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INTRODUCTION

Stochastic anisotropy�based robust control theory was established in Russia in 1994 [1–3]. This theory,
lying in some sense between the classical � and �control theories, allows to design control laws,
which minimize anisotropic norm of the closed�loop system. The main concepts of anisotropy�based
control theory are anisotropy of the random vector, mean anisotropy of the input sequence and anisotro�
pic norm of the system. Anisotropy of the random vector (or its spectral color) is the measure of divergence
between the probability density function (pdf) of the vector and the pdf of Gaussian random vector with
zero mean and scalar covariance matrix. Mean anisotropy of the sequence is time�averaged anisotropy of
the extended vector, which consists of the sequence’s elements. Anisotropic norm of the system is the
maximal value of the root mean�square (RMS) gain of the system in respect of all possible input signals
with mean anisotropy levels less than a given scalar value.

In classical anisotropy�based analysis and design problem statements, stationary ergodic sequences of
Gaussian random zero�mean vectors are considered as input disturbances [4, 5]. However, in real prob�
lems, at different faults in equipment or in presence of nontrivial input signals, mean values of disturbance
vectors are different from zero. Such disturbances are called nonzero�mean. Therefore, in the framework
of anisotropy�based theory it makes sense to consider the input signal, containing a nonzero deterministic
component.

Mathematical models of contol systems cannot be always described only difference or differential
equations. The systems, mathematical models of which are given in physical state variables, may contain
algebraic equations of connection between state variables. Such systems are called descriptor (differential�
algebraic, difference�algebraic, singular and so on). Because of the algebraic equations, descriptor systems
can acquire properties that are not usual for normal systems, this fact entangles the use of classical math�
ematical methods. Methods of analysis and design, developed for descriptor systems, can be successfully
applied to normal systems, which are a special case descriptor if the latter have no connection equations.

Solving the design problem for such systems is based on checking boundedness of the quality function
by a given positive scalar value, it is directly connected with computation of anisotropic norm of the
closed�loop system. In this paper, the problem of computing anisotropic norm for descriptor systems with
nonzero�mean input signals is solved using convex optimization techniques. This research is founded on
the following results for zero�mean input signals: conditions of anisotropic norm boundedness for
descriptor systems in terms of GDARE (anisotropy�based bounded real lemma) [6], similar results in
LMI�representation [7].

This paper consists of the following sections. In Section 1, main concepts of descriptor systems theory
and anisotropy�based control theory are given. Conditions of anisotropic norm boundedness in terms of
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GDARE ans LMI are formulated in Section 2. Using these results, the method of anisotropic norm com�
putation for normal and descriptor systems with nonzero�mean input signals is worked out. Numerical
examples are given in Section 3.

1. BASICS OF DESCRIPTOR SYSTEMS THEORY AND ANISOTROPY�BASED 
CONTROL THEORY

This section provides us with basic information on descriptor systems and main definitions of anisot�
ropy�based theory, necessary for further discussion.

1.1. Descriptor Systems

A stationary discrete�time descriptor system P is given in the form

(1.1)

where  is the object’s state,  is the input signal,  is the controllable output,
 are known matrices of appropriate dimensions and . If , the system (1.1)

can be reduced to the normal system of the same dimension. In this paper, the same symbol P is used to
denote both normal and descriptor systems. The system (1.1) is equal to the transfer function

, .

D e f i n i t i o n  1. Let ,  be a space of matrix�valued functions ,

which have finite �norms:

,

where  is a conjugate function with respect to P(eiω). A subspace of  which consists
of all rational transfer functions with no poles in the exterior of the unit disk on the complex plane is

denoted by . So, the �norm of the transfer function  from the subspace  is called the
�norm and is designated by .

D e f i n i t i o n  2. Let  be a space of matrix�valued functions  that are essentially
bounded on , i.e. the space of functions that are not bounded on the set of zero measure.

The subspace of  denoted by  consists of all the rational transfer functions that are analytic in

the exterior of the closed unit disk. The �norm of the transfer function  is given by

,

where  is the maximal eigenvalue of the square matrix M.

D e f i n i t i o n  3. A descriptor system P is called admissible if it is regular (i.e. :
), causal (i.e. ) and stable (i.e. 

). For more information about descriptor systems theory see [8, 9].

