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Abstract. We introduce a notion of semiclassical bi-states. They arise from pairs of eigen-
states corresponding to tunnel-splitted eigenlevels and generate 2-level subsystems in a given
quantum system. As an example, we consider the planar Penning trap with rectangular elec-
trodes assuming the 3 : (—1) resonance regime of charge dynamics. We demonstrate that,
under small deviation of the rectangular shape of electrodes from the square shape (sym-
metry breaking), there appear instanton pseudoparticles, semiclassical bi-states, and 2-level
subsystems in such a quantum trap.
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1. INTRODUCTION

Beginning from Feynman’s paper [1], the quantum computations are related to open 2-level
systems. A more recent notion from quantum informatics, a ¢-bit, is sometimes simply identified
with the notion of 2-level system [2]. The opportunity to generate mixed and entangled states in
such systems makes them very interesting for studying from the viewpoint of algebra, geometry,
and functional analysis.

For recognition of suitable 2-level subsystems in a given quantum system, one has to check the
following basic properties:

(i) there are two distinguished eigenstates 1)1, 1o of the system corresponding to close to each
other eigenvalues A\; < Ay and the gap A2 — A1 is much less than the distance from A; and As to
the rest spectrum of the system;

(ii) a generic external observable mixes the states 1 and 1o, i.e., its matrix in the basis 1)1, ¥
is not diagonal (with a certain accuracy);

(iii) the probability of transition from the level A; to lower energy levels of the whole system is
small enough.

In this paper, we first of all discuss how the 2-level subsystems can be generated via the tun-
nelling bi-localization effect in the semiclassical framework. And secondly, we demonstrate that
such tunnel 2-level subsystems appear in trapping systems at frequency resonance which makes the
algebra of integrals of motion to be noncommutative and under symmetry breaking which creates
pseudoparticles (instantons) over this noncommutative algebra.

Our main example of trapping system is a planar rectangular Penning trap with 3 : (—1) reso-
nance between the modified cyclotron and magnetron frequencies. We demonstrate that the peri-
odic instanton regime and 2-level system in the space of integrals of motion originate in the trap
geometric asymmetry (a deviation of rectangle electrodes from square shape).

Under suitable fine co-tuning of electric voltage and magnetic field strength such a 2-level system
even could depend on a continuous free parameter.

2. SEMICLASSICAL BI-STATES

For simplicity, assume that we deal with the simplest model of a quantum system realized by

the Hilbert space £ = L2(R) and by the algebra of Weyl-symmetrized observables f = f(g, ),
p = —ih0/0dq, q € R [3]. Denote by the asterisk * the Groenewold-Moyal product in this algebra:

fa="Fxg.
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BI-STATES AND 2-LEVEL SYSTEMS 455

For any pair of wave functions 11,12 € L, we introduce a density 2-matrix D = (D,i)), j, k =
1,2. Each element Dj;, is a linear functional determined on phase space functions as follows

Di(f) < (o)), | eCFE®).

The parentheses on the right-hand side denote the scalar product in L.
One can represent the density 2-matrix as a quaternion

3 .
D:Zdaaaa 00:<é (1)>7 01:<(1) (1)>7 02:<_()Z' 6), 03:<(1) _01> (21)
a=0

The functionals d,, satisfy the inequality

do(f)* = di(f)? + d2(f)* + ds(f)”

on the subspace of observables f = g x g. This is an analog of the known condition on the Stokes
parameters of quasimonochromatic radiation.

Let H be the Hamiltonian of the system in consideration.

Definition 2.1. A semiclassical bi-state is a pair of eigenstates 11, 12 corresponding to different
but ~h>°-close eigenvalues of H such that their density 2-matrix is not diagonal up to O(h*°) in the
weak sense (as a linear functional).

The last condition on the density 2-matrix means that the cross mean value ( f@bl, 1)) is not a
quantity of order O(h°°) for a generic observable f. This implies the key property (ii) of the 2-level
subsystem discussed in the Introduction.

Example 2.1. For the Schrédinger operator with a single-well (unique equilibrium point) po-
tential, there are no semiclassical bi-states.

