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Abstract—Using geometrical and algebraic ideas, we study tunnel eigenvalue asymptotics and
tunnel bilocalization of eigenstates for certain class of operators (quantum Hamiltonians) includ-
ing the case of Penning traps, well known in physical literature. For general hyperbolic traps
with geometric asymmetry, we study resonance regimes which produce hyperbolic type algebras
of integrals of motion. Such algebras have polynomial (non-Lie) commutation relations with
creation-annihilation structure. Over this algebra, the trap asymmetry (higher-order anharmonic
terms near the equilibrium) determines a pendulum-like Hamiltonian in action-angle coordinates.
The symmetry breaking term generates a tunneling pseudoparticle (closed instanton). We study the
instanton action and the corresponding spectral splitting.
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1. INTRODUCTION

In order to trap in a local place of physical 3D-space and hold a single charge particle, one can
use a homogeneous magnetic field (which rotates the charge in the perpendicular plane) and an
electric potential (which provides stability along the magnetic axis). Since the potential obeys the
Laplace equation, its quadratic part near the equilibrium point must be of saddle type, not elliptic.
Thus, the normal form of the trap Hamiltonian is a linear combination of oscillators (action operators)
with different signs of coefficients. Among examples of such hyperbolic traps are the well-known
Penning traps [1]–[4], which become very interesting controllable quantum devices in nano-scale. The
eigenvalue problem for the corresponding quantum Hamiltonian is especially profound under frequency
resonance.

In the resonance regime, such a trap Hamiltonian generates a noncommutative and nonlinear
(non-Lie) algebra of hyperbolic type, with infinite dimensional irreducible representations. The cor-
responding Poisson algebra has noncompact symplectic leaves. The dynamics on these leaves comes
from the anharmonic part of the trap potential.

Often this anharmonic part (whose existence is unavoidable for technological reasons) is regarded
as an injury and nuisance characteristic of the device. But, at the same time, this part can be used
for creation and control of exclusive states and quasiparticles in irreducible representations of the
algebra of integrals of motion of the trapped charge. For instance, one can expect to see multilocalized
eigenstates created by tunneling pseudoparticles (instantons). These quantum phenomena in the trap
are accompanied by very interesting classical dynamics, symplectic geometry, and topology.

Let us stress that the principal role is played by resonance of normal frequencies of the harmonic
part (of the “ideal” Penning trap). Without resonance, the anharmonic part does not generate any
phenomena of this kind.
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In this note, our guiding example of hyperbolic trapping system is a planar rectangular Penning
trap with 3 : (−1) resonance between the modified cyclotron and the magnetron frequencies [5]. The
trap geometric asymmetry, i.e., the deviation of the rectangle electrodes from square shape, generates
instantons and creates a 2-level quantum subsystem after suitable tuning electric voltage on the trap
electrodes. We analyze how to generalize this particular example to higher resonances in a wide class
of hyperbolic traps. The breaking symmetry source generating instantons in general case is a higher
anharmonism (of the trap) whose order corresponds to the order of resonance.

In Sec. 2, we consider a general type polynomial Hamiltonian (2.2) over the Heisenberg algebra (2.1).
The harmonic part (2.3) is assumed to be at resonance (2.7). Then the Hamiltonian is reduced to the
form (2.14) over the algebra (2.11). In Sec. 3, the original problem is replaced by a spectral problem
for the Hamiltonian (3.1). In Sec. 4, we introduce an irreducible representation of the algebra (2.11) by
the “action-angle” operators (4.1) and reduce the spectral problem to the difference equation (4.2). In
Sec. 5 (Theorem 1 and Corollary 1), we state the basic results about tunneling effects for this difference
equation as well as for the original polynomial Hamiltonian (2.2). In Sec. 5, Theorem 2, we deal with
the non-polynomial case under the specific resonance 3 : (−1) for energy levels in a “mezzo-classical”
zone.

