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1. INTRODUCTION

While constructing mathematical models of the systems
in physical variables, one can get models, which contain
both differential (or difference) and algebraic equations.
Such models are called descriptor (or singular), and they
found wide application in different fields of science and
engineering Dai (1989); Stykel (2002).

The descriptor representation is more powerful than the
conventional state-space form, but analysis and design
methods for descriptor systems are quite different from
the classical ones, sometimes they are difficult to be
implemented. It is not trivial to extend the methods of
normal systems analysis and design on a class of descriptor
systems because of the presence of algebraic equations.
Algebraic constraints provide the system with some new
properties, such as impossibility to solve the system in
regard to the derivative, necessity to have sufficiently
smooth input signals, and noncausal behavior in discrete-
time case (impulse behavior in continuous time).

Some problems, solved for normal systems, are still ac-
tual for descriptor systems. One of such problems is a
developing of computationally efficient methods of analysis
and control design for descriptor systems. This paper is
devoted to one of such problems — suboptimal anisotropy-
based controller design using convex optimization.

Anisotropy-based control theory originates from Vladimirov
(1995, 1996). Information-theoretic representation of ran-
dom signals lies in the basis of this approach. Anisotropy-
based control theory considers the system’s reaction on
the influence of “colored” noises. “Spectral color” means
Kullback-Leibler information divergence from the Gaus-
sian white noise sequence. In this case, the quality cri-
terion is anisotropic norm of the system. This norm lies
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between normalized Ha-norm and Hoo-norm of the sys-
tem. Anisotropy-based analysis problem for normal sys-
tems using convex optimization was solved in Tchaikovsky
(2011). This result was extended on descriptor systems in
Belov (2013). Generalized Riccati inequalities approach to
suboptimal anisotropy-based control design was described
in Andrianova (2014). But in the listed results inequal-
ities are not strict. As the matrices in constraints are
singular, the obtained inequalities are not convex. In Feng
(2013), computationally efficient algorithm of suboptimal
Hoo-control design was proposed. This paper extends this
algorithm on anisotropy-based case, a novel anisotropy-
based bounded real lemma in terms of LMIs (linear matrix
inequalities) is formulated and proved. It allows to develop
methods of anisotropy-based analysis for descriptor sys-
tems.

The paper is organized as follows. In the section 2, basics
of anisotropy-based analysis and descriptor systems theory
are given. The conditions of a novel bounded real lemma
in terms of LMIs for normal and descriptor systems are
obtained in the section 3. Suboptimal anisotropy-based
controller design problem is solved, based on the novel
bounded real lemma, and numerical example is given in
the section 4.

2. BACKGORUND
2.1 Descriptor systems

The state-space representation of discrete-time descriptor
systems is

Ex(k+1)=Axz(k)+ Bf(k),
y(k) = Cx(k) + Df(k)

where z(k) € R is the state, f(k) € R™ and y(k) € RP are
the input and output signals, respectively, A, B, C' and D

(1)
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are constant real matrices of appropriate dimensions. The
matrix E € R™*" is singular, rank (E) =r < n.

Definition 1. The system (1) is called regular if I\ # 0 :
det(\E — A) £ 0.

Regularity stands for the existence and uniqueness of the
solution for the consistent initial conditions Stykel (2002).

Hereinafter, we suppose that the considered systems are
regular. Now we give some definitions, necessary for fur-
ther presentation.

Definition 2. The transfer function of the system (1) is
defined by the expression

P(z)=C(:E—-A)™'B+D, z€C. (2)

Ho- and Hoo-norms of the transfer function P(z) are
defined as follows

1 3

Pl = (g [ (PP as)

[Pllc = SUP  Omaa (P(eiw))
we(0,27]

where 0,42 (P(ei”)) is the maximum singular value of the
transfer function P(z).

Definition 3. The system (1) is called admissible if it is
regular, causal (degdet(zE — A) = rank E), and stable
(p(E,A) = max|A| i, det(sp—ay—0} < 1) For more
information, see Dai (1989); Xu (2006).