Example 2.2. If the oscillation supports [3] of 1)1 and 12 do not intersect, 0scs (11) NOSCoo (12)
= (), then the pair 11, 15 is not a semiclassical bi-state. Thus, for the Schrodinger operator with
a double-well potential, if the eigenstates 1), and 1o are asymptotically (as h — 0) localized in
different wells, then they do not form a semiclassical bi-state.

Example 2.3. It is known that the generic distance between eigenvalues of the Schrodinger

operator H= p2 + V(§) is of order h. But in the case of a double-well potential V' some pairs of
eigenvalues, say A1, Ao, may be displaced at an exponentially small distance as A — 0 due to the
tunnelling effect. The corresponding pairs of eigenstates 1)1, 15 are bi-localized in both wells [4].

In this situation, there exist wave functions ¢y, @;r which are

— asymptotically localized in different wells of the potential,

— approximately satisfy the Schrodinger equation I:Igoj = X\jp; + O(h™) (j =1,1I),

— their linear combinations asymptotically represent the exact eigenfunctions 11, s as

Y1 = ger + V1 — g%, Yo =V1—9¢%¢0r —gprr  (modh™) (2.2)

for some 0 < g < 1, for details see, e.g., [5]. Thus, if we denote the Wigner function corresponding
to ¢; by pj;, then mod h*> we obtain in (2.1)

1

1
do = E(pl +p11), di=9gV1—9%(p1 —p11), do=0, d3z=(g9>— 5)(,01 — pr1)-

Since 08¢ (1) N0sCoo (wrr) = 0, the supports of p; and p;;r mod A* do not intersect, and therefore
the density 2-matrix D is not diagonal mod h*>°. Thus the pair 11, 15 is a semiclassical bi-state.
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Fig. 1

Proposition 2.1. Any bilocalized pair of states corresponding to tunnel-splitted eigenlevels gen-
erates a semiclassical bi-state and satisfies properties (i), (ii) for 2-level subsystem.

Now assume that the double-well potential has a specific shape as in Fig. 1 and the bilocalized
states 11, 1o correspond to energy levels A\; < A which are the lowest for the right well. Assume
that the wave function ¢ in representation (2.2) is localized in the right well, and ¢ is localized
in the left one.

Let us consider an eigenlevel A of H which lies under the bottom of the right well and denote
the eigenstate of H corresponding to A by . The probability pr(¢1 — 1) of transition from 1); to
1) is estimated as the matrix element

pr(v1 — ) ~ (G1,%) = g9(der, ) + V1 — g2(Gerr, ) + O(h™)
= V1 —-92(Gprr,9) + O(h™).

Here we used representation (2.2) and the fact that oscy, (1) Nosceo (1) = 0.

Proposition 2.2. The probability pr(i1 — ) will be small enough if the coefficient g in repre-
sentation (2.2) is chosen closer to 1, i.e., if the lowest eigenfunction 11 is localized in the right well
more than in the left one. Then the bi-state 11, 1o will possess property (iii) of 2-level subsystem.

Note that if the double-well potential V' depends on an external parameter, then by suitable
tuning of this parameter one can reach the tunnel bi-localization effect on the lowest levels Ay, Ao
for the right well and also control the coefficient g in (2.2) to obtain the desirable 2-level subsystem
with the whole bunch of properties (i)—(iii).

3. RECTANGULAR PENNING TRAP UNDER 3 : (—1) RESONANCE

As a model for above mathematical notions let us consider an asymmetric version of the usual [6,
7] planar Penning trap holding an electron. Let the system of the trap electrodes be displaced on
a plane and consists of

(1) the internal rectangle electrode with sizes 2a; x 2ap; its half-diagonal is |a| = \/a? + a3,

and the asymmetry parameter is T’ def (az/a1)? < 1;
(2) the ring-shape rectangular electrode surrounding the internal one and having outer sizes
2sca1 X 23ca9, where 3¢ > 1 is a large parameter which determines the effective spatial scale

def .
l,. = la|/s of the charge dynamics;
(3) the third external electrode which is just the rest (infinite) part of the plane.
Another key feature of the trap is a homogeneous magnetic field B directed perpendicularly to the
plane of the electrodes. It determines a scale for electric voltage: Vj def eB2|a|?/mc?, as well as the

Bohr magneton energy scale Ag = hieB/mc and the Lorentz length scale [ def e/B.