2. HYPERBOLIC TRAPS

In a Hermitian representation of the Heisenberg algebra with four generators ẑ = (ẑ+, ẑ−) and two
nontrivial commutation relations

[ẑα, ẑ
∗
α] = ~ (α = +,−), (2.1)

let us consider the self-adjoint operator H = H(ẑ∗|ẑ) whose Wick symbol H is given by a sum of
homogeneous functions in (z̄, z)-coordinates

H =
1

~
(H0 +H1 +H2 + · · · +HN ), degHj = j + 2, N ≥ 2. (2.2)

Under the assumption that normal frequencies of the harmonic part H0 are in resonance, our
goal is to study the spectral problem for the operator H in the semiclassical approximation ~ → 0, in
particular, to investigate the opportunity to observe the effect of tunneling splitting of its eigenvalues
and multilocalization of corresponding eigenstates. We intend to find conditions for the existence of its
semiclassical bi-states in the sense of [5] and investigate the corresponding instanton geometry.

We assume that the harmonic summand H0 is just the hyperbolic oscillator

H0(z̄|z) = ω+z̄+z+ − ω−z̄−z− (2.3)

with two frequencies ω± > 0.

The quantum operators ẑ∗±ẑ± have the spectra {~n± | n± = 0, 1, 2, . . . } and thus the eigenvalues of

the quantized oscillator (2.3) have the form ±~ω(n), where ω(n)
def
= |ω+n+ − ω−n−|. Suppose that

1 ≪ ω(n) ≪ ~
−1. (2.4)

This inequality means that we deal with the semiclassical situation ~ ≪ 1 in (2.1) and consider the
intermediate eigenstates of the oscillator, i.e., not the lowest ones (closest to zero) and not too excited.

Let us introduce the parameter ε
def
= ~ω(n), then

~ ≪ ε≪ 1. (2.4a)

In the normalized generators â±
def
= ẑ±/

√
ε, we obtain the Hamiltonian

H =
1

h

∑

j≥0

εj/2Hj(â
∗|â) (2.5)

over the algebra with canonical relations

[â±, â
∗
±] = h, (2.6)

MATHEMATICAL NOTES Vol. 102 No. 6 2017



778 KARASEV et al.

where h
def
= ~/ε is the effective semiclassical parameter, since h≪ 1, due to (2.4a).

The Hamiltonian (2.5) has the leading part determined by the hyperbolic oscillator Ĥ0 = H0(â
∗|â) as

well as the perturbing part
√
εĤ1 + εĤ2 + . . . .

If the frequencies ω+ and ω− in (2.3) are not at resonance, then the averaging procedure reduces the

perturbing part just to a function in two mutually commuting “actions” Ŝ±
def
= â∗±â±. In such a case, the

Hamiltonian does not admit any instantons (near the zero energy level).

Now let us assume that the frequencies in (2.3) are in the resonance

ω+ : ω− = k+ : k− (k± ∈ N). (2.7)

In this case, up to an arbitrary accuracy εN , the averaging reduces (2.5) to a commutative form in

which the perturbing part commutes with the leading term Ĥ0.

The algebra of operators commuting with Ĥ0 = ω+Ŝ+ − ω−Ŝ− is generated by the action operators

Ŝ± and also by the operator B̂ = (â∗+)k−(â∗−)k+ and its conjugation B̂∗. The commutation relations
between them are the following (see in [6]–[8])

[Ŝ±, B̂] = hk∓B̂, [B̂∗, B̂] = h rh(Ŝ+, Ŝ−). (2.8)

Here the polynomial rh is determined by

rh(s1, s2)
def
=

1

h
(gh(s1 + k−h, s2 + k+h) − gh(s1, s2)),

where gh is given by

gh(s1, s2)
def
=

k−−1
∏

j1=0

(s1 − j1h) ·
k+−1
∏

j2=0

(s2 − j2h). (2.9)

This algebra has the Casimir elements

K̂ = B̂B̂∗ − gh(Ŝ+, Ŝ−), Ĉ = k+Ŝ+ − k−Ŝ−. (2.10)

In our representation, the first element equals zero: K̂ = 0.

Only in the case k+ = k− = 1, i.e., in the case of 1 : (−1) resonance in the oscillator (2.3), the
algebra (2.8) is of Lie type. For all other resonances, the polynomial rh in (2.8) is of degree ≥ 2 and,
therefore, (2.8) is not a Lie algebra. This type of polynomial algebra has a well-developed representation
theory [9], [10].

