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ITISE 2017 Preface

Preface

We are proud to present the set of final accepted papers for the fourth edition of the ITISE
2017 conference ”International work-conference on Time Series” held in Granada (Spain) during
September, 18-20, 2017.

The ITISE 2017 (International work-conference on Time Series) seeks to provide a discussion
forum for scientists, engineers, educators and students about the latest ideas and realizations in
the foundations, theory, models and applications for interdisciplinary and multidisciplinary re-
search encompassing disciplines of computer science, mathematics, statistics, forecaster, econo-
metric, etc, in the field of time series analysis and forecasting.

The aims of ITISE 2017 is to create a friendly environment that could lead to the establish-
ment or strengthening of scientific collaborations and exchanges among attendees, and therefore,
ITISE 2017 solicits high-quality original research papers (including significant work-in-progress)
on any aspect time series analysis and forecasting, in order to motivating the generation, and
use of knowledge and new computational techniques and methods on forecasting in a wide range
of fields.

The list of topics in the successive Call for Papers has also evolved, resulting in the following
list for the present edition:

1. Time Series Analysis and Forecasting.

e Nonparametric and functional methods

e Vector processes

e Probabilistic Approach to Modeling Macroeconomic Uncertainties
e Uncertainties in forecasting processes

e Nonstationarity

e Forecasting with Many Models. Model integration
e Forecasting theory and adjustment

e Ensemble forecasting

e Forecasting performance evaluation

e Interval forecasting

e Econometric models

e Econometric Forecasting

e Data preprocessing methods: Data decomposition, Seasonal adjustment, Singular
spectrum analysis, Detrending methods, etc.

2. Advanced method and on-Line Learning in time series.

e Adaptivity for stochastic models
e On-line machine learning for forecasting

e Aggregation of predictors

Hierarchical forecasting

Forecasting with Computational Intelligence

e Time series analysis with computational intelligence
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ii

3.

4.

e Integration of system dynamics and forecasting models

High Dimension and Complex/Big Data.

e Local Vs Global forecast

e Techniques for dimension reduction
e Multiscaling

e Forecasting Complex/Big data

Forecasting in real problem.

e Health forecasting

e Telecommunication forecasting

e Modelling and forecasting in power markets

e Energy forecasting

e Financial forecasting and risk analysis

e Forecasting electricity load and prices

e Forecasting and planning systems

e Real time macroeconomic monitoring and forecasting

e Applications in: energy, finance, transportation, networks, meteorology, health, re-
search and environment, etc.

After a careful peer review and evaluation process (each submission was reviewed by at
least 2, and on the average 2.9, program committee members or additional reviewer), 121
contributions are presenting in this proceedings (accepted for oral, poster or virtual presenta-
tion,according to the recommendations of reviewers and the authors’ preferences.
In this edition of ITISE, we are honored to have the following invited speaker:

1.

Prof. Dr. Fredj Jawadi , Associate Professor of Economics (MCF-HDR) at the University
of Evry, France.

. Prof. Dr. Joerg Breitung, Professor in the Center of Econometrics and Statistics, Uni-

versity of Cologne, Germany

. Dr. Travis J. Berge, Senior Economist. Board of Governors of the Federal Reserve System,

USA.

Dr. Anna Korzeniewska, Faculty, Department of Neurology at Johns Hopkins University
School of Medicine, Baltimore MD, USA

. Dr. Joan Paredes, Senior Scientist, Dr. Joan Paredes, European Central Bank, Frankfurt

am Main, Germany.

. Dr. Pekka Koponen, Senior Scientist, D.Sc.Tech, VIT Technical Research Centre of

Finland, Energy Systems, P.O. Box 1000, FI-02044 VTT, Finland
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During ITISE 2017 several Special Sessions will be carried out. Special Sessions will be a
very useful tool in order to complement the regular program with new and emerging topics of
particular interest for the participating community. Special Sessions that emphasize on multi-
disciplinary and transversal aspects, as well as cutting-edge topics are especially encouraged
and welcome.

This fourth edition of ITISE was organized at the Universidad de Granada, with the help
of the Spanish Chapter of the IEEE Computational Intelligence Society and Spanish Network
Time Series (RESET). We wish to thank to our main sponsor the institutions Faculty of Science,
Dept. Computer Architecture & Computer Technology and CITIC-UGR from the University
of Granada for their support. We wish also to thank to the Dr. Veronika Rosteck and Dr.
Eva Hiripi, Springer, Associate Editor, for their interest in the future editing a book series of
Springer from the best papers of ITISE 2017.

We would also like to express our gratitude to the members of the different committees and
to the reviewer for their support, collaboration and good work.

September, 2017 ITISE Editors and Chairs
Granada Olga Valenzuela
Fernando Rojas

Hector Pomares

Ignacio Rojas

iii






ITISE 2017

Program Committee

Steering and Local Committee

Amaury Lendasse
Hector Pomares
Fernando Rojas
Ignacio Rojas
Olga Valenzuela

Program Committee

Adnan Sozen

Ahlame Douzal

Alan Wee-Chung Liew
Alberto Guillén
Alexandra Spitz-Oener
Alexey Koronovskii
Alicia Troncoso

Aman Ullah

Amaury Lendasse
Anke Meyer-Baese
Ansgar Steland
Antonio J. Rivera Rivas
Antonio Montanés
Asesh Roychowdhury
Athanasios Sfetsos
Axel Werwatz

Bormin Huang
C.German Castellanos Dominguez
Calvin Wong

Carlos Henrique Ribeiro Lima
Caroline Uhler

Cecilio Tamarit
Chang-Yong Lee
Charilaos Kourogiorgas
Charles Efferson

Chor Foon Tang
Christian Brownlees
Christian Gourieroux
Christoph Winter
Christopher Burke
Chunshien Li

Claudia Villalonga
Dalia Kriksciuniene
Daniel Castillo

Daniel Pena Sanchez
David Giles

University of Iowa

University of Granada
University of Granada
University of Granada
University of Granada

Juan Maria Palomo
Julien Chevallier

Junsoo Lee

K. Muraleedharan

Kalle Saastamoinen
Katerina Tsakiri

Kit Yan Chan
Konstantinos Spiliopoulos
Krzystof Siwek

Lazaros Iliadis

Leonid Sheremetov
Leopold Soegner

Leszek Borzemski

Loli Perez

Luca Faes

Luis Javier Herrera
Manfred Deistler

Maria Dolores Gadea
Maria José Del Jesus Diaz
Marc Hallin

Marcel Ausloos

Marco Lippi

Martin Wagner

Matteo Barigozzi

Mehdi Vafakhah

Micael Castanheira
Miquel Montero Torralbo
Mohammed Rezaul Karim
Naoufel Cheikhrouhou
Narayanan Kumarappan
Nicolas Marin Ruiz