Stability of the charge dynamics along the magnetic axis is ensured by the electric field created
by the system of electrodes. We assume that on the infinite third electrode one keeps the voltage 0,
to the second ring-shaped electrode apply the voltage —scv (in Vj-units), and to the first rectangle
electrode apply the voltage (—s+d)v. Here v > 0 and 3/2 < d < 5/2 are dimensionless parameters;
the relation v = vp(d) between them and the asymmetry parameter T will be set below in (3.10)
in order to reach a resonance of the trap frequencies.
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Let us denote by U the electric potential (in Vj-units) obtained by solving the Laplace equation
AU = 0 with the described boundary conditions on the trap electrodes. The function U has a saddle
point on the trap axis directed along the magnetic field and starting from the center of electrodes.
The distance & = &r(d) of this point from the plane of electrodes is determined (in |a|-units) by

solving the equation
VI+E(1+1+T)E)1+ (1+1/T)€E%) 4 (3.1)

(1+2¢?)
The harmonic (quadratic) part Uy of the potential U near the saddle point has the signature
(—,—,+) with plus + along the trap axis. The second derivatives at the saddle point are given by

(—w?, —w3, wd), where w? = w? + w3 and

e 20dVT € (3+ 2T + 3(1 + T)¢&?)

)P me)t
o 20dVTE(2+3T+3(1+1)¢&2)

wy = .
m (14622 (T + (14 7)¢2)°

(3.2)

Note that in (3.1), (3.2) we omit the corrections of order 1/? which can be taken into account by
perturbation theory later on.

Denote by ug the value of Uy at the saddle point. Then the Hamiltonian of the trap (in Ag/h-
units) on the energy levels around »%u( can be represented as

) ) 1. 1 -
H = 5*ug+ Ho+ =U1 + Uz + O (577%) . (3.3)
” ”
Here the quantization hat-sign, as in Sect. 2, means the correspondence ¢ — ¢, p — p = —ih0,,
where ¢ are the Euclidean coordinates (in [,.-units) with the origin at the saddle point. The param-

eter h % L(11/1,.)% is the effective “Plank constant” where v = e? /hc ~ 1/137 is the fine structure

constant. The regime h < 1 of semiclassical approximation, which we assume below, takes place iff
(IL/L)? < « or w L Valal/l]. (3.4)

By U; and Us in (3.3) we denoted the components of the electric potential U which are polyno-
mials of degree 3 and 4 in spatial coordinates q. The leading term Hj in (3.3) is the ideal Penning
trap Hamiltonian:

Hy = 5(p+ A@))* + Uola), (35

the vector-potential A corresponds to the unit homogeneous magnetic field directed along the trap
axes.

The Hamiltonian Hy (3.5) can be represented in normal form with three normal frequencies w,

(—w_), wp = /1 —w? — w? which are calculated by known formulas [6].

In the symmetric case a; = ay (square shape) one has w; = ws and the normal frequencies obey
wytw_ =1, wy=+2wiw_. (3.6)

The normal form of the Hamiltonian I:IO reads
Hy=w;Sy —w_S_ +wySy+ h(wy —w_ + wp) /2, (3.7)

where S’j are the mutually commuting action operators with equidistant spectra

Spec(S;) = {njh | n; =0,1,2,...}, je{+,—,0}. (3.8)
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 24 No. 4 2017
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This simplest type of Hamiltonians do not obey any bi-state and 2-level subsystems. And moreover,
if the frequencies in (3.7) are not in resonance then the whole Hamiltonian H (3.3) also does not
admit such structures since after a unitary (averaging) transformation it is reduced with accuracy
O(3~°°) to some function in action operators.

