metric polynomial in the quantum contents (see Remark 15). The tau function (86)
takes the form

τB(N , n,p|q,t, ξ0,Y ) =
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p) eξ0ϕλ(�)

×
∑
μ

tn|μ|Pq,t
μ (Y )Qq,t

μ (Tλ,t) (92)

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

N∏
j=1

eξ0(λ j− j+n)
2
sλ(p)

×
N∏
j=1

k∏
i=1

∏
m>0

e
ymi

1−qm tm(λ j− j+n−1)
, (93)

where Pq,t
μ and Qq,t

μ are Macdonald polynomials (see Remark 15). The last equality
follows from (52).

Example IIIWe choose

r(x) = (a + x)
k∏

s=1

1 − qst
x
s

1 − eεsts
(as + x),

where we used both parameterizations (see Remark 17). We obtain the tau function

τB(N , n,p|a, {as,ts, εs}) =
∑
d≥0

cd
∑
λ|λ|=d

sλ(p)
sλ(p(a))

sλ(p∞)

×
∏
s

sλ(p(qs,ts))

sλ(p(eεs ,ts))

sλ(p(as))

sλ(p∞)
. (94)

In particular, these tau functions generate the sums F(d,�, (d), {qs,ts}) in (64).
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Remark 21 Equation (82)may be obtained as a limiting case of (89) if we setqs = tass
and send t → 1, taking into account the fact that, for the hypergeometric tau functions
(69), we have the obvious transformation rλ → a−|λ|rλ, pm → apm, m > 0, which
leaves them unchanged. In this limiting case, the polynomials Pq,t and Qq,t tend to
the Jack polynomials [40] [compare with (83)].

Remark 22 Similarly to (72), we may prove the relation

e
1
2

∑
m>0 m

∂2

∂p2m
+∑m>0, odd

∂
∂pm · τBr (N , n,p)|p=0

=
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

∏
(i. j)∈λ

r(n + j − i), (95)

where the right-hand side generates weighted Hurwitz numbers for the torus and the
Klein bottle.

7 BKP tau functions generating Hurwitz numbers

7.1 Getting the Hurwitz numbers themselves

As we shall see, the hypergeometric tau functions generate weighted sums of Hurwitz
numbers. However, there are special cases when one gets the Hurwitz numbers them-
selves. This is based on Remark 5. We will distinguish between the parameterizations
I and II.

First, let us write down the simplest case of a single branch point related to all
r = 1 and N = ∞. This case is generated by τB1 , where it is reasonable to produce
the change pm → h−1cm pm . We get

e
1
h2
∑

m>0
1
2m p2mc

2m+ 1
h

∑
modd

1
m pmcm =

∑
d>0

cd
∑
�|�|=d

h−�(�)p�H1,a(d;�), (96)

where a = 0 if � = (1d), and a = 1 otherwise. Then H1,1(d;�) is the Hur-
witz number describing a d-fold covering of RP

2 with a single branch point of
type � = (d1, . . . , dl), |�| = d by a (not necessarily connected) Klein surface
of Euler characteristic e′ = �(�). For instance, for d = 3, e′ = 1, we get
H1,1(3;�) = δ�,(3)/3. For unbranched coverings (that is for a = 0, e′ = d), we
get formula (13).

Next note that the exponent on the left-hand side may be rewritten as the generating
series of the connected Hurwitz numbers

1

h2
∑
d=2m

c2m p2mH
1,1
con (d; (m,m)) + 1

h

∑
d=2m−1

c2m−1 p2m−1H
1,1
con (d; (2m − 1)) ,
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where H1,1
con describes a d-fold covering either by the Riemann sphere (d = 2m) or

by the projective plane (d = 2m − 1). These are the only ways to cover RP2 by a
connected surface for the case of a single branch point. The geometrical meaning of
the exponent in (96) may be explained as follows. The projective plain may be viewed
as the unit disk with the identification of the opposite points z and−z on the boundary
|z| = 1. If we cover the Riemann sphere by the Riemann sphere z → zm , we get two
critical pointswith the sameprofiles.However, ifwe coverRP2 by theRiemann sphere,
then we have the composition of the mapping z → zm on the Riemann sphere and the
factorization by antipodal involution z → −1/z̄. Thus we have the ramification profile
(m,m) at the single critical point 0 of RP2. The automorphism group is the dihedral
group of order 2m, which consists of rotations by 2π/m and antipodal involution
z → −1/z̄. Thus we get that H1,1

con (d; (m,m)) = 1/2m, which is the factor in the
first sum in the exponent in (96). Now let us cover RP2 by RP