Olga Valenzuela

Oresti Banos

P.C. Nayak

Panos Pardalos

Paulo Cortez



ITISE 2017

Dimitris Varoutas

Dorel Aiordachioaie
Elmar Lang

Erol Egrioglu

Eros Pasero

Ferda Halicioglu
Fernando Pérez de Gracia
Fernando Rojas

Fionn Murtagh

Florian Zimmermann
Francisco Estrada
Francisco Martinez Alvarez
Frangois Schmitt

Fredj Jawadi

Fuxia Cheng

G.S. YIN

Gabriel Pérez Quirds
Gani Aldashev

Georg Gorg

Gerhard Riinstler
Germéan Gutiérrez Sanchez
Gilney Zebende Zebende
Guy Mélard

Héctor Pomares

Hakan Aladag

Hashem Pesaran

Heather Ruskin

Hisham El-Shishiny

Hooi Hooi Lean

Hui Liu

Ignacio Rojas

Ildar Batyrshin

Ilhan Ozturk

Irina Perfilieva

Isaias Lima

Janusz Kacprzyk

Janusz Miskiewicz

Javier Hualde

Jeff Yao

Jests Gonzalo

Jianbo Gao

Jing Shi

Joao Catalao

José L. Aznarte

José Marfa Amigé Garcia
Josep Lluis Carrion-i-Silvestre
Josu Arteche

Juan Manuel Galvez

vi

Program Committee

Paulo Rodrigues
Pei-Chann Chang
Peter Gloesekoetter
Peter M. Robinson
Philipp Sibbertsen
Philippe Weil
Pierpaolo D’Urso
Plamen Ivanov
Popescu Theodor Dan
Ragulskis Minvydas
Rajendra Udyavara Acharya
Rebecca Killick
Ricardo de Andrade Aratjo
Rosangela Ballini
Rugiang Yan

Ryszard Tadeusiewicz
Sajjad Ahmad

Salah Bourennane
Samrad Jafarian-Namin
Shilu Tong

Siem Jan Koopman
Silke Hiuttel

Slawek Zadrozny
Suresh Sethi

Tatiana Afanaseva
Thomas Epper
Tin-Chih Toly Chen
Tobias Preis

Tomas Cipra
Toshihisa Funabashi
Tsangyao Chang
Tzung-Pei Hong
Ulrich Foelsche

V. Jothiprakash
Vadlamani Ravi

Vijay P. Singh

Vladas Pipiras
Wei-Chiang Hong
Wei-Xing Zhou
Wieslaw M. Macek
Willem K. M. Brauers
William A. Barnett
Witold Pedrycz
Wolfgang K Hardle
Yixiao Sun

Yucheng Dong

Yukun Bao



ITISE 2017 Conference Program

PROCEEDINGS ITISE 2017

Advanced in Time Series Forecast

Alternative Solution for the Adjustment of Defect Liability Period in Construction ....... 1
Kichang Jeong, Woo-Ram Kim and Jaeseob Lee

Time Series Anomaly Detection with Discrete Wavelet Transforms and Maximum
Likelihood Estimation....... ..o . 11
Markus Thill, Wolfgang Konen and Thomas Baeck

Robust Multivariate Time Series Analysis in Nonlinear Models with Autoregressive and

t-Distributed Errors. ... ... 23
Hamza Alkhatib, Boris Kargoll and Jens-André Paffenholz
Kurtosis Computations and Black-Scholes Model with GARCH Volatility ................ 37

Muhammad Sheraz

Robust estimation of covariance and correlation functions of a stationary multivariate
PTOCESS . o ottt ettt ettt ettt et e e 47
Higor Cotta, Valdério Reisen, Pascal Bondon and Wolfgang Stummer

Applications in Time Series

Forecasting German Crash Numbers: The Effect of Meteorological Variables.............. 59

Kevin Diependaele, Heike Martensen, Markus Lerner, Andreas Schepers, Frits
Bijleveld and Jacques J.F. Commandeur

Safety stock calculation based on kernel bandwidth estimates that minimize inventory

Carlos Ruiz-Canadas and Juan R. Trapero

Forecasting Diffusion Investments in FinTech Using Diffusion Models..................... 76
Miriam Scaglione and Simone Dimitriou

Multiple seasonal Holt-Winters improvement for the special events forecast using
Discrete-Interval Multiple Seasonalities............ .o 91
Juan Carlos Garcia-Diaz and Oscar Trull

Chaos Neural Network for Ultra-Long Period Pseudo-Random Number Generator........ 102
Hitoaki Yoshida, Yukito Kon and Takeshi Murakami

Joint Multifractal Description of the Influence of Climatic Variables on Reference
Evapotranspiration Time Series . ...........oit i 114
Ana Belén Ariza Villaverde, Pablo Pavén Dominguez, Juan Maria Gémez Lopez,
Eduardo Gutiérrez de Ravé Agiiera and Francisco José Jiménez Hornero

Generalized nonparametric method for analyzing economic data inconsistent with the
model of single rational representative cOnSUmMer. ..............cooiiiiiriirnennnennen.n.. 117
Nikolay Klemashev and Alexander Shananin

Geomagnetic Storms, Earthquakes and their Influence on GNSS Coordinate Time Series. . 122
Inese Varna, Janis Balodis and Diana Haritonova

vii



ITISE 2017 Conference Program

Forecasting Power Output of Photovoltaic Systems Using Linear, Non-Linear and

Enhanced Models . ... 129
Georgia Xanthopoulou, Athanasios Salamanis, Dionysios Kehagias, Toannis Antoniou,
Charalampos Bratsas and Dimitrios Tzovaras

Extreme value analysis of geomagnetic activity based on the data from Canadian
geomagnetic ODSEIVALOTIES . . . . ...ttt e e 141
Lidia Nikitina, Larisa Trichtchenko, David Boteler and Callum Heggart

Estimation of the crustal velocity field in Baza and Galera faults from GPS position
time series in 2000-2012 . . .. .. i 146
Antonio J. Gil, et.al.

Advanced Symbolic Time Series Analysis in Cyber Physical Systems ..................... 155
Roland Ritt, Paul O’Leary, Christopher Josef Rothschedl and Matthew Harker

A Non-stationary Index-flood Model With Local Likelihood Smoothing for Drought
ASSESSINENL . .o oo 162
Filip Strnad, Martin Hanel, Vojtéch Moravec and Adam Vizina

Forecasting of Demand on Raw for Dairy Products............... ... ... 173
Marina Arkhipova, Viacheslav Sirotin and Kirill Arkhipov

Spark and Solr: a powerful and ergonomic combination for online search in the Big Data
environment (case of the UAE). ... e 181
Karim Aoulad Abdelouarit, Boubker Sbihi and Noura Aknin

Dynamical evolution of the community structure of complex network inherent in seismic
BIMIE SETIES . . .ot 192
Norikazu Suzuki

Quantitative characterization of intracellular calcium signals...................... .. ... 195

Iker Malaina, Carlos Bringas, Alberto Pérez-Samartin, Luis Martinez and Ildefonso
Martinez de La Fuente