0

( 1) ( ) ( ),

( ) ( ) ( ),

(0) ,

Ex k Ax k Bw k
P

z k Cx k Dw k

x x

+ = +⎧
⎨

= +⎩
=

∼

( ) nx k ∈ � ( ) mw k ∈� ( ) pz k ∈ �

, , , ,A B C D E rank E n≤ rank E n=

1~ ( ) ( )P P z D C zE A B−

= + − z ∈ �

2 ( )p m×
Γ� { }: 1z zΓ = ∈ =� : p mP ×

Γ → �

2 ( )p m×
Γ�

tr( * )
2

1
2 2

( )

0

1= ( ) ( )
2

p m
i iP P e P e d×

π

ω ω

Γ

⎛ ⎞
⎜ ⎟ω < ∞
⎜ ⎟π
⎝ ⎠

∫�

* T( ) ( )i iP e P eω − ω

= 2 ( )p m×
Γ�

2
p mH ×

2 ( )p m×
Γ� ( )P z 2

p mH ×

2H
2

P

( )p m×
∞

Γ� : p mP ×

Γ → �

{ }: 1z zΓ = ∈ =�
p mH ×

∞
( )p m×

∞
Γ�

H
∞

p mP H ×

∞
∈

*max max
[0,2 ] [0,2 ]

( ( )) ( ( )( ( ))sup sup
i i iP P e P e P eω ω ω

∞

ω∈ π ω∈ π

= σ = λ

( )max Mλ

0∃λ ≠

det( ) 0E Aλ − ≠ rankdeg det( )zE A E− = ( , )E Aρ =

{ }max : det( ) 0 1
z

z zE A
∈

− = <
�



680

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 54  No. 5  2015

ANDRIANOVA et al.

If the descriptor system (1.1) is admissible, and , then there exist two nonsingular
matrices of change of variables, which transform the system to the form

(1.2)

called the SVD canonical form [8, 10] of the system (1.1). Here , ,  is used to
denote �dimensional identity matrix.

1.2. Anisotropy�Based Control Theory

In this section, we formulate the main concepts of anisotropy�based control theory. For more informa�
tion, see [1, 2, 11, 12].

Let  be a nonzero�mean stationary ergodic sequence of Gaussian m�dimensional random vec�
tors, generated by a shaping filter in the following descriptor form:

(1.3)

where the sequence  is a Gaussian m�dimensional white noise,  is a constant vector,

 are known matrices.  is an extended random vector,
which consists of the first N elements of the sequence .

D e f i n i t i o n  4. Anisotropy of the random vector  is defined by

,

where  is a probability density function of the vector , E[·] is a mean operator.

D e f i n i t i o n  5. Mean anisotropy of the sequence  is

.

T h e o r e m  1 [10]. Mean anisotropy of the input disturbance , generated by the shaping filter
in the form (1.3), is given by

,

where  is a mean value of the vector  for ,  is a spectral density of the shap�
ing filter.

R e m a r k  1. The vector of mean value  for the steady�state condition is given by the expres�

sion  and is connected with matrices of the SVD canonical form (1.2)

for the shaping filter (1.3) by the formula  where ,

, , .

Let the input of the system (1.1) be a sequence  of the form (1.3) with a bounded mean anisot�
ropy .

D e f i n i t i o n  6. Anisotropic norm of the system P is given by

,
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1 2 22 21Ĉ C C A A−

= −

1
2 22 2

ˆ
gD D C A B−

= −

{ } 0
( )

k
w k

≥

A( )W a≤

2 2

2
2 2

:A( ) :A( ) 2

sup ( , ) sup
a

W W a W W a

PG
P Q P W

G≤ ≤

+

= =

+

M

M

�



JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 54  No. 5  2015

ANISOTROPIC NORM COMPUTATION FOR DESCRIPTOR SYSTEMS 681

where  is a mean value of the output  for .

T h e o r e m  2 [10]. Anisotropic norm of the descriptor system (1.1) with nonzero�mean input signal
may be computed as

,

where

,

,

the functions  and  are defined by expressions

,

,

where ,  is the value of the transfer function P(z) when  goes to the

boundary of the unit circle.

This theorem gives us an opportunity to find the supremum of the scalar function  for  in
order to compute anisotropic norm of the system.

R e m a r k  2. In general case, the functions  and  are not monotonic [13], but for the condi�

tion  they get monotony and become

, (1.4)

. (1.5)

Moreover, the constraint  gives a convex set.