For the regular system (1) there exist two nonsingular ma-
trices Dai (1989) W and V such that WEV = diag(I,,0).

Consider the following change of variables

Tl — | Z1(k)

v = | 0 ®
where z1(k) € R” and z2(k) € R™".
By left multiplying the system (1) on the matrix W and

using the change of variables (3), one can rewrite the
system (1) in the form Dai (1989)

x1(k+1)=Ap121(k) + Araxa(k) + By f(k),
0= Ag121(k) + Ao (k) + B2 f(k), (4)
y(k) = Cra1(k) + Caz2(k) + D f (k)
where
war = aa] we-[5).
CV =[Ci1 Ca]. (5)

Matrices W and V are found from the singular value
decomposition (SVD)

E = U diag(S,0)H".
Here U and H are real ortogonal matrices, S is a diagonal
r X r-matrix, it is formed by nonzero singular values of the
matrix F

W = diag(S~*, I,,_,.) U™, V=H.

Representation (4) is called SVD canonical form Dai
(1989). Note that the system is causal if det(Az2) # 0,
and stable if p(A411 — A12A2_21A21) < 1 Xu (2006).

While solving control problems for descriptor systems it
is necessary not only to provide stability of dynamical
subsystem, but also to avoid undesirable noncausal behav-
ior. So, for descriptor systems there exist such concepts as
causal controllability and stabilizability. Discuss them in
detail. Consider a state feedback control in the following
form:

f(k) = Fex(k) + h(k) (6)
where F, € R™*" is a constant real matrix, h(k) is a new
input signal. The closed-loop system may be written in the
form

Ex(k+1)=(A+ BF,)x(k) + Bh(k). (7)
Definition 4. The system (1) is called causal controllable
if there exists a state feedback control in the form (6) such
that the closed-loop system (7) is causal.

Causal controllability can be easily checked by the follow-
ing rank condition Dai (1989).

Theorem 5. The system (1) is causal controllable if

E 00

rank[AEB

| = rank(£) + 1.

Stabilizability of descriptor systems is characterized by
ability to control nonstable modes of the dynamical sub-
system.

Definition 6. The system (1) is called stabilizable if there
exists a state feedback control in the form f(k) = Fsx(k)
such that the pair (E, A+ BFy;) is stable.

2.2 Mean anisotropy of the sequence and anisotropic norm
of the system

Let W = {w(k)}rez be a stationary sequence of square-
integrable random m-dimensional vectors. The sequence
W can be generated from the Gaussian white noise se-
quence V with zero mean and identity covariance matrix
by an admissible shaping filter with a transfer function
G(z) = Cq(2Eg — Ag) 'Bg + Dg. Mean anisotropy of
the signal is Kullback-Leibler information divergence from
probability density function (p.d.f.) of the signal to p.d.f.
of the Gaussian white noise sequence.

Mean anisotropy of the sequence may be defined by the

filter’s parameters, using the expression
)

— 1 mS(w)
AW)=—— In det
Ar J G113

where S(w) = G(w)G* (W), (-7 € w < 7), @(w) =
lim;_,; G(le'*) is a boundary value of the transfer function
G(2).
Remark 1. Mean anisotropy of the random sequence W,
generated by shaping filter G(z), is fully defined by its pa-
rameters, so the notations A(G) and A (W) are equivalent.

dw

Mean anisotropy of the signal characterizes its “spectral
color”, i.e. the difference between the signal and the Gaus-
sian white noise sequence. If A(W) = 0, then the signal
is the Gaussian white noise sequence. If A(W) — oo, the
signal is a determinate sequence. For more information,
see Vladimirov (2006, 1995).

Let Y = PW be an output of the linear discrete-time
descriptor system P € H”*™ with a transfer function
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Fig. 1. To the system’s a-anisotropic norm computation

P(z), which is analytic in the identity circle |z| < 1, P(z)
has a finite H ,-norm.

Definition 7. For a given constant value a > 0 a-

anisotropic norm of the system P is defined as
I1Pll, = sup{IIPGl2/lIGll2 : G € Ga}, (®)

i.e. the maximum value of the system’s gain with respect

to the class of shaping filters
G, ={GeH,™™: AG)<a}.