Real-Time Radioactive Precursor of the April 16, 2016 Mw 7.8 Earthquake in Ecuador ... 207
Theofilos Toulkeridis, Fernando Mato, Katerina Toulkeridis-Estrella, Juan Carlos
Perez Salinas, Santiago Tapia and Walter Fuertes

Local selection of learning data for neural networks in prediction of PM10 pollution ...... 220
Krzysztof Siwek and Stanislaw Osowski

Intelligent approach to vehicle routes planning base on artificial neural networks

prediction model . . ... ... e 232
Daniel Kubek and Pawet Wiecek

Electricity price forecasting using a hybrid time series model ............................. 246
Biisra Tas and Ceylan Yozgatligil

Forecasting Intraday Risk Measures using Multiplicative Component GARCH Model
and Multimodal Distributions.......... ..o i 249

Aymeric Thibault and Pascal Bondon

Astronomical Time Delay EStimations. ..... ... 254
Mariko Kimura, Hyungsuk Tak and Taichi Kato

viii



ITISE 2017 Conference Program

Period Analysis in Astronomy by using Lasso ... 266
Keisuke Isogai

Analyzing Spatial Dissimilarities via Effective-Time Series.................ooiiiiiii .. 270
Madalina Olteanu and Julien Randon-Furling

Sequential Motor Unit Number estimation ............ ... ... i i, 282
Peter Ridall

The electricity consumption in selected sectors of the Polish economy..................... 295
Marek Kott

Bio-medical Time Series Analysis

A GIS-based Model for Cholera Forecast ............cooiiiiiiii i 305
Dau Xuan Hoang and Thi Ngc Anh Le

Correlation Dimension Estimation from EEG Time Series for Alzheimer Disease
DIagnostiCs . . .ot 316
Martin Dlask and Jaromir Kukal

An application of the GAM-PCA-VAR model to respiratory disease and air pollution data319
Marton Ispdny, Juliana Bottoni de Souza, Valderio A. Reisen, Glaura C. Franco,
Pascal Bondon and Jane Meri Santos

Chaos and Random in Time Series

Cryptanalysis of a Random Number Generator Based on a Chaotic Ring Oscillator....... 321
Salih Ergun

Factors Affecting Randomness in Pseudo-Random Number Series Extracted from

Chaotic Time Series of Logistic Map and Chaos Neural Network.......................... 331
Hitoaki Yoshida, Masatomo Sasaki, Takeshi Murakami, Shogo Shimono and Satoshi
Kawamura

Computational Intelligence methods for Time Series

Exploring a century of Savoy history using hidden-Markov models with Beta-inflated
AIStrIDULIONS . ..o et 343
Julien Alerini and Madalina Olteanu

Comparing Three Time Series Segmentation Methods via Novel Evaluation Criteria ... ... 355
Huynh Thi Thu Thuy, Vo Thi Ngoc Chau and Duong Tuan Anh

Eigenvalues distribution limit of covariance matrices with AR processes entries........... 367
Zahira Khettab and Tahar Mourid

An Incremental von Mises Mixture Framework for Modelling Human Activity Streaming

DAt . o 379
Eris Chinellato, Kanti Mardia, David Hogg and Anthony G. Cohn
Simulation of Defect Prediction over Time in Building Facade ................. .. .. ... 390

Woo-Ram Kim, Kichang Jeong, Yongdeok Jeon, Jinhong Park, Heeyoung Jeong and
Jae-Seob Lee

ix



ITISE 2017 Conference Program

Signal Classification using Covariance Matrices: A Riemannian Geometry Framework. . ... 400
Shaelyn G. Divins, Joshua S. Beard, Nenad Mijatovic, Anthony O. Smith, Adrian M.
Peter, Dean A. Clauter and Rana Haber

Combining Support Vector Regression with Scaling Methods for Highway Tollgates
Travel Time and Volume Predictions .. ....... ..o 411
Amanda Yan Lin, Mengcheng Zhang and Selpi Selpi

Data preprocessing methods: Data decomposition, seasonal adjustment,
singular spectrum analysis, detrending methods

Comparative analysis of criteria for filtering time series of word usage frequencies......... 422
Inna Belashova and Viadimir Bochkarev

Educational Data Mining: A Case Study of Data Pre-Processing and Investigation of
Students’ Academic Achievement for Artificial Intelligence Classifier ..................... 432
Usamah Mat and Norlida Buniyamin

Telescope: A Hybrid Forecast Method for Univariate Time Series......................... 444
Marwin Zifle, André Bauer, Nikolas Herbst, Valentin Curtef and Samuel Kounev

The analysis of variability of short data sets based on Mahalanobis distance calculation
and surrogate time series testing ...... ... 452

Teimuraz Matcharashvili, Natalia Zhukova, Tamaz Chelidze, Fvugeni Baratashvili,
Tamar Matcharashvili and Manana Janiashvili

Rainfall Measurements from Commercial Cellular Networks ............. ... ... ... ........ 463
Reason L. Machete, Leonard A. Smith and Nnyaladzi Batisani

Understanding Instantaneous frequency detection: A discussion of Hilbert-Huang
Transform versus Wavelet Transform ......... ... . . 474
Mazximiliano Bueno Lopez, Marta Molinas and Geir Kulia

Deep Learning and Time Series Analysis

Deep Learning for Detection of BGP Anomalies ..., 487
Marijana Cosovic, Slobodan Obradovic and Emina Junuz

Abnormal State Prediction based on Deep Learning using Multiple Time Series

Production Process Data. ... 499
Shigeru Fujimura and Wen Song

Human Gait Recognition by Deep Convolutional Activation Feature of Recurrence Plot

for Accelerometer TIme SETieS. ... ...ttt e 503
Yusuke Manabe

Dimensionality reduction and Similarity measures for Time series data
analysis and its applications

Design Aircraft Engine Bivariate Data Phases using Change-Point Detection Method
and Self-Organizing Maps . ... ...t 512
Cynthia Faure, Jean-Marc Bardet, Jérome Lacaille and Madalina Olteanu



ITISE 2017 Conference Program

Linear Trend Filtering via Adaptive Lasso. .. ... ... 524
Matus Maciak

A novel genetic algorithm based similarity measure for time series classification........... 536
Basabi Chakraborty and Sho Yoshida

A time series clustering technique to analyze the stock market movement after the
budget annoOUNCEMENT . . . ..ottt 548

Arup Mitra, Saptarsi Goswami, Basabi Chakraborty, Arun Jalan and Amlan Chakrabarti

An Efficient Anomaly Detection in Quasi Periodic Time-series Data - A Case Study
With FC G . 563
Goutam Chakraborty, Takuya Kamiyama, Hideyuki Takahashi and Tetsuo Kinoshita

New Hybrid Feature Selection Algorithm based on Consistency Measures and Simulated
Annealing Search .. ... i 575

Adrian Pino Angulo, Kilho Shin and Takako Hashimoto

On methods to assess the significance of community structure in networks of financial
BII0E SETIES . o ottt 585