Let us restrict ourselves to the eigensubspace of the Casimir element Ĉ = k−

ω−

Ĥ0 with the eigenvalue

k−/ω−, i.e., to the subspace of Ĥ0 corresponding to the eigenvalue 1. Denote1 Â = Ŝ−/k+. Then
algebra (2.8) is reduced to

[Â, B̂] = hB̂, [B̂∗, B̂] = hρh(Â) (2.11)

with the Casimir element (2.10)

K̂ = B̂B̂∗ − ϕh(Â). (2.12)

Here ρh(a) = (ϕh(a+ h) − ϕh(a))/h, and the polynomial ϕh(a) = gh(k− a+ 1/ω+, k+ a) is obtained
from (2.9).

In the irreducible representation of the algebra (2.11), the spectrum of Â is given by an h-step
arithmetic sequence am, am + h, am + 2h, . . ., whose base am is chosen from the finite set

{

hm

k+

∣

∣

∣
m = 0, 1, . . . , k+ − 1

}

.

1On the eigensubspace of Ĥ0, corresponding to the eigenvalue −1, one needs to choose Â = Ŝ+/k− and redefine the
function ϕh in (2.12).
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Thus, via shifting the operator Â and the argument of the functionϕh by the constant am, we can assume

without loss of generality that the spectrum of Â is given by {0, h, 2h, . . .}.

Now let us return to the Hamiltonian (2.5). By applying the operator averaging to its anharmonic
terms, we project them into the irreducible representation of the algebra (2.11). For a detailed description
of the operator averaging procedure in resonance cases, see [5]–[8], [11]. In the case of resonance
2 : (−1), the averaging applied to (2.5) yields

H ∼ 1

h
(Ĥ0 +

√
ε(µB̂ + µ̄B̂∗) +O(ε)) (2.13)

with a number µ determined by the coefficients of the third-degree polynomial H1 in (z̄, z)-coordinates.

Since the spectrum of µB̂ + µ̄B̂∗ in (2.13) is continuous and unbounded (if µ 6= 0), this resonance

produces a local instability of the dynamics. This situation is out of the scope of our present analysis.2

In the case of resonance 3 : (−1), the averaging implies

H ∼ 1

h

(

Ĥ0 + ε

(

µ

2
B̂ +

µ̄

2
B̂∗ + αÂ2 + βÂ+ γ

)

+O(ε2)

)

(2.14)

with some numbers µ, α, β and γ determined by the coefficients of the third- and fourth-degree
polynomials H1 and H2 in (z̄, z)-coordinates [5].

For higher-order resonances (2.7) with k+ + k− ≥ 5, the averaging provides the same-type effective

Hamiltonian (2.14) with coefficient µ of order ε(k++k−−4)/2 = O(
√
ε) determined by higher-order

anharmonic terms in (2.2). Below we shall analyze an operator of this type.

3. SYMPLECTIC LEAVES AND TRAJECTORIES

Without loss of generality, we consider the Hamiltonian

Ê =
µ

2
(B̂ + B̂∗) + αÂ2 + βÂ, µ > 0, (3.1)

with known numerical coefficients over the polynomial algebra (2.11) in the representation where the

Casimir operator (2.12) equals zero: K̂ = 0.

In the classical limit as h→ 0, instead of the quantum Hamiltonian (3.1), we deal with the
corresponding mechanical system with Hamiltonian E = µY1 + αA2 + βA over the Poisson algebra

{Y2, Y1} =
1

2
ρ0(A), {A,Y1} = Y2, {A,Y2} = −Y1, (3.2)

where B = Y1 − iY2. The symplectic leaf K = 0 is the algebraic surface of revolution:

Y 2
1 + Y 2

2 = ϕ0(A). (3.3)

Classical trajectories can be obtained as intersections of the symplectic leaf with the parabolic
cylinder of the energy surface {E = E}, i.e.,

µY1 + αA2 + βA = E .
These intersections can have very different structures depending on the parameters α, β, and µ of the
Hamiltonian and depending on the function ρ0(A), i.e., on the type of resonance (2.7). One can see that,
for every k+, k−, there are at most two periodic trajectories corresponding to one energy. When there
are two periodic trajectories for some energies E , we call it a “double-well” regime (see Fig. 1), based
on the similarities of this case to the well-known problem of the Schrödinger operator p̂2 + V (x) with a
double-well potential V (x) (see [12], [13]).