1.3. Anisotropy�Based Bounded Real Lemma for Descriptor Systems

Now we formulate the conditions of anisotropic norm boundedness for descriptor systems with zero�
mean input signal. These conditions are obtained in [6].

Let the system P be admissible, the following rank condition is true for the system P [7]:

.

The input disturbance  is a stationary ergodic zero�mean ( ) sequence of Gaussian random

vectors with bounded mean anisotropy . It is generated by (1.3). The following theorem gives us
sufficient conditions of anisotropic norm boundedness by a given scalar value  for descriptor sys�
tems (1.1).
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T h e o r e m  3 [6]. Let  be an admissible descriptor system with a state�space representa�
tion (1.1), let the input signal be a nonzero�mean sequence (1.3) where . For the given scalar values

 and  anisotropic norm of the system is bounded by the value , i.e.

,

if there exists a pair , which consists of the stabilizing solution  of the GDARE

where  and the value , which satisfies the inequality

.

For normal systems there exists a similar theorem ( ) [14].

2. PROBLEM STATEMENT AND MAIN RESULTS

In this section, two main problems are stated and solved: to find the conditions of anisotropic norm
boundedness in the form  for the desciptor system (1.1) with nonzero�mean input signal, gener�
ated by the shaping filter (1.3); using the obtained results to develop a method of anisotropic norm com�
putation.

In order to get the conditions of anisotropic norm boundeness for nonzero�mean input signals we give
some preliminary results.

D e f i n i t i o n  7. The system with a transfer function P(z), which satisfies the condition

, is called the all�pass system (the inner system or the inner).

L e m m a  1 [12]. The system (1.1) is the all�pass system if there exists a matrix , which satisfies

the condition  and the equations

Now we give conditions of anisotropic norm boundedness for descriptor systems with nonzero�mean
input signals.

T h e o r e m  4. Let  be an admissible descriptor system (1.1) with an input signal 

(1.3), that has bounded mean anisotropy level . The values  and  are known, i.e. the

condition  is supposed to be satisfied. Anisotropic norm of the system is bounded by the

value , i.e. , if and only if there exists such value 
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is satisfied for the matrix , which coincides with the stabilizing solution

 of the GDARE

Moreover, 

P r o o f. If the values  and  are known, the expressions for mean anisotropy and root mean�
square gain may be rewritten in the forms (1.4) and (1.5) where q is a scalar parameter, which defines the
spectral density of the shaping filter

, (2.2)

for  [15].

As the functions  are  monotone increasing, the inequality  is equivalent to the con�

dition .  can be found from the formula (1.5) in the following way:
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The representation of the closed�loop system  in the state space is

.

We introduce a new matrix�valued variable  and represent  as

.

According to the formula of Kolmogorov�Szegö type [15], the following formula takes place

,

so, the expression

is true.

Applying the conditions of lemma 1 to the all�pass system , we get the expressions which coincide
with the equations from the theorem. The condition  becomes

. (2.3)

So, . The theorem is proved.
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Consequently, the parameter q also satisfies the relation

.

In order to get anisotropic norm computation formula for nonzero�mean input signals using convex
optimization techniques, we have to provide some subsidiary statements.

L e m m a  2 [14]. Let  a normal system, given by (1.1) where , let the values of  and 

be fixed. Suppose that there exists a pair , which consists of the matrix  and the scalar value

, for which the following expressions hold true

,

,

. (2.4)

Then there exists a solution  of the algebraic Riccati equation
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,

,

and .

The existence of the solution  of inequalities from the lemma guarantees the existence of the solution  of
Riccati equations. The conditions of anisotropic norm boundedness for discrete�time descriptor systems
with zero�mean input signals are formulated in terms of GDARE in [6] and in terms of LMI in [7].

L e m m a  3 [16]. Let  be a real �matrix, p be a scalar which belongs to .
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state�space representation (1.1). The input signal  (1.3) is a nonzero�mean sequence with a

bounded mean anisotropy level , moreover, the condition  is saisfied. Then aniso�
tropic norm of the system is bounded by , i.e. , if there exists a pair , which consists of

the matrix , that satisfies the following LMI:
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and the scalar parameter

, (2.5)

for which the inequality

(2.6)

is true.