So, a-anisotropic norm || P||, describes the stochastic gain

of the system P with respect to the input sequence W.

3. NOVEL ANISOTROPY-BASED BOUNDED REAL
LEMMA AND A-ANISOTROPIC NORM
COMPUTATION

3.1 Nowel bounded real lemma for normal systems

Consider a normal discrete-time system, written in the
following form:

x(k+1) = Az(k) + Bw(k), (9)
y(k) = Cz(k) + Dw(k)
where z(k) € R™ is the state, w(k) € R™ is a random
stationary sequence with known mean anisotropy level
A(W) < a, y(k) € R? is an observable output, A, B, C
and D are constant real matrices of appropriate dimen-
sions. The transfer function of the system (9) is defined
by
T(z)=C(zI — A)"'B+ D.

We suppose that the system (9) is stable, and the constants
a > 0 and « > 0 are known. The problem is to satisfy the

inequality -
T, <~

The following lemma gives the answer to this problem
Tchaikovsky (2011).
Lemma 8. Let the system (9) with a transfer function
T(z) € Hoo?*™ be stable. For the given scalar values a > 0
and v > 0 a-anisotropic norm is bounded by a given scalar
value 7, i.e.

Il <~
if there exist such scalar value n > v and n x n-matrix
® = ®T > 0 that the following inequalities hold true

n— (e7**det(nl,, — BT®B — DTD))Y/™ <+ (10)

AToA—d+C"Cc ATeB+C'D

B oA+ D'C BY®B+D'D-ni, | ="

(11)

To modify anisotropy-based bounded real lemma for de-
scriptor systems we formulate and prove the following
auxiliary theorem.
Theorem 9. Let the system (9) with a transfer function
T(z) € Hoo?™™ be stable. For the given scalar values a > 0
and v > 0 a-anisotropic norm is bounded by 7, i.e.

I, <~
if there exist such scalar value n > 72, n x n-matrix
® = &7 > 0 and a random n x n-matrix Y that the
following inequalities hold true:

n— (€72 det(nl,, — BY®B — DTD))V/m < ~2 (12)

1 1 1
—§Y—7YT YA YB <I>T—YT—§Y 0

ATY% - 0 ATYT ct
BTYyT 0 —nln BTy™T DT | <o.
@—Y—%YTYA YB g 0
0 C D 0 -1,
(13)

Proof. Suppose the inequalities (12) and (13) hold true.
Rewrite the expression (13) in the form

E+YTYTU 40ty T <0 (14)
where U =[1, 00 [,,], T = —%LLAB—I,L , and a
symmetric matrix = is given by
0 0 0 )
- _|locfc-» C'™D o0
-~ (o D' D'D-9nI, 0
) 0 0 0

Using the projection lemma Boyd (1994), we get that the
inequality (14) is solvable if and only if

MTZM < 0 and NTEN <0

0 I, 0 0 I, 0 0 —21,
forMT:[O ()ImO],NT: 0L 0 2
5 00 I 0 01, BT
Note that
~d A OB
NTzNn = | AT® ¢c"C C¢"D | <o. (15)

BT® p'C D™D
As & = ®T > 0, using Schur complement, we may
transform the inequality (15) into

ctc c'D AT
[DTC DTD] a [BT
Hence,
ATeA-o+C'Cc  ATeB+C'D
[ B'®A+D'C B"®B+D'D-nl,
Consequently, the conditions of this theorem are equiva-

lent to the conditions of Lemma 8, proved in Tchaikovsky
(2011).

} d(—®)'®[A B] <0.

< 0.