Argimiro Arratia and Marti Renedo

Minimizing the Number of Probes and Maximizing Classification Performance for P300
BT Speller. ..o 597

Weilun Wang, Horie Shigeki and Goutam Chakraborty

Econometric Forecasting

Untangling the inefficiency of hotel industry: the Portuguese Teixeira Duarte Hotel
chain analysis . ... ... 609
Nuno Ferreira and Manuela de Oliveira

Determining macroeconomic indicators to implement a short-term forecasting model for
VAT TEVENUE. . ..ttt t ettt ettt e e et e et et e et e e e e e e et s 616

Maria Del Camino Gonzalez Vasco and Cesar Pérez Lopez

Combining forecasts to capture realized volatility dynamics............ ...t 639
Danilo Carita, Giovanni De Luca and Giampiero M. Gallo

Time series and artificial intelligence with genetic algorithms hybrid approach for rare
earths price prediCtion. .. ... ... i 649

Fernando Sanchez Lasheras, Sergio Luis Sudrez Gomez, Maria Victoria Riesgo
Garcia, Alicia Krzemien and Ana Sudrez Sanchez

Predicting the financial status of companies using data balancing and classification

Mt OAS . .o 661
Huthaifa Aljawazneh, Antonio Mora Garcia and Pedro Castillo Valdivieso

Econometric models

Change Point Detection in Autoregression Without Variability Estimation................ 674
Barbora Pestova and Michal Pesta

xi



ITISE 2017 Conference Program

Distance Between VAR Models and its Application to Spatial Differences Analysis in
the Relationship GDP - Unemployment Growth Rate in Europe.......................... 686

Francesca di Torio and Umberto Triacca

A least-squares approach to estimate the impulse-response function of a general linear

Miguel Jerez and Alfredo Garcia-Hiernauz

Recovering the background noise of a Levy-driven CARMA process using an SDDE
APPTOACK . « o et 707

Mikkel Slot Nielsen and Victor Rohde

Energy Forecasting

Fuel Consumption Estimation for Climbing Phase........... ... ... ..o o i 719
Jingjie Chen and Yongping Zhang

Energy Prediction of Access Points in Wi-Fi Networks Using Time Series Modeling. ... ... 730
David Rodriguez Lozano, Juan A. Gomez-Pulido and Arturo Durdn Dominguez

A Combination of Variational Mode Decomposition with Neural Networks on Household
Electricity Consumption Forecast ...... ... .. i 740

Vanessa Haykal, Hubert Cardot and Nicolas Ragot

Nonparametric panel stationarity testing. An application to crude oil production......... 752
Manuel Landajo, Maria José Presno and Paula Ferndndez Gonzilez

Detection of temperature break point for gas storage ...t 764
Andrzej Szczurek, Andrzej Kielbik and Monika Maciejewska

An econometric analysis of the merit order effect in electricity spot price: the Germany

Francois Benhmad and Jacques Percebois

Pattern sequence similarity based techniques for wind speed forecasting .................. 786
Neeraj Bokde, Alicia Troncoso, Gualberto Asencio-Cortés, Kishore Kulat and
Francisco Martinez-Alvarez

Improving the performance of machine learning models by integrating partly physical

control response models in short-term forecasting of aggregated power system loads....... 795
Pekka Koponen, Harri Niska and Reino Huusko

Ensemble forecasting

A new approach to nowcast economic time series using ensembles of hidden Markov and
Arima MOdelS . ... 807

Alvaro Gémez-Losada and Panayotis Christidis

Ensemble Learning Framework for Predicting Project Cost Overrun Levels in
Construction Procurement Auctions. ......... ... ... i 809

Hyosoo Moon, Trefor P. Williams and Moonseo Park

Xii



ITISE 2017 Conference Program

Time Series Forecasting applying Data Transformation and Neural Networks Ensembles .. 820
German Gutierrez, M. Paz Sesmero Lorente and Araceli Sanchis

Forecasting Complex/Big data

Dynamics of Memory in Investor Attention to Energy Market ................ .. .. .. .. 829
Ravi Prakash Ranjan and Malay Bhattacharyya

Sparse Granger-Causal Network Learning via the Depth Wise Group LASSO — An
Application of ADMM for Large Vector Autoregressions. .........o.oooeveiuiineinenenn... 841
Ryan J. Kinnear and Ravi R. Mazumdar

Development of a Routing Procedure to Assist an Earth Systems Model with Long
Term Coastal Discharge Predictions........ ... i 853
Josefine Wilms and Marcus Thatcher

Short-term Stream Flow Forecasting at Australian River Sites using Data-driven
Regression Techniques. . ... ... e 865
Melise Steyn, Josefine Wilms, Willie Brink and Francois Smit

An Implementation of HMM Classier in High Dimensions Based on MapReduce .......... 877
Badreddine Benyacoub

Performance Analysis of Time Series Forecasting of Ebola Casualties Using Machine
Learning Algorithins. . ... ..o o e 885
Manish Kumar Pandey and Karthikeyan Subbiah

Hidden Markov Models for monitoring Circadian Rhythmicity in Telemetric Activity Data899
Barbel Finkenstadt

Forecasting via Fokker-Planck using conditional probablilites............................. 913
Chris Montagnon

Forecasting of CO2 emissions based on Preprocessing Techniques......................... 922

Lida Barba, Guillermo Machado, Lorena Molina, Ana Congacha, Jorge Delgado and
Lady FEspinoza

Analysis of Buildings Energy Losses Using Smart Monitoring............... ... .. 939
Nivine Attoue and Isam Shahrour

Forecasting UK House Prices During Turbulent Periods .....................oooiiin 946
Alisa Yusupova and Efthymios Pavlidis

Impact of weather forecasting accuracy over the electric demand predictions quality . ..... 960
Eduardo Caro, Jesis Juan and Paula Cernuda

A New Approach for Time Series Decomposition and Prediction.......................... 964
Yading Yue, Guangan Zhuang, Rong Zhang, Jianchun Zhao and Lichun Liu

Short-term time series forecasting based on internal smoothing of Pade interpolants ...... 974
Minvydas Ragulskis, Kristina Lukoseviciute, Tadas Telksnys and Zenonas Navickas

Future of Mathematical and Logical Structures behind Time Series
Analysis and History

xiii



ITISE 2017 Conference Program

The Dependence Structures of Non-Stationary Bivariate INAR(1) Processes: The Case
of the Bivariate Poisson Innovations........... ... ... . i i 985

Naushad Mamode Khan, Yuvraj Sunecher and Vandna Jowaheer

Similarity Analysis of Time Interval Data Sets Regarding Time Shifts and Rescaling...... 995
Marc Hafler, Sabina Jeschke and Tobias Meisen

Financial variables and the real economy: Evidence using a data based procedure of
Simultaneous Structural Model Design ........ ... i 1007

Roger Hammersland

Logical Comparison Measures in Classification of Data .......... ... ... ... 1035
Kalle Saastamoinen