2Nevertheless, the resonance 2 : (−1) in the Penning trap, where µ = 0, can be analyzed by taking into account the
O(ε)-term in (2.13) [11].
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Statement 1. Suppose that the constants α and β have opposite signs αβ < 0. Then, there exists
a µ0 > 0 such that, for any µ < µ0, the double-well regime is realized, i.e., there are two periodic
classical trajectories corresponding to an energy in some fixed interval.

If k+ + k− = 4, then every trajectory is bounded for sufficiently small µ. Otherwise, there is
an unbounded classical trajectory for every energy if k+ + k− > 4. In the double-well regime this
unbounded trajectory is separated from the two periodic trajectories by relatively large “barrier”;
namely, the width of the barrier in the A-coordinate tends to infinity as µ→ 0.

Proof. The proof is elementary, it based on the analysis of the symplectic leaf surface intersections with
the surfaces of constant energy E = E (see Fig. 1). Let us mention that the polynomial ϕ0 takes the
form (see (2.12) and (2.9))

ϕ0(a) = (k−a+ 1/ω+)k−(k+a)
k+ .

In the case αβ < 0, the parabola of the energy surfaceE = E has its apex in the regionA > 0. In the limit
as µ→ 0, we have two classical trajectories with the constantA, which is a root of the quadratic equation
αA2 + βA = E . Thus, there exists a µ0 such that, for µ < µ0, the double-well regime is realized.

A more detailed consideration of the symplectic leaf intersections with the energy surface yields the
proof of the remaining part of the statement.

In Statement 1, the upper bound on µ can be determined as follows. Let us consider the classical
trajectories corresponding to the energy E = 0; this energy surface crosses the apex of the symplectic
leaf at the origin. We can be sure that the double-well regime is realized if the planes A = −β/2α and
A = −2β/α have empty intersections with the classical trajectories for E = 0. Substituting these values
of A into the Hamiltonian and the symplectic leaf (3.3), we obtain the following sufficient conditions for
the double-well regime:

µ <
β2

4|α|

(

ϕ0

(

− β

2α

))−1/2

and µ <
2β2

|α|

(

ϕ0

(

−2β

α

))−1/2

. (3.4)

Let us mention that, in the case k+ + k− ≥ 5, the unbounded trajectory corresponds to large

coordinates A of order µ−2/(k++k−−4), and Y1,2 of order µ−1−4/(k++k−−4).

Two distinct implementations of the tunneling effects can appear in our model: first, the tunneling
of the state between two periodic bounded trajectories and, second, the tunneling decay of metastable
states to infinity.

Remark 1. Actually, conditions (3.4) guarantee the existence of a two-loop separatrix in the whole phase
portrait of the Hamiltonian E on the symplectic leaf (3.3). Closed energy curves inside loops represent
the double-well regime (see Fig. 1). The hyperbolic equilibrium point on the separatrix represents the
top of the barrier between wells.
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Let us first consider the tunneling between two periodic trajectories in the double-well regime and
omit effects that relate to the unboundedness of the system. This can be done by restricting the

operator Ê to a smaller domain of quantum states localized only in the region ofA ∈ [0, A0], with a large,
but fixed, A0 > 0. In the classical framework, it can be realized as an infinite barrier at A = A0. Let us

denote the corresponding operator by Ê0. Thus, the spectrum of Ê0 is discrete and the corresponding
classical system is bounded.

There are two periodic trajectories γ1,2 for the energy in the double-well regime (see Fig. 1). The
semiclassical quantization rule of classical actions on γ1 and γ2 gives two asymptotic series in the

discrete spectrum of Ê0. When we change the parameter of the Hamiltonian, the energy levels in these
two distinct series change independently, determined by the corresponding classical actions; they form
a net-like picture crossing each other (see, for instance, [14], [15]).

The following questions arise:

• Do discrete energy levels of the operator Ê0 have avoided crossings if we continuously change the

parameters of the system, or they can cross each other? Is every eigenvalue of Ê0 nondegenerate?

• Can the tunneling energy splitting that appears in the avoided-crossing effect be expressed in
terms of complex instantons?