If the system P is normal ( ), the matrix Φ should be positive defined, if it is descriptor, the ine�

quality  should be satisfied.

P r o o f. The conditions of lemma 2 lead to the following statement: the inequality  holds true
for the system in descriptor form if there exists a pair , which satisfies the system of matrix inequalities

, (2.7)

, (2.8)

. (2.9)

The difference between the right�hand side of (2.9) and (2.4) is the presence of the expression

. It is connected with existence of nonzero deterministic constituent in the input disturbance
. Taking into account the formula (2.1) from theorem 4 makes it not difficult to get the appear�

ance of this expression in the inequality (2.4).

As the matrix  is positive defined, the following representation of the ine�
quality (2.7) is true:

.

Multiplying this matrix inequality on  and denoting , we get the following LMI:

.

It is equal to the LMI from the theorem.
Transform the inequality (2.3):

  

  

 .

Multiplying the obtained inequality on  and taking into account the denotation , we get

.

The theorem is proved.

2 22 2
2

2 2
2

max , ,
1

1
a

m

P

e
∞

−

⎛ ⎞
⎧ ⎫γ − γ −⎜ ⎟η∈ ⎨ ⎬⎜ ⎟−⎩ ⎭⎜ ⎟− −⎝ ⎠

M M

M
M

� �

T Tdet
2 1

2 2 2(1 ) ( )
a

m m
me I B B D D

−

η − + − η − Φ − < γM M�

nE I=

T 0E EΦ ≥

a
P < γ

( , )q R

T T T T T T T T T T1( )( ) ( )mE RE A RA qC C A RB qC D I B RB qD D A RB qC D−

> + + + − − +

T T 0mI B RB qD D− − >

T T 2 2 2ln det( ) ln(1 ) 2mI B RB qD D m q q a− − > − + − γ +M PM

2 2q −M M�

{ } 0
( )

k
w k

≥

T T 1( )mI B RB qD D −

= − −S

T T T T T

T T T T
0

m

A RA E RE qC C A RB qC D

B RA qD C B RB qD D I

⎡ ⎤− + +
<⎢ ⎥

+ + −⎣ ⎦

1q−

η = RΦ = η

T T T T T

T T T T
0

m

A A E E C C A B C D

B A D C B B D D I

⎡ ⎤Φ − Φ + Φ +
<⎢ ⎥

Φ + Φ + − η⎣ ⎦

2 2 21 ln det((1 ) )
2

q q a− − + − γ >M PM S ⇔

2
2 2 2ln det( ) ln (1 )

a
mm q q e

−⎛ ⎞
< − + − γ⎜ ⎟

⎝ ⎠
M M��

⇔
T T

2
2 2 2ln det( ) ln (1 )

a
m

mI B RB qD D m q q e
−⎛ ⎞

− − > − + − γ⎜ ⎟
⎝ ⎠

M M�

⇔
T T

2
2 2 2det( ) (1 )

a
m

mI B RB qD D m q q e
−

− − > − + − γM M�

1q−

η = RΦ = η

T Tdet
2 1

2 2 2(1 ) ( )
a

m m
me I B B D D

−

η − + − η − Φ − < γM M�



JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 54  No. 5  2015

ANISOTROPIC NORM COMPUTATION FOR DESCRIPTOR SYSTEMS 687

R e m a r k  4. In order to get the interval, which  belongs to, it is sufficient to take into account that

 and to transform the interval from remark 3.

The constraints from theorem 5, which the pair  should satisfy, are represented as LMI�condi�
tions. So, we can compute anisotropic norm of the linear system with nonsero�mean input signal, using
convex optimization techniques. Anisotropic norm of the system P can be approximately computed as

 where  is a solution of the following convex optimization problem:

.

Here . The obtained method of anisotropic norm computation is much simplier in comparison with
homotopy method [14].

3. NUMERICAL EXAMPLE

Consider a normal system P ( ) with a state�space representation (1.1), given by matrices

, ,

, .

We suppose that the input signal is represented by the sequence of random Gaussian vectors (1.3) with a

known mean value , and �norm of the shaping filter is . For  we find anisotro�
pic norm of the system  in the following cases: only  is known; both  and

 are known.