2 via z → zd . For
even d, we have the critical point 0, and in addition, each point of the unit circle
|z| = 1 is critical (a folding), while from the beginning we restrict our consideration
to isolated critical points. For odd d = 2m − 1, there is a single critical point 0; the
automorphism group consists of rotations through the angle 2π/(2m − 1). Thus in
this case H1,1 (d; (2m − 1)) = 1/(2m − 1), which is the factor in the second sum in
the exponent in (96).

Next, consider the BKP hypergeometric function in the parametrization I, setting

ζk = βδk,1 −
m∑
i=1

(−ai )k :

H1,b+m+1

⎛
⎝d;�, . . . , �︸ ︷︷ ︸

b

, (d), . . . , (d)︸ ︷︷ ︸
m

,�

⎞
⎠ = he

′ [
τ(N > d, 0,p|ζ )

]
d,b,m,�

, (97)

where the bracket [∗]d,b,m,� is the coefficient of cdβbp�

m∏
i=1

a1−d
i which counts d-fold

covers of RP2 with the following ramification type: There are b simple branch points,
m maximally ramified branch points, and one branch point of type � = (d1, . . . , dl).
Each cover is a connected Klein surface when m > 0 and a not necessarily connected
Klein surface when m = 0. The Euler characteristic of the cover is e′ = �(�) − b −
m(d − 1).

From Proposition 1, we conclude that the projective Hurwitz number of (97) may
be equated with Hurwitz numbers related to different base surfaces.

7.2 BKP Tau Function as Generating Function for Weighted Sums
of Hurwitz Numbers

In this section, the power of 1/h counts the Euler characteristic of the covering surface
denoted by e′. For this purpose, in Propositions 5 and 6, we use p̃ defined by

pm = h−1 p̃m . (98)
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First we present the simplest weighted sum of Hurwitz numbers, which is just the sum
of Hurwitz numbers related to a single branch point with a fixed Euler characteristic
e′, viz.,

∑
d≥0

cd
∑

�

hd−l
∑
�

�(�)=l

H1,1(d;�) = (1 − c2)−1/2h2
(
1 + c

1 − c

)1/2h

, (99)

where each � has the same weight d and length �. This follows directly from (96),
where all pm = 1.

From the previous sections, we derive:

Proposition 5 The tau function (78) generates the numbers Cμ(�) (56) through

τB(N , 0,p|h, ζ ) =
∑
d≥0

cd
∑
μ,�

|�|=d

h|μ|−�(�) 1

zμ
Cμ(�) ζμ p̃�, (100)

where zμ is defined by (12). For d = |�| ≤ N, the numbers Cμ(�) are weighted
Hurwitz numbers.

Corollary 1 In particular, let us put ζm = 0 if m > 1. Then (100) reads

∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

ehζ1ϕλ(�)sλ(p)

=
∑
d,b≥0

cd
∑
�|�|=d

hb−�(�)p̃�

ζ b
1

b! H
⎛
⎝d;�, . . . , �︸ ︷︷ ︸

b

,�

⎞
⎠ , (101)

which is the RP2 analogue of the Okounkov generating function [51].