Therefore, we have to analyze a resonance regime, which provides an opportunity to obtain (after
averaging) a nontrivial Hamiltonian with creation-annihilation structure generating bi-states and
2-level systems.

The basic non degenerate resonance wy : (—w_) = 2 : (—1), as well the next one 3 : (—1),
were investigated in [8, 9]. The creation—annihilation regime appeared due to the symmetry break-
ing. In [8] we used the perturbing inhomogeneous magnetic Ioffe field and in [9] — used a small
inclination of the magnetic field from the trap axis.

In the present work we study the resonance 3 : (—1) between normal frequencies w, and (—w_)
without any deformation of the homogeneous magnetic field but with asymmetry in the geometry
of the trap electrodes. The asymmetry, i.e., the deviation of T from 1, can be small or not small
at all; in particular, we do not relate the value of asymmetry with the perturbing small parameter
1/5¢ in Hamiltonian (3.3).

In the asymmetric case relations (3.6) do not hold, but still w§ + w? + w§ = 1. Thus assuming
a resonance regime 3 : (—1) : £ with some unknown ¢ we obtain the relations

5 32 9 9 1 1 (3.9)
w = = w = = . .
TO324 12442 104¢2 32412442 104 #2

From these two equations we determine the value of the parameter v = vp(d) in (3.2) and the value
of the number ¢ = t7(d) from the resonance proportion. Of course, in the symmetric case T' = 1

the value of ¢ can be derived from (3.6), which gives t = ¢;(d) = v/6 for any d. The explicit formula
for v up to 1/3? reads

vp(d) = 3VTr(1 4+ €2)(1+ (1 +T)ENT + (1 + T)EH) (1 + 26%)/[26(10y + 3(1 + T)B)],  (3.10)

where

Y=+ 1A +DENT + (A +T))\/(3+2T +3(1 +T)€2)(2 4 3T + 3(1 + T)£2),
B=2+T+2T?* + (7T+ 12T + 7T + 11(1 + T)%¢* + 6(1 + T)2¢S,

and ¢ = &7(d) is the solution of (3.1).

Proposition 3.1. Under the choice v = vr(d) + O(1/5?), where vr(d) is given by (3.10),
the Hamiltonian Hgy of the ideal Penning trap possesses the 3 : (—1) resonance between modified
cyclotron frequency wy and magnetron frequency w— for any d € [%, g] and T € [%, 1].

Due to the resonance between w, and w_ in (3.7) the Hamiltonian Hy has a noncommutative
algebra of integrals of motion, i.e., operators commuting with Hy (see in [10]). This algebra is

generated by three actions 5’+, g_, Sy and the pair of creation—annihilation operators B, B*.
Commutation relations between these generators are nonlinear (non-Lie); for details, see [8]:

A S PSS 1. PN 2 . 2 R 2h3
[B*,B] = h<S+SE + 552+ h<S+S_ n 353) ¥ %(GS+ F118) + %)

(3.11)
[Sy,B]=hB, [S_,B]=3hB.
This algebra has Casimir elements
A A A N . N 1~ ~ 4 N
S(), C = 3S+ - S_, and K = BB* — §S+S_(S_ — h)(S_ - Zh) (312)
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In the discussed model, we deal with irreducible representations of this algebra, where the operator
K =0.

By using the operator averaging procedure [8], one can unitarily transform the Hamiltonian (3.3)
to the commutative form

) N 1
H ~ sug + Ho + — Hy + 0(;), (3.13)

where the correction Hy commutes with Hy and thus can be represented as a polynomial in gener-
ators of algebra (3.11). The formula for H, reads

. 1 o X
H2:7](B+B )+§Zk77ijjSk+Z77ij+<. (3.14)
J

The explicit expressions for the coefficients in (3.14) are cumbersome; we write down their
asymptotics in the Appendix near the quadratic-shape breaking value, i.e., assuming that 7' = 1—¢,
where ¢ < 1.

For simplicity, we below consider the energy levels of H closest to s2uqg by choosing only those
representations of algebra (3.11) where the values of Casimir elements Sy and C are of order h,i.e.,
choose the quantum numbers ny and n. = 3n4 —n_ in (3.8) to be of order 1.