In the first case, the functions  and  are not monotonic [13], so we cannot compute anisotropic
norm of the system, using convex optimization techniques. We can only approximately compute the val�

ues of  and  for the points from the interval  with a fixed step d. Then we choose such
pairs , that the function  satisfies the condition , and find the maximal value
of , . The accuracy of anisotropic norm computation is

, where .

The relation between  and  is represented on the Fig. 1a. As we can see, to find anisotropic norm
for  we have to choose two pairs (0.375, 5.789) and (0.375, 6.194) from the set ,

that are too close to the inflection point where . If the step d is too large, this condition may lead

to incorrect results.

In the second case, when both  and  are known, the functions  and  are
monotonic (see Fig. 1b). So, we can use convex optimization techniques to compute anisotropic norm of
the system. The advantages of this method are fast work and high accuracy. The methods are compared in
Table 1.

The strings for the case A represent the results of computation with the same work time for both algo�
rithms (M1 stands for “step” computation, M2 is convex optimization method). The case B is given for
the same accuracy of algorithms (10–3). We can see, that the method M1 needs more time for computation
than M2, or gives bad accuracy for the same work time. For additional comparison of algorithms the
results of anisotropic norm computation for  (in this case, the supremum N(q) is far from the
inflection point) are given. No principle difference is found.
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5.4034

0 0.4 4.0953
A(q)

(b)

6.1860

14.4271
N(q)

4.8300

0 0.4 4.0953

(a)

6.1860

14.4271
N(q)

5.4034

A(q)

Fig. 2. The set of pairs  for the descriptor system in cases: (a) the value is not known, (b)  is known.( )( ), ( )A q N q
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Fig. 1. The set of pairs  for the normal system in cases: (a) the value  is not known, (b)  is known.( )( ), ( )A q N q
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Now we check how the obtained algorithms work for a descriptor system (1.1) with the following matrices:

, , ,

, .

Suppose, that  and .

In the first case, the functions  and  are not monotonic, to compute anisotropic norm of the
system, we have to find the values of these functions in the points, chosen with a set step. The relationship
between  and  for the descriptor system is given on Fig. 2a. For the constraint  to find
the supremum of the function  we choose two points (0.400, 4.830) and (0.400, 6.186), that are close
to the inflection point, this fact decreases accuracy.

In the second case, when the values  and  are known, the functions  and
 are monotonic, there are no difficulties in applying convex optimization method to compute aniso�

tropic norm. Comparison of methods of anisotropic norm computation for the given descriptor system is
represented in Table 2. As in the case of the normal system, the first method needs more time for compu�
tation and gives bad accuracy. In addition, you can see the results for . Table 2 gives us all the
results of computation.

CONCLUSIONS

Two types of conditions of anisotropic norm boundedness for descriptor systems with nonzero�mean
input signals are obtained. In the first case, in order to check the constraint it is necessary to solve the
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Table 2.  Comparison of algorithms for the descriptor system

Case Method Working time, seconds a �(q*) �(q*) Accuracy ε

А М1 3.9 0.4 0.3969 6.0927 0.095

0.7 0.6837 9.4377 0.202

М2 3.8 0.4 0.4 6.1276 0.062

0.7 0.7 9.5083 0.127

Б М1 410 0.4 0.3997 6.1827 10–3

0.7 0.7017 9.6277 10–3

М2 4.2 0.4 0.4 6.1895 10–4

0.7 0.7 9.6350 10–4

Table 1.  Comparison of algorithms for the normal system

Case Method Working time, seconds a �(q*) �(q*) Accuracy ε

А М1 4.1 0.375 0.3735 6.1807 0.013

0.5 0.5171 6.7763 0.029

М2 3.9 0.375 0.375 6.1858 0.007

0.5 0.5 6.7591 0.012

Б М1 330 0.375 0.3747 6.1913 10–3

0.5 0.4989 6.7482 10–3

М2 4.5 0.375 0.375 6.1929 10–4

0.5 0.5 6.7473 10–4
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GDARE and the special type inequality. In the second case, sufficient conditions of anisotropic norm
boundedness are given in terms of LMI and special type inequality. The results, obtained for descriptor
systems, can be used for normal systems when . On basis of these results, the algorithm of anisotro�
pic norm computation is developed for known values of  and . This algorithm is founded on the
solution of convex optimization problem in terms of LMI, which gives a convex set of constraints. The
numerical example shows that the algorithm has a set of advantages against the algorithm of “step” com�
putation.
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