• How does the tunneling rate in the double-well regime between two periodic trajectories relate to
the tunneling decay rate of the quantum state in presence of the unbounded trajectories?

All these questions can easily be answered in the framework of the WKB approximation for the
Schrödinger operator with the “normal” Hamiltonian p2 + V (x). Otherwise, for other one-dimensional
systems, the answers to these questions can be very different. For instance, in the models describing the
large spin of magnetic molecules (see [16], [17]), there appears a degenerate pair of states, and tunneling
can be quenched [18], [19].

The success of the tunneling description for the normal one-dimension Schrödinger operator is
mostly based on the precise asymptotic estimates of the wave functions in the under-barrier regions,
which give the tunneling rate, and on the connection rules, which allow one to construct global
asymptotics of wave functions. The absence of such an under–barrier asymptotic of wave functions for
arbitrary (pseudodifferential) Hamiltonians makes the study of tunneling in different models an exciting
challenge, which has recently attracted much attention (see a survey in [20], [21]).

Let us especially note here the tunneling in the case of the Schrödinger operator with double-well
potential and homogeneous magnetic field [22], momentum tunneling for the pendulum Hamilto-
nian [23]–[25], and tunneling effects for spin Hamiltonians [18], [19], [26]. In all these cases, the
calculation was done by applying specially matched unitary transformations, which introduce an
effective “tunneling” coordinate. We shall use a similar method below.

4. ACTION-ANGLE DISCRETE REPRESENTATION AND TUNNEL ASYMPTOTICS

In our model, the tunneling effect description, i.e., rigorous answers to all of the above stated

questions, can be found by transition to the discrete spectral representation of the action operator Â.
The details have been presented in [5], [14].

Statement 2. If one introduces the action coordinate q = A and the dual coordinate p so that

p̂ = −ih∂q , then the irreducible representation of the algebra (2.11) with K̂ = 0 can be realized by

Â = q̂, B̂ = bh(q̂)e−ip̂. (4.1)

This operator representation is determined in the space ℓ2(X) of square-summable sequences

over the discrete setX = {0, h, 2h, . . .} where the coordinate q takes values. Here bh(q)
def
=

√

ϕh(q),
bh(q) > 0 for q ∈ X, q 6= 0, and bh(0) = 0.
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The spectral problem for the operator Ê takes the form of the following second-order h-difference
equation

µ

2
bh(q + h) y(q + h) +

µ

2
bh(q) y(q − h) + (αq2 + βq) y(q) = E y(q), (4.2)

where y(q) ∈ ℓ2(X) and E is a spectral parameter. The operator Ê0 corresponds to Eq. (4.2) with the
additional Dirichlet boundary condition y(q) = 0, q > A0.

The coordinates (q, p) can be understood as local Darboux coordinates on the symplectic leaf (3.3) of
the Poisson algebra (3.2)

A = q, Y1 = b0(q) cos(p), Y2 = b0(q) sin(p).

Thus, the coordinate p is just the “angle” dual to the “action” coordinate A. In these coordinates, the

Hamiltonian Ê and the difference equation (4.2) can be recognized as a generalized pendulum system.

The properties of second-order difference equations are very similar to those of second-order differ-
ential equations [27], [28].

Statement 3. The spectrum of Ê0 is discrete and nondegenerate. If the parameters of the

Hamiltonian in the double-well regime are continuously changed, the different eigenvalues of Ê0

do not cross each other, but have avoided-crossings.

Near the avoided-crossing values of parameters, the corresponding eigenstates of Ê0 are
bilocalized on the symplectic leaf (3.3) in both phase space wells surrounded by periodic classical
trajectories (see Statement 1). These states form a semiclassical bi-state in the sense of [5].

In order to formulate some results on under-barrier (tunneling) semiclassical asymptotics of differ-
ence equation solutions, we need to fix the following notation. Let us introduce the classical Hamiltonian
E in (q, p) coordinates by the Weyl symmetrized symbol (see [29])

Eh(q, p) = µbh(q + h/2) cos(p) + αq2 + βq. (4.3)

The Hamiltonian Eh(q, p) is a 2π-periodic function of the momentum p, and the classical phase space
is a half-cylinder with q > −h/2., i.e., we identify all phase space points with momenta that differ by 2π.
The equation Eh(q, p) = E defines two smooth branches of p = ±ph(q, E) (mod 2π). The branch points
of p are the turning points of the corresponding classical system (points where the classical velocity
v(q, E) = ∂pE0(q, p)|p=p0(q,E) vanishes), which satisfy the equation

±µbh(q + h/2) + αq2 + βq = E ,
where the signs “+” and “−” correspond to the turning points with p = 0 and p = π, respectively.