Proposition 3.2. In 3 : (—1) resonance regime, by a unitary transform the trap Hamilton-

ian can be written in the form (3.13), where [ﬁo,ﬁg] = 0. On energy levels closest to »*uq the
anharmonic part of the Hamiltonian has the following form

~ ~ ~

Hy=p(E+c), E=¢(B+B*)+aS2+bS,, (3.15)

where B are the generators of the algebra (3.11). There are two free parameters in this representa-
tion: the parameter d determining the difference of voltages on trap electrodes and a parameter k
in possible perturbation of the magnetic field value B(1 + k/3?). The dependence of coefficients u,
a, b, and c in (3.15) from d is explicitly shown in the Appendiz. The second perturbing parameter
k, when it is taken to be nonzero, will be presented only in the coefficients b and ¢ (in an additional
summands proportional to k with numerical multipliers).

4. DIFFERENCE OPERATOR REPRESENTATION
AND SEMICLASSICAL QUANTIZATION RULE

Thus the model of the planar resonance Penning trap is reduced to the top-like Hamilton-
ian (3.15) over the non-Lie algebra (3.11) with known numerical coefficients depending on two free
parameters.

We shall realize the irreducible representations of the algebra (3.11) by us1ng the spectral rep-
resentation of the operator S+ and the difference operator representation of B.

Proposition 4.1. If one introduces the coordinate operator ¢ = S’+ and the momentum p =

—ihd, then the irreducible representation of the algebra (3.11) with C = hn, and K = 0 takes the
form

Sy=4q,  S_=3G-hn,

(4.1)

In view of (3.8) the coordinate § takes the discrete values in X = {qo,qo + h,qo + 2h, ...}, where

0, ne < 0;
(k+1)h, n.,=3k+1,0rn.=3k+2.
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This operator representation is determined in the space £2(X) of square-summable sequences.

Proof. The commutation relations (3.11) implies that

~

Bj=(§—h)B.
Therefore the creation operator B has the form
B = (g, h)e™".

Substituting the operator B into the Casimir operator K = 0 (see (3.12)), we obtain (¢, k). The

~

restriction Spec(S;) = {0, h,2h, ... } gives the initial value gy of the discrete coordinate spectrum.

The spectral problem for the operator E takes the form of the second order h-difference equation
€ €
5B+ h.h)y(g+h) + 5B(a, hy(a — h) + (ag” + ba)y(q) = Ey(a), (4.3)

where y(q) € [?(X), £ is a spectral parameter.

We consider the spectral problem (4.3) in semiclassical approximation h < 1. General method of
discrete WKB approximation is well developed (see, for instance, [11-13]), especially in applications
to concrete quantum Hamiltonians [14-16]. The corresponding classical Hamiltonian mechanical
systems are introduced by the Weyl symmetrized symbols (as in [13]). In our model the classical

Hamiltonian E(g, p), that is the symbol of E, takes the form

E(q,p) = €B(q + h/2,h) cos(p) + ag® + by. (4.4)

The Hamiltonian E(q,p) is a 2m-periodic function of the momentum p, and the classical phase
space is a half-cylinder with ¢ > go — h/2.

The quantum energy levels which approximate the discrete spectrum of the Hamiltonian E up
to O(h?) can be determined by the Planck-Bohr-Sommerfeld quantization rule [13, 14, 17]:

% 7{ gdp = h(n + o /2), (4.5)

where n is an integer, v is the periodic classical trajectory corresponding to an energy &£, the index
o = 0 if v wraps around the phase space cylinder, or 0 = 1 when v contracts to a point.

The analysis of the phase portrait of the classical mechanical system with Hamiltonian E(q, p)
is based on the analysis of the turning points dependence on the energy £. We define the turning
point as a point on the classical trajectory, where the velocity ¢ = E, is equal to zero. According to
the form of the Hamiltonian (4.4), the turning points correspond to either points with momentum
p = 0 or p = . Therefore, coordinates of the turning points obey the equation

+e6(q + h/2,h) + ag® + bg = &,
where the signs “+” and “—” correspond to turning points with p = 0 and p = 7 respectively. Let
Vi(q) = +eB(q+ h/2, h) + aq? + bq be the potential curves, i.e. the curves of the turning points on
(¢, E) plane.