The representation of this series in the form of a matrix integral is given in (107).
Weighted sums of Hurwitz numbers generated by the BKP tau functions (89) and

(82) were given in our previous paper [50]. The simplest example resulting from (82)
is similar to the one considered in [29] and may be presented as follows. The tau
function (82), with ns = 1 for s = 1, . . . , k, generates sums S defined by (59):

Proposition 6 It may be interesting to compare (6) with its CP1 analogue discussed
in [36, Example 2.22]

τB(N , n,p|h, {as}) =
∑
d≥0

cd
∑
λ|λ|=d, �(λ)≤N

sλ(p)

k∏
s=1

∏
(i. j)∈λ

(
ash

−1 + n + j − i
)

=
∑
d≥0

cd
∑
�|�|=d

∑
μ

(ash
−1 + n)d−μs h−�(�)p̃� Sμ(d,�).

(102)
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Proposition 7 The tau function (84) generates the numbers Kμ(s) (�|ts) (61) through

τB(N , n,p|ξ, {ts}) =
∑
d≥0

cd
∑
μ,�

|�|=d

k∏
s=1

1

zμ
p� ξμ(s) Kμ(s) (�|ts), (103)

where zμ is defined by (12). For d = |�| ≤ N, the numbers Kμ(s) (�|ts) are weighted
Hurwitz numbers.

Proposition 8 The tau function (92) generates the Hurwitz numbers Mq,t
μ , weighted

by Macdonald polynomials [see (63)]:

τB(N , n,p|q,t, 0,Y ) =
∑
d≥0

cd
∑
�|�|=d

p�

∑
μ

tn|μ|Pq,t
μ (Y )Mq,t

μ (d;�). (104)

Proposition 9 The numbers F(d,�, (d), {qs,ts}) given by (64) may be obtained as
the following term in the tau function (64):

τB(N , n,p|a, {as,ts, εs})

=
∑
d≥0

cd
∑
λ

sλ(p)
sλ(p(a))

sλ(p∞)

k∏
s=1

sλ(p(qs,ts))

sλ(p(eεs ,ts))

sλ(p(as))

sλ(p∞)

=
∑
d≥0

cd
∑
�|�|=d

p�

(
F(d,�, (d), {qs,ts}) a

k∏
s=1

as
εs

+ . . .

)
,

(105)

where dots indicate terms of different order in any of εs , as (s = 1, . . . , k), and a.

8 Matrix integrals as generating functions of Hurwitz numbers

If the base surface is CP1, the set of examples of matrix integrals generating Hurwitz
numbers was studied in [2,4,9,10,14,37,39,69]. One can show that the perturbation
series in coupling constants of these integrals (Feynman graphs) may be related to
TL (KP and two-component KP) hypergeometric tau functions. This actually means
that these series generate Hurwitz numbers with at most two arbitrary profiles, while
others are subject to certain conditions, since the origin of additional profiles is the
content product factors in hypergeometric tau functions (71).

Here, very briefly, we write down a few generating series for the RP
2 Hurwitz

numbers. These series may not be tau functions themselves, but may be represented
as integrals of tau functions with matrix argument. [The matrix argument, which we
denote by a capital letter, say X , means that the power sum variables p are specified
as pi = trXi , i > 0. Then instead of sλ(p), τ(p), we write sλ(X) and τ(X).] If a
matrix integral in the examples below is a BKP tau function, then it generates Hurwitz
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numberswith a single arbitrary profile, and all others are subject to restrictions identical
to those in the CP1 case mentioned above. In all the examples, V is given by (11). We
also recall that the limiting values of p(q,t) given by (48) may be p(a) = (a, a, . . . )

and p∞ = (1, 0, 0, . . . ). Further, the numbers He,f(d; . . . ) are Hurwitz numbers only
when d ≤ N , where N is the size of the matrices.

For more details on theRP2 case, the reader is referred to [50]. A new development
in [50] as comparedwith [61] is the use of products ofmatrices. Herewe consider a few
examples. All examples include the simplest BKP tau function with matrix argument
X [58,59] defined by [compare with (20)]

τB1 (X) :=
∑
λ

sλ(X) = e
1
2

∑
m>0

1
m (trXm )2+∑m>0,odd

1
m trXm

=
det1/2

1 + X

1 − X
det1/2 (IN ⊗ IN − X ⊗ X)

(106)

as part of the integration measure. Other integrands are the simplest KP tau functions
τKP1 (X,p) := etrV (X,p), where V is defined by (11) and the parameters pmay be called
coupling constants. The perturbation series in the coupling constants are expressed as
sums of products of the Schur functions over partitions and are similar to the series
we considered in the previous sections.