Lemma 1. On any interval [q1, q2] without turning points, Eq. (4.2) has two linearly independent
solutions of the form

y±(q, h) =
1

√

v(q, E)
exp

(

± i

h

ˆ q

q1

ph(q, E) dq

)

[1 +O(h)]. (4.4)

The asymptotic estimate is uniform for q ∈ [q1, q2] ∩X.

The rigorous proof of the discrete WKB approximation (4.4) can be done by methods from [30]; see
details in [29] and also see [26], [31]–[33] on the theory and application of the discrete WKB.

One can see that the asymptotics (4.4) are identical in form to those of the continuous WKB
approximation to the Schrödinger equation. The significant difference appears in the dependence of
momentum p on the coordinate q. For instance, in the classically forbidden region, Rep is constant;
namely, Rep = 0 or Rep = π depending on the types of corresponding turning points. Thus, the
normalized wave functions exponentially decrease under the barrier as h→ 0, and (4.4) gives the
corresponding tunneling rate.
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5. SPECTRAL SPLITTING AND PERIODIC INSTANTONS

Suppose the parameters of the system are chosen in such a way that the “double-well” regime is
realized (Statement 1). Then, for a given energy E , there are two periodic classical trajectories γ1,2 and
also one unbounded trajectory γ∞ in the case k+ + k− ≥ 5.

Let ψ1 and ψ2 be the normalized approximate stationary states of Ê that are localized near the
periodic trajectory γ1 and γ2, respectively. They can be rigorously defined as solutions of the difference
equation (4.2) with additional Dirichlet boundary conditions on points under the classical barriers.

Under variation of the parameters in the avoided-crossing effect two energy levels of the operator

Ê0 approach each other to a minimum distance ∆ and then repel, while the corresponding precise
stationary states form a linear combinations of the localized states ψ1 and ψ2. The minimal splitting
∆ is exponentially small as h→ 0:

∆ = exp

(

−S
h

(1 + o(1))

)

. (5.1)

It is well known that the description of the tunneling dynamics of a quantum particle in the
semiclassical approximation is closely related to the complexification of classical Hamiltonian equa-
tions [23], [34], [35].

Let us consider the complexification of the Poisson algebra (2.11), symplectic leaf (3.3), Hamiltonian
E and the corresponding trajectories of motion taking pure imaginary time t = −iτ . We say that the
periodic complex trajectory γ̃ is an instanton if it corresponds to the energy E and crosses two real
classical trajectories (see [14], [36]).

In the case k+ + k− ≥ 5, there are two instantons γ̃1,2 for a given energy in the double-well regime.
The instanton γ̃1 connects two periodic trajectories γ1 and γ2, it corresponds to the avoided-crossing

effect in the spectrum of Ê0. The other instanton γ̃2 relates to the classical barrier between γ2 and γ∞,

and it corresponds to the tunneling decay of metastable states of Ê.

Theorem 1. The avoided-crossing energy splitting for the pendulum Hamiltonian Ê0 has the
form (5.1), where the corresponding tunneling action S is the action on the instanton γ̃1:

S =
1

2i

ˆ

Σ̃1

dp ∧ dq > 0. (5.2)

Here the surface Σ̃1 is spanned by the instanton γ̃1, i.e., ∂Σ̃1 = γ̃1.

The tunneling decay rate of metastable states of the operator Ê is exponentially small with
the exponent determined by the tunneling action S2 of the form

S2 =
1

2i

ˆ

Σ̃2

dp ∧ dq > 0, (5.3)

where the surface Σ̃2 is spanned by the instanton γ̃2.

Proof. The derivation of formulas (5.2) and (5.3) is similar to that presented in [14]. It is based on the
under-barrier asymptotic of the wave functions (see Lemma 1).