Let us analyze how classical trajectories depend on parameters of the Hamiltonian. Assume that
the parameter d stays in a neighborhood of the value d = 2. Considering the asymptotic of Vi (q)
for large ¢ we see that every classical trajectory is bounded if € is sufficiently small (say ¢ < 0.5).
Under this condition the potential curves Vi(q) are close to two parabolas (see Fig. 2). We see
that if € > 0 (quadratic shape breaking) then there appears a separatrix and unstable equilibrium
corresponding to the maximum of V_(q), the stable equilibrium corresponding to the maximum of
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\ E

Fig. 2. Figure shows the turning points curves V4 (q) in double-well regime. Here for simplicity
we set h = 0, so the local energy minimum ¢* = gy = 0. The classically allowed region lies
between curves V4 (q). There are two classically allowed regions corresponding to an energy &,
these regions are separated by the “barrier” V_(q).

Vi(q) (the global maximum of the Hamiltonian F), and the local energy minimum ¢ = ¢* with
the energy £* = V_(¢*) = O(h). Thus for some small energies £ > £*, there appear two classical
trajectories separated by classical barrier. We call it a “double-well’ regime.

5. TUNNEL BILOCALIZATION AND INSTANTON

Suppose the parameters of the system are chosen so that the “double-well” regime is realized.
Then the energy £*, that corresponds to the local energy minimum ¢ = ¢*, also corresponds to
the periodic trajectory 7 in region of lager values of coordinate q. We consider the quantum state
of the lowest energy level & > £* corresponding to the local minimum. This energy minimum is
separated from the periodic trajectory by classical barrier.

The quantum tunnelling appears in discrete system (4.3) on very similar way as in the continuous
Schrodinger equation (see, e.g., [15, 16, 18]), and it leads to the following effect. When we slightly
change the parameter d of the system the quantum energy level £ has many avoided crossings with
energy levels of the bigger “well” and its state can be significantly localized near both the point ¢*
and the periodic trajectory +.

Let r and ¢j; be the normalized approximate stationary states of E that are localized near the
point ¢ = ¢* and the periodic trajectory 7y respectively. They can be rigorously defined as solutions
of the difference equation (4.3) with an additional Dirichlet boundary condition on a point under
the classical barrier.

Under variation of the parameter d in the avoided crossing effect two energy levels £ and &;
of the operator E approach each other to a minimum distance A,,;, and then repel, while the
corresponding precise stationary states 1 ; form a linear combinations of the localized states ¢
and PII-

The following general relations holds [5, 19], if the stationary states has the form (2.2)

Yo = gor + V1 —g%err, Y1 =+v1—9¢%¢0r —gorr  (modh™) (5.1)

where the parameter g > 0 is characterize how close we are to the avoided crossing point. Then the
energy splitting is

1+ 0O(h)
& — & = ———= Anins 5.2
YN 2
The minimal splitting A,,;,, corresponds to g = 1/v/2, it is exponentially small as h — 0:
S

where S is called a tunnelling action.
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It is known that the description of tunnelling dynamics of a quantum particle in the semiclassical
approximation is closely related to the complexification of classical Hamiltonian equations (see the
survey in [20—-22]).

Let us consider the complexification of the Hamiltonian FE(q,p) and the corresponding trajecto-
ries of motion taking pure imaginary time ¢ = —i7. We call the periodic complex trajectory ¥ to
be an instanton if it corresponds to the energy &y and cross two real classical trajectories (see [16,
23]).

Theorem 5.1. Suppose the parameter d vary in the fixed neighborhood of d = 2, that corresponds
to the double-well regime. Then, while we change the parameter d, there appears an avoided crossing
of the lowest energy level &y corresponding to energy minimum q = q* and the levels corresponding

to trajectories y. Under such a parameter tuning the two stationary states ofE form a semiclassical
bi-state and the corresponding 2-level system.