Macroeconomic analysis

Macroeconomic Forecasting using Approximate Factor Models with Outliers.............. 1047
Ray Yeutien Chou, Tso-Jung Yen and Yu-Min Yen

Testing Granger-causality on macroeconomic time series: a bootstrap approach........... 1050
Matteo Farné and Angela Montanari

An implied rating software SyStem. .. ... ... 1054
Ventsislav Nikolov

Fiscal Regime Shifts, and Household Expectations on Policy Dynamics................... 1064
Diederik Kumps and Peter Claeys

Nonparametric and functional methods

Robust autocovariance estimation from the frequency domain ............................ 1073
Higor Cotta, Valdério Reisen and Pascal Bondon

Event Related Causality analysis of electrocorticographic (ECoG) time series as
diagnostic tool for epileptic SUrgery. ... ..o 1075

Anna Korzeniewska, Piotr Franaszczuk and Nathan Crone

Sieves Estimators and Predictors for Functional Autoregressive Processes................. 1083
Tahar Mourid and Nesrine Kara-Terki

Modeling of p-order persistent time series by the modified Langevin equation............. 1089
Zbigniew Czechowski

Bootstrap confidence intervals for conditional density function in Markov processes....... 1094
Inés Barbeito Cal, Ricardo Cao and Dimitris Politis

Forecasting with functional Time Series ........ ... it 1098
Fatiha Messaci and Sara Leulmi

Time Series predictor based on deterministic and stochastic assumptions ................. 1108

Pedro Cadahia, José Manuel Bravo Caro, Manuel Emilio Gegundez-Arias and
Antonio Golpe

Xiv



ITISE 2017 Conference Program

Functional Data Classification by Discriminative Interpolation with Features............. 1120
Rana Haber, Anand Rangarajan, Nenad Mijatovic, Anthony O. Smith and Adrian M.
Peter

Nonstationarity Analysis in Time Series

A Modified EM Algorithm for Parameter Estimation in Linear Models with
Time-Dependent Autoregressive and t-Distributed Errors......... ... ... ... ... 1132

Boris Kargoll, Mohammad Omidalizarandi, Hamza Alkhatib and Wolf-Dieter Schuh

Copulas for Modeling the Relationship between the Inflation and the Exchange Rates . ... 1146
Laila Ait Hassou, Fadoua Badaoui, Cyrille Okou Guei, Amine Amar, Abdelhak Zoglat
and FElhadj Ezzahid

Fractal analysis applied to light curves of pulsating stars ................ ... .o oio... 1157

Sebastiano de Franciscis, Javier Pascual Granado, Juan Carlos Sudrez and Rafael
Garrido Haba

Recent Developments on Time-Series Modelling

Method for modeling and analysis of natural time series............... ... ..., 1163
Oksana Mandrikova, Nadezhda Fetisova and Yury Polozov

A New Estimation Technique for AR(1) Model with Long-tailed Symmetric Innovations .. 1175
Aysen Dener Akkaya and Ozlem Turker Bayrak
Modeling and analysis of the cosmic rays variations during periods of heliospheric

disturbances on the basis of wavelet transform and neural networks ...................... 1185
Oksana Mandrikova and Timur Zalyaev

Multidimensional Time-Frequency Analysis of the CAPM ............ ... ... ..., 1187
Roman Mestre and Michel Terraza

Prediction of High-Dimensional Time-Series with Exogenous Variables Using Extended

Koopman Operator Framework in Reproducing Kernel Hilbert Space..................... 1206
Jia-Chen Hua, Farzad Noorian, Philip H.W. Leong, Gemunu Gunaratne and Jorge
Gongalves

Structural Time Series Models

Nonlinear Dynamical Analysis of Twitter Time Series.............. ... ... .. 1219
Andrey V. Dmitriev, Vitaly Silchev, Victor Dmitriev and Svetlana Maltseva

Interpolation of ARMA processes with infinitely divisible white noise..................... 1231
Argimiro Arratia, Alejandra Cabaria and Enrique Cabana

Analysis of time series of earthquake occurrence in Caucasus ............c.coovviiiin... 1240
T. Matcharashvili, N. Zhukova, E. Mepharidze, A. Sborshikov

XV






Alternative Solution for the Adjustment of Defect
Liability Period in Construction
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Abstract. Buildings deteriorate with time. The defects in buildings affect deteri-
oration, but are generally distinguished from natural deterioration. Flaws or de-
fects that do not satisfy normal conditions expected of completed structures are
referred to as "defects". Furthermore, such defects are the contractor's liability,
and the limited period of this liability is called the 'liability period'.

Practically, it is difficult to adjust the defect liability period of facilities. In par-
ticular, if construction is suspended after the facilities are completed or during
the assembly phase, the facilities will undergo natural deterioration. This deteri-
oration is accompanied by physical performance degradation, and the contractor
would not be willing to bear additional risks incurred by an extension of the de-
fect liability period. However, the employer will demand that the defect liability
period should be applied from the actual installation date, despite the effects of
natural deterioration. As a result, there is a possibility for conflict.

Even though the delivery date of facilities is delayed due to the suspension of
construction, it is, in some cases, possible to adjust the defect liability reasonably
through an agreement between the parties, if they adopt a method for recognizing
the initial performance maintenance cost.

Therefore, the authors of this study propose an alternative method of contract
adjustment, which recognizes the initial performance maintenance cost, in addi-
tion to the method of adjusting the defect liability period due to the suspension
of construction.

Keywords: defect, liability, delay, power plant, deterioration

1 Introduction

1.1  Background and Purpose

A construction project is a bilateral contract between parties, in which the employer
and the contractor sign an agreement through mutual consultation, based on their own
will, with each one in an equal position. Furthermore, a construction project undergoes
various changes in conditions because it occurs over a long period of time[1], and in-
volves adjustment of the contract amount or construction period according to such
changes.
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This adjustment is initiated with a claim by one party. A claim for acceleration, de-
lay, or disruption involves a change of the expected time or work method. Each claim
requires corresponding evidence. Among them, delay involves an increase of the time
required for completing the project that was considered at the time of contract signing,
and each party should bear the delay cost for their part. Each must take responsibility
for the delay, if there is any.[2]

Delay claim corresponds to a claim for damages, which is included in the delay type.
A general characteristic of a delay claim is that the contractor insists that it takes more
time to do the required work than they planned, because of the interference and design
changes made by the employer, and/or the delayed decision making of the employer or
designer. As a result, the contractor must work more than planned, regardless of the
performance of the work that they planned or expected at first.[3]

The existing studies on defects include a study that proposes comprehensive im-
provements on the legitimacy of the defect liability period, rationalization of the re-
sponsible entity, and an efficient consumer relief process through a general approach
rather than concrete suggestions[4], and a study that proposes the introduction of a per-
formance guarantee system regarding the responsibility for defects.[5] However, no
study has been conducted on the method of adjusting the rights and responsibilities for
defects. In general, the contract conditions require the contractor to take responsibility
for the defects of the construction. However, a 'liability period' is set from the comple-
tion date, and there are no terms for adjusting the 'liability period' for delays caused by
a reason that is not attributable to the contractor.