Let the parameters of the Hamiltonian be tuned so that the minimal energy splitting ∆ is realized

in the avoided-crossing effect for the operator Ê0, and let ψI,II be the corresponding bilocalized

eigenstates. Therefore, these normalized states have the form ψI,II = (ψ1 ± ψ2)/
√

2 up to exponentially
small corrections as h→ 0.

Using Lemma 1, we see that the states ψ1,2 have the following asymptotic estimates in the
under-barrier region of q between γ1 and γ2:

ψ1(q, h) =
c1

√

v(q, E)
exp

(

i

h

ˆ q

q1

ph(q, E) dq

)

[1 +O(h)],

ψ2(q, h) =
c2

√

v(q, E)
exp

(

i

h

ˆ q2

q
ph(q, E) dq

)

[1 +O(h)],
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where q1,2 are turning points, and we take the branch of the momentum p = ph(q, E) for which Imp > 0,
i.e., the states ψ1,2 exponentially decrease (in absolute value) in the under-barrier region as h→ 0. It
can be shown that the normalizing constants c1,2 have the order of exp(o(1/h)), i.e., they cannot change
the leading term of the exponent phase.

The further derivation of the tunneling estimates (5.1), (5.2), (5.3) is similar to the case of the
well-known case of the Schrödinger equation (see [13]).

Estimating two tunneling actions S and S2, one can see that the tunneling action S2 is much larger
than the action S for sufficiently small µ; namely,

S
S2

= O(µ2/(k++k−−4)) = O(ε). (5.4)

Therefore, we can conclude that the tunneling between two periodic trajectories in our model is more
significant than the tunneling decay of the quantum state. This is an example of semiclassical bistates
and 2-level subsystems discussed in [5].

Remark 2. The geometric description of the double-well regime stated above and the corresponding
tunneling effects are stable under the inclusion of higher-order terms from (2.2), (2.5) to the averaging
procedure. These terms give only small (of order ε) corrections to the periodic classical trajectories, to
the instanton γ̃1 and the corresponding tunneling action S.

Corollary 1. The existence of avoided crossings, the state bilocalization, the spectral splitting
and its geometric description, as in Theorem 1, take place for the whole trap Hamiltonian
H (2.1), (2.2).

Let us focus on the resonance 3 : (−1) as in (2.14). In this case, it is possible to extend the above
statements to nonpolynomial Hamiltonians (as in the Penning trap situation [5]). The point is that
very high anharmonic terms in the expansion like (2.2) can be made negligible by choosing ε to be
exponentially small with respect to h.

The exponential smallness of ε = ~ω(n), in turn, is provided by choosing not very large values of the
trap energy ω(n). Indeed if ω(n) = c ln(1/~) then ε ≤ c exp(−d/h) with d = (e− 1)/ec > 0.

Note that, in the usual “quasi-classical” approximation zone, one deals with low energy levels of
value ω(n) ∼ 1. In this zone, ε ∼ ~, but the effective Planck constant in (2.6) is not small: h ∼ 1. Thus,
on quasi-classical energy levels, the trap becomes purely quantum and one cannot relate the tunneling
bilocalization of its states to any symplectic geometry or instantons as in (5.1)–(5.3).

On the contrary, in the “semiclassical” zone where ω(n) ∼ 1/~ the effective Planck constant h ∼ ~

is small. But, in this zone, the parameter ε ∼ 1 becomes not small and one cannot apply perturbation
theory to higher-order anharmonic terms in (2.5).

In the “mezzo-classical” zone ω(n) ∼ ln(1/~), the effective Planck constant h ∼ 1/ ln(1/~) is small
enough and the parameter ε is exponentially small with respect to h.

Theorem 2. Take N = ∞ in (2.2), i.e., let the Hamiltonian be a nonpolynomial. Suppose a
resonance 3 : (−1) takes place for frequencies of H0 (2.3) and the parameters of the effective
Hamiltonian (3.1) are taken in the “double-well” regime (as in Statement 1).

Then, under condition ln(1/~) ≫ 1, in the mezzo-classical zone, i.e., for not very excited
energy levels of the operator H, namely, for eigenvalues of the order of ln(1/~), there is
an avoided-crossing energy splitting with asymptotics (5.1) determined by the instanton ac-

tion (5.2), as well as the bilocalization effect of the corresponding eigenstates3.