The energy splitting have a form (5.2), (5.3), where corresponding tunnelling action S is the
action on the instanton.:

1
S:—_/dp/\dq>0, (5.4)
2t Jg

where the surface X spanned by the instanton v, t.e. Y = o%.

The derivation of the formula (5.4) is similar to that presented in [16]. Here we only mention
that on the instanton trajectory 7 the momentum have a form p = 7+ ¢p and coordinate ¢ remains
to be real and changing between two turning points.

To the trap configuration one may introduce an additional parameter by varying the strength of
magnetic field. Then the coefficient b of the Hamiltonian (4.4) will depend on this parameter (see
in Proposition 4). Thus in such a Penning trap via fine tuning of electric and magnetic fields we
can obtain a continuous family of bi-state and 2-level systems.

APPENDIX

Let us denote by ¢ the real solution of the equation (1 + 28)v/1+ § = d. Note that § = &;(d)?
in the symmetric case T'=1 (¢ = 0). As ¢ < 1 the coefficients in (3.14) are given by the following
formulas (all relations bellow are understood up to O(e?)):

3(20129 — 144284% — 976d* + 4(12893 — 21363d? + 11805d*)d — 4(—7801 + 13604d?)4?)
1282 ( — 4 — 23d? + 27d* — 6(2 + 3d?)0 — 862)

n= &

B _ 3(425 — 843d® + 468d* — 2(—542 + 1317d)6 — 4(—173 + 4984d%)6?)
T+ === 16d2(—6 + 6d2 + (—14 + 9d2)0 — 802) !

1154 — 2289d? + 1260d* — 2(—1472 + 3567d?)§ — 40(—47 + 135d?)4?
24d? (6(—1 + d?) + (=14 + 9d?)6 — 862) ’

Too = —

V6 V6

N+0 = No+ = 1—0 = No— = —?7]+— = —?77—+

_ V6(667 — 1323d? + 756d* — 10(—170 + 417d?)6 — 4(—271 + 786d)6?)
8d?(6(—1 4+ d?) + (=14 + 9d?)d — 852) ’
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15( — 13 + 18d% — 266 — 164?)
N+ =1- = 2
16(5 + 64)

. [((5277 — 1334V/6 + 9(—1163 + 294V/6)d? — 108(—55 + 14v/6)d*

+2(2(3363 — 850v/6) + 3(—5487 + 1390v/6)d?)d
+4(2145 — 542V/6 + 6(—1035 + 262V6)d?)0%)n ) | /

(32d2 (6(—1+d?) + (—14 + 9d*)5 — 852)),

~ 5V6( — 13+ 18d% — 260 — 162)
o= 16(5 + 64)2

+ [(2(—577 +2001v/6) — 21(—109 + 378V6)d? 4 252(—5 + 18V/6)d*
+2(4(—368 + 1275V/6) — 3(—1189 + 4170v/6)d?) s
— 8(235 — 813v/6 + 9(~75 + 262v/6)d%)8 ) | /

(48d2 (6(—1 + d?) + (—14 + 9d2)5 — 852)),

5(6 — v6)(—13 + 18d? — 265 — 16562)h
32(5 + 66)2

+ [( — 2(19498 — 6003v/6) + 3(25783 — 7938+/6)d> — 36(1223 — 378v/6)d*

(¢ =

+10(20(—497 + 153V/6) + 3(8117 — 2502V/6)d?)d
— 8(7924 - 2439v/6 — 9(2551 — 786V6)d?) 6 ) n?| /

(288d2 (6(—1 + d2) + (—14 + 942)5 — 852)>.
The coefficients in formula (3.15) are determined modO(g?) by

1
p=-, a= —(577+++377+—),
€ I

1 4
b= ;<3h(n_ —3ny)n4y + 404 + h(no —3ny — g\/gn0)77+—)a

_ L

c 6

<3h2(n_ —3n4)%n44 — 2h(n_ — 3ny) (V6 hngne— — 3n4) + 3hng(2 + hng)no + 6§>.
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