Example 1 (TheRP2 Okounkov–Hurwitz series as a model of normal matrices) From
the equality

(
2πζ−1

1

) 1
2
e

(nζ0)2

2ζ1 eζ0nc+ 1
2 ζ1c2 =

∫

R

exi nζ0+(cxi− 1
2 x

2
i )ζ1dxi ,

and in a similar way to what was done in [60] using ϕλ(�) = ∑
(i. j)∈λ( j − i), we can

derive

en|λ|ζ0eζ1ϕλ(�)δλ,μ = k
∫

sλ(M)sμ(M†)det
(
MM†

)nζ0
e− 1

2 ζ1tr
(
log
(
MM†

))2
dM,

wherek is an unimportantmultiplier,M is a normalmatrixwith eigenvalues z1, . . . , zN
and log |zi | = xi , and dM = d∗U

∏
i< j |zi −z j |2∏N

i=1 d
2zi . Then theRP2 analogue

of the Okounkov series (101) may be written

∑
λ

�(λ)≤N

en|λ|ζ0+ζ1ϕλ(�)sλ(p)

= k
∫

eV (M,p)eζ0ntr log
(
MM†

)− 1
2 ζ1

(
tr log

(
MM†

))2
τB1 (M†)dM. (107)

A similar representation of the Okounkov CP
1 series was presented earlier in [3].

Below we use the following notation:
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• d∗U is the normalized Haar measure on U(N ), i.e.,
∫
U(N )

d∗U = 1.
• Z is a complex matrix

d�(Z , Z†) = π−n2 e−tr
(
Z Z†

) N∏
i, j=1

d� Zi j d� Zi j .

• If M is a Hermitian matrix, the measure is defined by

dM =
∏
i≤ j

d�Mi j

∏
i< j

d�M.

It is known that [40]

∫
sλ(Z)sμ(Z†) d�(Z , Z†) = (N )λδλ,μ, (108)

where (N )λ := ∏
(i. j)∈λ(N + j − i) is the Pochhammer symbol related to λ. A similar

relation was used in [2,28,53,60,61] for models of Hermitian, complex, and normal
matrices. IN is the N × N unit matrix. We recall that

sλ(IN ) = (N )λsλ(p∞), sλ(p∞) = dimλ

d! , d = |λ|.

Example 2 (Three branch points) The generating function for RP2 Hurwitz numbers
having three ramification points with three arbitrary profiles is

∑
λ, �(λ)≤N

sλ(p(1))sλ(�)sλ(p(2))

(sλ(p∞))2

=
∫

τB1 (Z1�Z2)
∏
i=1,2

e
V
(
trZ†

i ,p
(i)
)
d�

(
Zi , Z

†
i

)
. (109)

If p(2) = p(q,t) with any given parameters q, t, and � = IN , then (109) is the
hypergeometric BKP tau function.

Example 3 (Hermitian two-matrix model) The following ‘projective analogue’ of the
well-known two-matrix model is the BKP tau function

∫
τB1 (cM2)e

trV (M1,p)+tr(M1M2)dM1dM2 =
∑
λ

c|λ|(N )λsλ(p),

where M1, M2 are Hermitian matrices. Using the results of [21], we can show that it
is a projective analogue of the generating function of the so-called strictly monotonic
Hurwitz numbers introduced by Goulden and Jackson. In the projective case, these
numbers count paths on the Cayley graph of the symmetric group whose initial point
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is a given partition, while the end point is not fixed: we take the weighted sum over
all possible end points, say, �, and the weight is given by χ(�) of Lemma 1.