3.2 Nowel bounded real lemma for descriptor systems

Consider a discrete-time descriptor system in the state-
space representation
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Ex(k+1) = Az(k) + Bw(k),
y(k) = Cx(k) + Dw(k)

where z(k) € R™ is the state, w(k) € R™ is a random
sequence with a given mean anisotropy level A(W) < a,
y(k) € R? is an observable output, E, A, B, C and D are
given matrices of appropriate dimensions, rank £ = r < n.
Its transfer function P(z) is given by the expression (2).
Suppose that the system (16) is admissible, the scalar
values @ > 0 and v > 0 are known. The problem is to
find sufficient conditions to satisfy the inequality

1Pl <~

(16)

As the system is regular, there exist two transformation
matrices W and V, and the system (16) may be rewritten
in the equivalent form (4). We use the following denota-

tions: Eq = WEV, Ay = WAV, By = WB, Cy; = CV,
Dy =D.

Now we formulate the conditions of anisotropic norm
boundedness for the system (16).

Theorem 10. Let the system (16) with a transfer function
P(2) € Hoo?™ be admissible. Suppose that

rank F = rank [E B].

For given scalar values a > 0 and v > 0 a-anisotropic norm
of the system is bounded by the value 7, i.e.

1PN, <~
if there exist such matrices L € R™" L > 0, Q € R™™",
R e R™*(n=7) g e R(=7)x(n=7) ‘scalar values 7 > 72 and
«a > 0 that the following inequalities hold true
n— (e det(nIy, — BjIIBs — Dj Dg))"/™ <+
and (18)

(17)

where © = {éj 0

[ —

,H:{gg],F:[Q R].

Proof.

Suppose the inequality (18) holds. For the equivalent
form (4) of the system (16) it is not difficult to get

211 212 213 214 215 O

T

z;lg _1{/ 223 0 295 296
7 — Z13 %23 %33 234 235 %36

Tzl 0 zd -l

Z;r4 T Z3T4 UTm 245 %46

Zi5 22T5 2%5 ’24115 zs5 0

0 236 236 26 0 —1g

<0

where
11 .
211 = —§Q - 5@ , 212 = QA1 + RAyy,
z13 = QA12 + RAss, 214 = QB + RBs,
1
5=L"—-Q" - §Q, 293 = Ag, ST,
Zo5 = A;FIQT + AglRT, 206 = C;F + aA;FlSTC;F
233 = SAgg + A3,S", 234 = SBa,
z35 = A}‘QQT + A’QTQRT, Z36 — Cg + aAEQSTCg‘
245 = B QY 4+ By R, 246 = D" + aB3 ST Cy
25 = —Q— Q7.

Using matrix properties, we get KZK™ < 0 for a nonsin-

I,O 0 0 00
0. 0 0 00O
gular matrix K. Choose K = 8 8 8 I()n IO 8
00 0 0 01
00I_ 000
z11 212 214 z15 0 213
zfr; —L 0 225 29 Zgl;
v |2 0 —nly 245 246 23y
Hence, KZK~ = 215 z9s  Zis 255 0 23 <0

T T T
% Zos  zig 0 —Iq 236
Z13 %23 %34 %35 %36 233
Consider the expression KZKT = W + W7 where

wi; 0 0 0 O O

wo1 waz 0wy was wog

_ |wsr 0 w33 w3s w3s w3e
W = ,

wa1 0 0 wWa4 0 0

0 0 0 0 Ws5 0

wer 0 0 wes wes wee

1
w11 = —§Q7 way = wag = AL QT + Ay R,

1
Woo = 7§L, Wos — C’lI‘ -+ aA;FlSTC’;r,
wae = A3 ST, w3 = was = BT QT + By R,

w3z = —gfm, w35 = DT + aBy STCY,
1
wze =By ST, wy =L —Q— §QT7

1
wyy = —Q, wss = *ifq, wes = Cy + aAy,STCy

We1 = Weq = A};QT + AEQRT, Wee = Ag‘QST.
So,
w+w?t<o. (19)
As AL ST + SAy < 0, both matrices Ags and S are non-
singular. The system (16) is causal, it may be transformed
into a normal system T of reduced dimension

~ ~

Z(k+1)=Az(k) + Bw(k), (20)
where z(k) € R",
A=Ay — A2 Asy) Aoy B=B, — A19A5; By,
C=0Cy—CyAs Ay, D=D—CyA5'B,.
According to the rank condition, By = 0. Hence, the

inequality (17) coincides with (12) for the equivalent
system (20).