In this background, this study analyzes the Conditions of Contract for Construction
of the International Federation of Consulting Engineers (FIDIC), which are widely rec-
ognized as a standard contract form. It proposes a method of adjusting the defect liabil-
ity period according to the responsibility for the delay.

1.2 Scope and Method

The subject of this study is limited to the FIDIC’s Conditions of Contract for Construc-
tion, which is currently recognized as a global standard for conditions of construction
contracts, and the delay factors regarding the adjustment of defects are addressed in a
limited manner. The study method is as follows:

1. Perform a theoretical discussion related to the defects and contract changes.

2. Analyze the related provisions and problems of contracts prepared under the FIDIC’s
Conditions of Contract for Construction.

3. Present problems through case analysis.

4. Propose a method of rationally adjusting the responsibility for defects based on these
factors.
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and contract changes
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g

Suggestion for improvements

Fig. 1. Flow chart of the study

2 Theoretical Discussion

2.1  Definition of Deterioration and Defect

There is a distinction between general deterioration and a defect. Deterioration occurs
when facilities are worn out naturally with time, and their functions are diminished as
a result. Jae-Hyeok Park(2009) defined the characteristics of building deterioration by
classifying them into physical deterioration, functional and technical deterioration, and
socioeconomic deterioration.[6] Further, the dictionary definition of defect is a fault or
flaw that does not meet the normal conditions. Furthermore, an architectural defect gen-
erally means poor quality that does not meet specifications, functional faults, or incom-
plete installation resulting from erroneous construction or omission of items in a pro-
cess that must be performed by the contractor for a building.[7]

Therefore, the natural deterioration of functions due to old facilities or equipment
with the flow of time after completion of a building is clearly distinguished conceptu-
ally from the defects that occur due to failure to reach a normal state.
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2.2 Change of Contract Terms and Conditions

Construction necessarily involves a change of contract terms and conditions because it
is a long-term project. A construction project is a bilateral contract between two parties,
in which the employer and the contractor sign an agreement through mutual consulta-
tion based on their own will, with each in an equal position. Furthermore, a construction
project extends over a long period of time, and various changes in conditions can occur.
The changed terms and conditions involve an adjustment of the contract amount. A
common issue today is the calculation of additional overhead following an extension
of construction period.[8]

The adjustment of contract amount starts from a claim by one party. The claims for
acceleration, delay, and disruption involve a change of time or work method for the
contracted work, and each claim requires evidence. Among them, “delay” involves an
increase of the time required to complete the project that was considered at the time of
contract. Each party must bear the cost of delay for the part that they are responsible
for, if there is any.[9]

Considering that a construction project is a mutual contract where parties take re-
sponsibility for their obligations, a contract change due to delays caused by nonfulfill-
ment of obligation should be rationally adjusted considering the increased time and
cost.

3 Defect Liability and Contract Change in a FIDIC
Agreement

3.1 Outline of the Conditions of Contract for Construction in FIDIC

In this study, the FIDIC’s Conditions of Contract for Construction are analyzed to ex-
amine defect liability and contract change related to delay. In particular, to investigate
the defect liability adjustment for delay, this study focuses on the provisions corre-
sponding to this subject.

FIDIC is an international federation of national member associations of consulting
engineers. FIDIC was founded in 1913 by three such associations within Europe. The
objectives upon formation were to promote in common the professional interests of the
member associations, and to disseminate information of interest to their members. To-
day, FIDIC membership covers more than 70 countries from all parts of the globe and
encompasses most of the private practice of consulting engineers.

This study focuses on the FIDIC because it provides global standard for contract
conditions, giving sufficient value to research. Moreover, many studies are being con-
ducted on the Conditions of Contract for Construction, which are the most basic con-
tract terms of FIDIC.
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3.2 FIDIC’s Terms Related to Defects

Term 11 is related to defects in the FIDIC contract, and it consists of 11 detailed terms,
which are outlined in Table 1.

Table 1. Composition of ‘11. Defects Liability’ in the Conditions of Contract for Construction.

11. Defects Liability
11.1 Completion of Outstanding Work and Remedying Defects

11.2 Cost of Remedying Defects

11.3 Extension of Defects Notification Period
11.4 Failure to Remedy Defects

11.5 Removal of Defective Work

11.6 Further Tests

11.7 Right of Access

11.8 Contractor to Search

11.9 Performance Certificate

11.10 Unfulfilled Obligations

11.11 Clearance of Site

To examine the terms in detail, the completion of outstanding work and the defects
must be remedied within a reasonable period of time, as specified by the engineer. The
employer must notify the contractor in case any defects or damages occur.[10]

It is stated that the contractor must take full responsibility for the defect repair
cost.[11] If the main items of construction, partial construction or installation cannot
be used for their intended purpose towing to defects or damages even after the takeover,
the contractor has a right to extend the defect notification period.

This period cannot be extended for more than two years. However, this term is not
applicable if the construction is suspended due to a cause that is not attributable to the
contractor.(“the Contractor's obligations under this clause shall not apply to any defects
or damage occurring more than two years after the defects notification period for the
plant and/or materials would otherwise have expired.”)[12]

3.3  Terms Related to Delay and Suspension in the FIDIC Contract

Term 8 is related to delay and suspension in the FIDIC contract, and it consists of
12 detailed terms in total. These terms are outlined in Table 2.
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Table 2. Composition of ‘8. Commencement, Delay, and Suspension’ in the Conditions of
Contract for Construction.

8. Commencement, Delay, and Suspension
8.1 Commencement of works

8.2 Time for Completion

8.3 Programme

8.4 Extension of Time for Completion

8.5 Delays Caused by Authorities

8.6 Rate of Progress

8.7 Delay Damages

8.8 Suspension of Work

8.9 Consequences of Suspension

8.10 Payment for Plant and Materials in Event of Suspension
8.11 Prolonged Suspension

8.12 Resumption of Work

To examine the detailed terms, the contractor has a right to extend the time for com-
pletion in case a delay is caused by variations, exceptionally adverse climatic condi-
tions, unforeseeable shortages in the availability of personnel or goods caused by an
epidemic or governmental actions, or other miscellaneous reasons that are not attribut-
able to the contractor.[13] The engineer can notify partial or full suspension of the con-
struction to the contractor,[14] and can extend the time for completion and claim com-
pensation in case delay and cost are generated as consequences of such suspension.[15]

Furthermore, the contractor is entitled to payment of the value of the plant and/or
materials which have not been delivered to the site if the work on the plant or delivery
of the plant and/or materials has been suspended for more than 28 days, and if the con-
tractor has marked the plant and/or materials as the employer’s property in accordance
with the engineer’s instructions.[16] In addition, if the suspension has continued for
more than 84 days, the contractor may request the engineer’s permission to proceed. If
the engineer does not give permission within 28 days after being requested to do so, the
contractor may make adjustments according to the terms on variations and adjustments.
If the suspension affects the entirety of the work, the contractor may give a notice of
termination.[17]
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3.4  Terms Related to Variations and Adjustments in the FIDIC
Contract

Term 13 is related to variations and adjustments in the FIDIC contract, and it consists
of eight detailed terms. They are outlined in Table 3.