Example 4 (Unitary matrices) Generating series for projective Hurwitz numbers with
arbitrary profiles at n branch points and restricted profiles at other points:

∫
etr(cU

†
1 ...U†

n+m )

(
n+m∏
i=n+1

τB1 (Ui )d∗Ui

)(
n∏

i=1

τKP1

(
Ui ,p(i)

)
d∗Ui

)

=
∑
d≥0

cd (d!)1−m
∑

λ, |λ|=d
�(λ)≤N

(
dimλ

d!
)2−m ( sλ(IN )

dimλ

)1−m−n n∏
i=1

sλ(p(i))

dimλ
.

(110)

Here p(i) are parameters. This series generates certain linear combinations of Hurwitz
numbers for base surfaces with Euler characteristic 2 − m, m ≥ 0. The integral
(110) is a BKP tau function when the parameters are specialized as p(i) = p(qi ,ti ),
i = 2, . . . , n, with any values of qi ,ti , and if in addition m = 1. When n = 1, this
BKP tau function may be viewed as an analogue of the generating function of the
so-called non-connected Bousquet–Melou–Schaeffer numbers [36, Example 2.16].
When n = m = 1, we obtain the BKP tau function

∫
τB1 (U2)e

trV (U1,p)+tr
(
cU†

1U
†
2

)
d∗U1d∗U2 =

∑
λ

�(λ)≤N

c|λ| sλ(p)

(N )λ
.

If we compare this series with those used in [23,24], we can see that it is a projective
analogue of the generating function of the so-called weakly monotonic Hurwitz num-
bers. In the projective case, it counts paths on the Cayley graph whose initial point
is a given partition, while instead of a fixed end point, we consider the sum over all
possible end points �, with a weight given by χ(�) as in Lemma 1.

Example 5 (Integrals over complex matrices) We give two examples. An analogue of
the Belyi curve generating functions [10,69] is as follows [compare also with (59)]:

N∑
l=1

Nl
∑

�(1),...,�(n+1)

�(�n+1)=l

cd He,n+1
(
d;�(1), . . . ,�(n+1)

) n∏
i=1

p(i)
�(i)

=
∑
λ

c|λ| (d!)m−2(N )λ

(dimλ)m−2

n∏
i=1

sλ(p(i))

sλ(p∞)
(111)

=
∫

e
tr
(
cZ†

1 ...Z
†
n+m

) ( n+m∏
i=n+1

τB1 (Zi )d�
(
Zi , Z

†
i

))

×
(

n∏
i=1

τKP1

(
Zi ,p(i)

)
d�

(
Zi , Z

†
i

))
, (112)
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where e = 2 − m is the Euler characteristic of the base surface.

The series in the following example generates the projective Hurwitz numbers
themselves. To get rid of the factor (N )λ in the sum over partitions, we use mixed
integration over U(N ) and over complex matrices:

∑

�(1),...,�(n)

cd H1,n
(
d;�(1), . . . , �(n)

) n∏
i=1

p(i)
�(i)

=
∑

λ, �(λ)≤N

c|λ| dimλ

d!
n∏

i=1

sλ(p(i))

sλ(p∞)
(113)

=
∫

τKP1

(
cU †Z†

1 · · · Z†
k ,p

(n)
)

τB1 (U )d∗U
n−1∏
i=1

τKP1

(
Zi ,p(i)

)
d�

(
Zi , Z

†
i

)
.

(114)

Here Z , Zi , i = 1, . . . , n − 1, are complex N × N matrices andU ∈ U(N ). As in the
previous examples, one can specify all sets p(i) = p(qi ,ti ), i = 1, . . . , n, except a
single one which in this case has the meaning of the BKP higher times.
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Appendix A: Hirota Equations for the BKP Tau Function with Two
Discrete Time Variables

The BKP hierarchy we are interested in was introduced in [34]. In this paper, the BKP
tau function τB(N ,p) does not contain the discrete variable n.We need a slightlymore
general version of the BKP hierarchy which includes n as the higher time parameter
[58,59,65]. The Hirota equations for the tau functions τB(N , n,p) of this modified
BKP hierarchy read

∮
dz

2π i
zN

′−N−1eV (p′−p,z)τ
(
N ′ − 1, n,p′ − [z−1]