3Note that if the original trap Hamiltonian describes an unbounded system and the corresponding operator has a continuous
spectrum, then the bilocalized states are not eigenstates of the trap Hamiltonian, but are long-living metastable states.
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Proof. Under assumptions of the theorem, the unitary averaging operator U identifies the trap Hamil-

tonian H with model Hamiltonian Ê, i.e., H = UÊU−1, up to a correction of order εm for some fixed m.
In the mezzo-classical zone, the correction is exponentially small as h→ 0 and by choosing m, we can
make it exponentially smaller than ∆.

Let ψI,II be a pair of bilocalized eigenstates of the operator Ê, as in Theorem 1. Then ΨI,II = UψI,II

is a pair of bilocalized metastable states of the trap operator, i.e., they obey the spectral equation of the
operator H with small discrepancy. The key point here is that the corresponding exponentially small
energy splitting ∆ is much greater than that discrepancy. If the trap is stable and the corresponding
spectrum of H is discrete, then there appears a pair of bilocalized states of the trap. Otherwise, the
ΨI,II are long-living metastable states of the trap and the living time of ΨI,II is much greater than the
tunneling time 2πh/∆.

ACKNOWLEDGMENTS

This work was supported by the Program for Fundamental Research of Higher School of Economics.

REFERENCES

1. S. Stahl, F. Galve, J. Alonso, S. Djekic, W. Quint, T. Valenzuela, J. Verdu, M. Vogel, and G. Werth, “A planar
Penning trap,” Eur. Phys. J. D 32, 139–146 (2005).

2. F. Galve, P. Fernandez, and G. Werth, “Operation of a planar Penning trap,” Eur. Phys. J. D 40, 201–204
(2006).

3. F. Galve and G. Werth, “Motional frequencies in a planar Penning trap,” Hyperfine Interact. 174, 397–402
(2007).

4. J. Goldman and G. Gabrielse, “Optimized planar Penning traps for quantum information studies,” Hyperfine
Interact. 199, 279–289 (2011).

5. M. Karasev , E. Novikova, E. Vybornyi, “Bi-states and 2-level systems in rectangular Penning traps,” Russ.
J. Math. Phys. 22 (4), (2017).

6. M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by reso-
nances, I,” in Quantum Algebras and Poisson Geometry in Mathematical Physics, Ed. by M. Karasev, in
Amer. Math. Soc. Transl. Ser. 2 (Providence, RI, 2005), Vol. 216, pp. 1–18; arXiv: math. QA/0412542.

7. M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by reso-
nances. II,” Adv. Stud. Contemp. Math. 11, 33–56 (2005).

8. M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances.
I, III,” Russ. J. Math. Phys. 13 (2), 131–150 (2006).

9. M. Karasev and E. Novikova, “Non-Lie permutation representations, coherent states, and quantum embed-
ding,” in Amer. Math. Soc. Transl. Ser. 2 (Providence, RI, 2005), Vol. 187, pp. 1–202.

10. M. Karasev and E. Novikova, “Algebra and quantum geometry of multifrequency resonance,” Izv. Ross. Akad.
Nauk Ser. Mat. 74 (6), 1155–1204 (2010) [Izv. Math. 74 (6), 55–106 (2010)].

11. M. V. Karasev and E. M. Novikova, “Secondary resonances in Penning traps. Non-Lie symmetry algebras
and quantum states,” Russ. J. Math. Phys. 20 (3), 283–294 (2013).

12. M. Razavy, Quantum Theory of Tunneling, World Scientific (2003).
13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics.

Non-Relativistic Theory (Gos. izd. RSFSR, Leningrad, 1948; Pergamon, Oxford, 1958).
14. M. V. Karasev, E. M. Novikova, and E. V. Vybornyi, “Non-lie top tunneling and quantum bilocalization in

planar Penning trap,” Math. Notes 100 (5-6), 807–819 (2016).
15. T. Pankratova, “Quasimodes and exponential splitting of a hammock,” J. Sov. Math. 62 (6), 3117–3122

(1992).
16. E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment, in

Cambridge Studies in Magnetism (Cambridge University Press, Cambridge, 1998).
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