Table 3. Composition of “13. Variations and Adjustments’ in the Conditions of Contract for
Construction

13. Variations and Adjustments
13.1 Right to Vary

13.2 VE

13.3 Variation Procedure

13.4 Payment in Applicable Currencies

13.5 Provisional Sum

13.6 Daywork

13.7 Adjustments for Changes in Legislation
13.8 Adjustments for Changes in Cost

The engineer may initiate variations at any time prior to issuing the takeover certif-
icate of the work. Each variation may include changes to the quantities of any item of
work, changes to the quality and other characteristics of any item of work, and changes
to the sequence or timing of the execution of the work, among others.[18]

If a variation proposal is requested, the contractor is required to respond via a con-
tractor’s proposal for any necessary modifications to the program and to the time for
completion.[19]

Furthermore, there is a term on adjustments for changes in cost, according to changes
in the appropriate standard prices, which is a simple term for adjusting the change based
on price variation.[20]

3.5  Terms for Adjusting Liability Related to Defects in the FIDIC
Contract

With regard to defects, the FIDIC clearly states that the defect liability period cannot
be extended as a result of a suspension that is due to a reason that is not attributable to
the contractor through Term 11.3, Extension of Defects Notification Period. Neverthe-
less. Therefore, the FIDIC fails to clearly present the concept of an appropriate adjust-
ment method.
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4 Presentation of Problem through Case Analysis

As described above, the FIDIC’s Conditions of Contract for Construction prescribes
that the defect liability period of two years can be extended if the work and plant instal-
lation are delayed, but this provision for additional defect liability extension is not ap-
plicable in the case where the contractor is not responsible for the delay. In this case,
problems may arise because it is difficult to apply this regulation in practice. The au-
thors will explain this practical difficulty through a case study below.

In the Case , which is installation work for boiler equipment, the defect liability pe-
riod under the contract was one year. The installation was completed on December 31,
2014, but the construction was suspended for one year by an order of the engineer hired
by the employer. As a result, the actual completion date of installation was December
31, 2015, one year later.

Table 4. Outline of the Case

Project name Boiler Installation Work
Defect liability period 1 year

Original installation date (planned) December 31, 2014
Actual installation date (actual) December 31, 2015
Work suspension period 1 year

In such cases as the Case example, the following conflict may happen.

Position A. Regarding the equipment of which the delivery was delayed for one year,
the defect liability period lasts until December 31, 2015, which is one year from the
original installation date. Therefore, the employer cannot demand fulfilment of defect
liability from the contractor for defects incurred after the actual installation date.

Position B. Even if delivery of the equipment was delayed for one year, the boiler
was maintained and installed in new condition. Therefore, the employer can insist that
the defect liability period lasts until December 31, 2016; one year after the actual in-
stallation date. In case a suspension of work occurs, the employer will demand the con-
tractor to preserve the site, and the contractor will inevitably incur maintenance costs
to maintain the site conditions. It is stipulated that the costs incurred for such mainte-
nance can be claimed.

The issue of the defect liability period can be solved simply through a contract term,
but this can be complex in practice. When we look at Case A, we cannot equate the
condition of the equipment that has been used for one year to the condition of the equip-
ment that has not been used at all for one year.

5 Alternative Solution

It is practically difficult to adjust the defect liability period for facilities. When the
construction work is suspended after the completion or assembly of the facility, the
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facility will undergo natural deterioration, which involves physical performance degra-
dation. Therefore, the contractor will not want to bear the additional risks due to the
extended defect liability period. However, the employer will demand that the defect
liability period should be applied from the actual installation date, despite this natural
deterioration. As a result, there is a possibility of a dispute.

However, in case of physical deterioration, the manufacturer of the facility, who has
the best expertise on the facility, could maintain the initial performance until the time
of delivery if they perform additional technical management to maintain the initial per-
formance until the delayed delivery time. This cost is referred to as initial performance
maintenance cost, in this study. If the delivery date of the equipment is delayed due to
a suspension of work, the employer may have the contractor submit a plan for the initial
performance maintenance cost and compare it with the actual expected cost of defects.
If a contract term that allows the evaluation of economic efficiency in this way can be
introduced, a rational adjustment of the defect liability could be made by an agreement
between the parties.

Therefore, the authors propose a contract adjustment method through the recognition
of the initial performance maintenance cost as an alternative to the adjustment of the
defect liability period due to a suspension of work.

6 Conclusion

This study was conducted to find an alternative solution to resolve the practical diffi-
culty involved in adjusting the defect liability period. Further, a method of recognizing
the initial performance maintenance cost was proposed. An analysis of the contract
terms outlined in FIDIC, which are broadly cited as an international standard, revealed
that it allows adjustment of the defect liability period. However, a case analysis showed
that such an adjustment is not easy in practice. As a solution to this issue, this study
proposed a new contract adjustment method for defect liability, through the recognition
of the initial performance maintenance cost.

This study suggests a new concept for rational adjustment of defect liability in the
event of variation in the construction period, and it is expected to provide a rational
solution to the settlement of disputes due to delayed construction. In future studies, this
new method must be concretized by additionally reflecting upon the opinions of prac-
titioners and related experts.
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Abstract. A new algorithm, based on the Discrete Wavelet Transform
(DWT), for unsupervised anomaly detection in time series is introduced
in this paper. The approach is based on using maximum likelihood es-
timation (MLE) on the DWT of time series. On a diverse set of 158
time series, the algorithm is compared with three other state-of-the-art
anomaly detectors and it is shown to outperform the other approaches
on the test set. Thanks to the linear time complexity of the DWT, our
new algorithm is also computationally efficient.

Keywords: Time series, anomaly detection, wavelet transform, DW'T,
maximum likelihood estimation

1 Introduction

Anomaly detection in time series is a key technology in many areas. Industries
have more and more devices (predictive maintenance for industry equipment,
sensors in the internet of things, or server technologies in cloud services of the
internet) which are collecting increasingly large streams of data. Research insti-
tutions (e.g. high energy physics or astronomy) are collecting vast amounts of
data. To cope with this data, it is of importance to have automated procedures
which separate the large amount of normal data from the anomalies, i.e. to have
fast and reliable anomaly detection.

An anomaly is however difficult to define. In its most general form it is
the absence of normality, but ,normality” depends largely on the context and
cannot be expressed in closed form. A further complication is that anomalies can
appear on quite different time scales: they can be spikes (short-time events) or
broader structures (long-term irregularities). Most anomaly detection algorithms
available today have their strength either in shorter or in longer time scales, but
not in both.