Now show that the matrix A is stable, and |||1A“|||a < 7. As
SAgg and AL ST are invertible, AL, ST < 0 and SAs < 0,
applying Schur complement to (19), we obtain

Tl 1 ~ o~ 1 7
—-Q--Q" QA QB L"-Q"--Q 0©
2 2 27
ATQT  —L 0 ATQT cT
BTQT 0 —nl, BTQT DT | <o.
1 ~ ~
Lfo§QTQA QB -Q-Q" 0
I 0 C D 0 ~1, |

(21)
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—;Q—;QT ra, rB LT-QT-1Q 0
AT A, — ATTIT —© 1By AITT CT + AT CT
BIT"Y BIm”t —nl BTt Dj +aBjI*Cy | <0 (18)
L-Q-Q" A IBy —Q-QT 0
0 Cy+aCyllA; Dy + aCyllBy 0 ~I,

-~

According to Theorem 9, we have p(A) < 1 and |\|f|||a <.
So, [|Pll, <
|

Remark 2. In order to avoid the product D;{Dd in the
inequality (17) we introduce a new variable ¥

U < nl,, — Bj1IB4 — Dj Dy. (22)
Using Schur complement, transform the inequality (22):
U —nl,, + Bj1IB; — D (—1,) D4 < 0,
{\1/ —nly, + BJTIB,; DY
Dy ~I,

So, the inequality (17) is equivalent to the system of
inequalities

| <o

n— (e det())/™ < 2 (23)

and - -
{\p—nlijLBdan Dd} <0 (24)

d —4q

Remark 3. While computing a-anisotropic norm for de-
scriptor systems one should solve the following op-
timization problem: to find «, = infy on the set
{L, Q, R, S, ¥, n, v}, which satisfies the inequalities (18),
(23) and (24). If the minimum value 7. is found, a-
anisotropic norm of the system P may be approximately
found from the expression

121, = s
Here the scalar value a > 0 is set.

(25)

4. SUBOPTIMAL ANISOTROPY-BASED CONTROL
DESIGN FOR DISCRETE-TIME DESCRIPTOR
SYSTEMS

Consider the following discrete-time descriptor system:

Ex(k+1) = Axz(k) + Byw(k) + Bau(k), (26)
z(k) = Cx(k) + Dyw(k)
where z(k) € R™ is the state, w(k) € R™ is a

random stationary sequence with mean anisotropy level
AW) < a (a 2 0), z(k) € R? is an observable output,
u(k) € R™2 is a control sequence, E, A, By, By, C, D; are
constant real matrices of appropriate dimensions.

Assume that

(1) the whole state vector is observable;
(2) the system (26) is causal controllable;
(3) the system (26) is stabilizable;

(4) a scalar value v > 0 is known.

The problem is to find a state-feedback control
u(k) = Fx(k), for which the closed-loop system P is
causal and stable, and || Py, < 7.

The system (26) is regular, so there exist two matrices W
and V, which transform the system (26) into the equivalent
form (4). Now we use the denotations E; = WEV,
Ay = WAV, By = WBy, Byg = WBy, Cq = CV,
Dyg=D;.

The following theorem contains sufficient conditions of
anisotropic norm boundedness for the closed-loop system,
it also gives us the feedback gain, which makes the closed-
loop system causal and stable.

Theorem 11. Let the following rank condition hold true:
rank E = rank [E Bj] and rank ET = rank [ET CT].

For the given scalar value v > 0 and for the known mean
anisotropy level of the input disturbance a > 0 the closed-
loop system P, is causal and stable, and [Py, < v if
there exist matrices L € R™", L > 0, Q € R™*", R €
Rrx(nfr)v S e R(nfr)x(nfr), A= Rnxml’ = lexml’ a
scalar value > +? and a sufficiently large scalar o > 0,
such that

Ay A3 Agy A 0
Agr Agp A3, Aoy A2,
Asy Asp —nl, Az AL | <0, (27)
Ag AQTl Agl —(Q+ QT) 0
0 Aso Ass 0 _Iml
n— (e det(W))"/™ < 42, (28)
U — Iy, + B1y©Big (D1 +aCdlBia)*| _ (29)
(D14 + aCyllB14) -1
where

1 1
A= _§Q - iQT, Aoy = ALY + Bz 0T,

1
A1 =Cal'", Ay =L—Q— §QT7
Agg = LAY + AgL" +®ZByg + B1yZ"®" — O,
Aso = Bl + aBLIA] + aB,0" ZB7,,
Asz = Dig + aBTICT Asy = C4II .