)
τ
(
N + 1, n + 1,p + [z−1]

)

+
∮

dz

2π i
zN−N ′−3eV (p−p′,z)τ

(
N ′ + 1, n + 2,p′ + [z−1]

)

×τ
(
N − 1, n − 1,p − [z−1]

)

= τ(N ′ + 1, n + 1,p′)τ (N − 1, n,p) − 1

2

(
1 − (−1)N

′+N
)

×τ
(
N ′, n + 1,p′|g) τ(N , n,p) (115)
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and

∮
dz

2π i
zN

′−N−2eV (p′−p,z)τ
(
N ′ − 1, n − 1,p′ − [z−1]

)

× τ
(
N + 1, n + 1,p + [z−1]

)

+
∮

dz

2π i
zN−N ′−2eV (p−p′,z)τ

(
N ′ + 1, n + 1,p′ + [z−1]

)

× τ
(
N − 1, n − 1,p′ − [z−1]

)

= 1

2

(
1 − (−1)N

′+N
)

τ
(
N ′, n,p′) τ (N , n,p) . (116)

Here p = (p1, p2, . . . ), p′ = (p′
1, p

′
2, . . . ). The notation p + [z−1] denotes the set

(
p1 + z−1, p2 + z−2, p3 + z−3, . . .

)

and V is defined by (11). Equations (116) are the same as in [34], while (115) relate
tau functions with different discrete time n and were given in [58,59,65]. Taking
N ′ = N + 1 and all pi = p′

i , i �= 2 in (116), then picking up the terms linear in
p′
2 − p2, we obtain (65). Taking N ′ = N + 1 and all pi = p′

i , i �= 1 in (115), then
picking up the terms linear in p′

1 − p1, we obtain (66). The relation between the BKP
hierarchy and the two- and three-component KP hierarchy was established in [65].

Appendix B: Hypergeometric BKP tau function—Fermionic formulae

Details may be found in [55,58,59]. Let {ψi , ψ
†
i , i ∈ Z} be Fermi creation and

annihilation operators that satisfy the usual anticommutation relations and vacuum
annihilation conditions

[ψi , ψ j ]+ = δi, j , ψi |n〉 = ψ−i−1|n〉 = 0, i < n.

In contrast to the DKP hierarchy introduced in [32], for the BKP hierarchy introduced
in [34], we need an additional Fermi mode φ which anticommutes with all the other
Fermi operators except itself, for which φ2 = 1/2, and φ|0〉 = |0〉/√2 [34]. Then the
hypergeometric BKP tau function introduced in [58,59] may be written as

g(n)τBr (N , n,p)

=
〈
n
∣∣e
∑

m>0
1
m Jm pm e

∑
i<0 Uiψ

†
i ψi−∑i≥0 Uiψiψ

†
i e
∑

i> j ψiψ j −√
2φ

∑
i∈Z ψi

∣∣n − N
〉

=
∑
λ

�(λ)≤N

e−Uλ(n)sλ(p) = g(n)
∑
λ

�(λ)≤N

rλ(n)sλ(p), (117)
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where Jm = ∑
i∈Z ψiψ

†
i+m , m > 0, Uλ(n) = ∑

i Uhi+n , r(i) = eUi−1−Ui , and

g(n) :=
〈
n
∣∣e
∑

i<0 Uiψ
†
i ψi−∑i≥0 Uiψiψ

†
i
∣∣n
〉
=
⎧⎨
⎩
e−U0+···−Un−1 if n > 0,
1 if n = 0,
eU−1+···Un if n < 0.

(118)

In (117) the summation runs over all partitions whose lengths do not exceed N .

Remark 23 Note that, without the additional Fermi mode φ, the summation range in
(117) does include partitions with odd partition lengths. One can avoid this restriction
by introducing a pair of DKP tau functions, which seems unnatural.

Apart from (117), the same series without the restriction �(λ) ≤ N gives the BKP tau
function. However, it is related to the single value n = 0. The n-dependence destroys
the simple form of this tau function [58,59].
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