. PO 00 0 0
Besides, © = {0 0}, I = {O S]’ o = l:OIn—T:|,
Q=1[1.0],T'=[Q R]. The feedback gain is given as

Qe ]v?

_S—TRTQ—T S—T (30)

F_ZT{

Proof. Show, that the controller, which solves the design
control problem for the canonical form of the system,
solves it also for the initial system. The transfer function
of the closed-loop system may be written in the form

Pu(z) = CVV '(2E — A — BoF)"'W 'WBy + Dy =



Alexey A. Belov et al. / IFAC-PapersOnLine 48-11 (2015) 372-377 377

CV(ZWEV—WAV—WBQFV)71W31 +Dy = Cd(ZEd —
Ay — B2gFy) ' Big 4 Dig.

Suppose, that the inequalities (27)—(29) hold. Then the
(1,1) entry implies the matrix @ is invertible. We also
suppose, that the matrix S is invertible. If it does not hold,
there exists a scalar € € (0, 1), such that the inequality (27)
holds true for the scalar S = S + el,,_,.. So, we can use S
%2]; FT in (27), we
get the conditions of the bounded real for the system,
dual to the system (26). So, according to the bounded
real lemma, the closed-loop system (26) is admissible, and
a-anisotropic norm of its transfer function is bounded by
the given scalar ~.

instead of S. Replacing Z with [

If the design control problem is solvable, the conditions
of the Theorem 10 hold true for the system (26).These
conditions also hold for the dual system. By the linear

change of variables {%2 g FT = Z, which implies that
00 0 0
[Q RIF} =[I, 0] Z and {0 S} Fl = {0 Inr:| Z, we

get the inequality (27). Moreover, as pointed out before, @
and S are invertible. So the feedback gain F}; for the closed-
-T
. 0
loop system (26) is Fy = Z* [—SQRTQT ST} By
the inverse change of variables we get F' from (30).
|

Remark 4. Denote £ = ~2, then to solve the optimal
control problem it is necessary to find &, = inf £ on the
set {L, Q, R, S, Z, ¥, n, £}, which satisfies the inequali-
ties (27)—(29).

Example. Consider the following system:
0.3 0.5001 0.1002 0.0005 0.5006
0.7 0.7941 3.2909 0.0006 0.6002
A= 106 0.8 0.2999 0.0008 0.8004 | ,
0.7 0.4989 0.8978 0.001 1.0003
0.6 0.7 0.2998 0.0004 0.4013
0.30.50.100.57 0.0003 —0.0002
0.7 0.8 3.3 0 0.6 —0.0058 0.0019
E=1060803008]|, By = 0.0002 —0.0013 | ,
0705090 1 —0.0013 —0.0015
0.6 0.70.3 004 | 0.0001 0.0017
[ 0.1 —0.125
0.2333 0.2
By =103 0.2 0.2,
0.2333 0.125
| 0.2 0.175
11000 10102
0[02000}’ Dl[O.lO.S]'
The system is not causal (degdet(zE — A) = 3,

rank E' = 4), and it is not stable (p(E, A) = 1.000).

Design control results for a = 100 are given in Table 1.
5. CONCLUSION
This paper is devoted to the state-feedback anisotropy-

based control problem for linear discrete-time descriptor
systems. New sufficient conditions of anisotropic norm

boundedness in terms of LMIs for normal systems are
derived, then they are generalized on the class of descriptor
systems. These results allow to develop a computationally
efficient algorithm for anisotropy-based analysis. Relied on
these conditions, suboptimal control problem for descrip-
tor systems is solved.
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