Wavelets are a well-established technique in signal processing which allow
to extract features in a self-similar fashion over a broad range of time scales
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(frequencies). This makes them ideally suited to detect anomalies on different
time scales where the time scale is a priori unknown.3

We present in this paper a new method for detecting anomalies based on
wavelet processing and maximum likelihood estimation (MLE). Section 2 ex-
plains our method, Sec. 3 describes the experimental setup. Sec. 4 shows results
and discusses them. Sec. 5 concludes.

1.1 Related Work

Despite the fact that wavelets are used for decades in signal processing and fea-
ture extraction, e. g. for classification of whole time series (machinery data) [12,13],
there is only very little work with wavelets being used for anomaly detection,
i. e. finding precise time intervals in time series containing anomalies: Kwon et
al. [5] use wavelet transforms for the detection of network anomalies in the case
of a possible attack by a malicious user. Kanarchos et al. [4] use wavelets in
conjunction with neural networks and Hilbert transforms. Their algorithm was
only tested on two time series which consisted of synthetic normal data and a
synthetic anomaly.

In this work we test our algorithm on two large anomaly benchmarks, one
being the well known Numenta Anomaly Benchmark (NAB, 58 time series, most
of them real-world) [7] and the other being a subset of the Yahoo’s S5 Webscope
benchmark [6] (A3, 100 synthetic time series). We compare our algorithm with
other state-of-the-art anomaly detectors: Numenta’s NuPic, based on Hierarchi-
cal Temporal Memory (HTM) [2], our previous algorithm SORAD [10] which is
specialized for short-time anomalies, and Twitter’s ADVec algorithm [11].

2 DWT-MLEAD Algorithm

In this section we introduce our new unsupervised DWT-MLEAD algorithm
which uses Discrete Wavelet Transform and Maximimum Likelihood Estimation
for Anomaly Detection in time series.

2.1 Wavelet Transforms

Wavelet transforms [8] allow to represent a time series signal in terms of waves
(the so called wavelets) with little local support. While (short-time) Fourier
transforms always have a trade-off between accuracy in the frequency domain
and accuracy in the time domain, wavelet transforms are used to retrieve ac-
curate time-localized frequency information. The wavelet transform of a time
series signal is composed with scaling and shifting functions. They take a mother
wavelet and stretch and shrink it (scaling), dilate it along the time axis (shift-
ing), and finally form the scalar product with the time series. Sampling wavelets

3 We note in passing that the visual or auditory system of higher vertebrates con-
tains information-processing structures similar to wavelets [3], thus underpinning
the importance of wavelets for natural computing.
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Fig. 1. Example of a decimating DWT using Haar Wavelets for a time series of the
NAB data. The original time series is depicted on scale 10. On the scales 5-9 the detail
coefficients of the DWT are shown. While we move towards lower scales, the number
of coefficients is halved in each step, with 32 coefficients left on scale 5.

in a discrete manner leads to the so called discrete wavelet transform (DWT),
which is commonly used in practice and has linear computational complexity.
In its current form, DWT-MLEAD performs a decimating DWT using Haar
wavelets on each time series. For this purpose, the R-package wavetresh [9] is
used. Since the package requires the time series to have a length equal to a power
of two, we currently artificially extend — where required — a time series of length
n to a length m = 2M1°€2("1 by mirror copying the last segment of the original
time series into the extended area. However, we do not consider anomalies which
are detected at instances > n. DWT-MLEAD utilizes both the detail coefficients
d¢ and the approximation coefficients ¢y ¢, computed by the DWT (lines 6-7 in
Algorithm 1), where ¢ addresses the level and k € 1,...,m the time index. The
lowest level £ = 0 contains only one coefficient. The highest level L = log,(m)
has no approximation coeflicients but only detail coefficients dj ;, which repre-
sent the original time series. In Fig. 1 the DWT of a time series from NAB is
illustrated.

2.2 Sliding Windows

In order to express temporal relationships, a simple and common approach in
many machine learning tasks involving time series is to employ sliding windows
of a certain size w (e.g. w = 10), which are used to generate fixed-sized input
vectors for a model. By stacking the transposed input vectors, we obtain a matrix
X with w columns which can be used to train a model. In the DWT-MLEAD
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algorithm (Algorithm 1, lines 9-10), a window of size wy is slid over the detail
and approximation coefficients dy ¢ and ¢y ¢ at each DWT level ¢ € {¢,..., L}
in order to generate the matrices D) and C. Subsequently, for each matrix
a multivariate Gaussian distribution is estimated, as described in the following.

2.3 Gaussian Distributions & Maximum Likelihood Estimation

In order to learn the usual patterns in the time series, DWT-MLEAD estimates
multivariate Gaussian distributions for the data generated by the sliding window
approach. A Gaussian distribution is fully parametrized by a mean vector p and
a covariance matrix X. Assuming that an observed data sample was drawn from
a specified distribution (a Gaussian), the maximum likelihood estimation (MLE)
finds the parameters of this distribution such that these parameters maximize
the likelihood of observing the given sample. The function MLE in Algorithm 2
does just this for a given matrix X, where X € R™*% with n = m —w + 1
being the number of input vectors generated by sliding the window over the
time series, up € RY is a w-dimensional vector, which indicates the center of
the distribution, and X € R¥*% describes the covariances between individual
dimensions. In Algorithm 1, line 12, DWT-MLEAD estimates the distribution
parameters for each D) and C®).

Subsequently, for every entry in D and C¥) we compute the log-likelihood
vector p using the previously determined parameters of the Gaussian distribu-
tion. This is done in function LOGPROBDENSITY of Algorithm 2.

2.4 Quantile Boundaries

In order to separate unusual from usual window patterns in D® and C®, one
has to find a suitable boundary. The first method we use computes an empirical
e-quantile z. (e.g. the first percentile) for the log-likelihood vector p. Another
approach we use to estimate the threshold z. involves a Monte Carlo method,
which samples from the estimated Gaussian distribution and determines the
(1 — €)-quantile for the Mahalanobis distances of the sample to the center of the
distribution. After computing z. in Algorithm 1, line 14, instances are flagged as
“unusual” in a binary vector a if their log-likelihood p; lies beneath z. (line 15).

2.5 Leaf Counters

For each instance in the original time series the DWT-MLEAD algorithm main-
tains a leaf counter h;. If an instance cj ¢ or di ¢ on a certain level £ of the DWT
is flagged as unusual (has a flag ax = 1) then an event e — marked as a black
node in Fig. 2 — is passed down the DWT tree to all leaf nodes connected with
the e node. Each leaf node has a counter h; (blue rectangles in Fig. 2) which
counts all such events (Algorithm 1, line 16). After all events are processed, all
counters with a count h; < 2 are deleted (line 17).
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Fig. 2. Detecting anomalies with leaf counters. Along the vertical axis are the DWT
levels ¢, along the horizontal axis are the time indices k. The leftmost event e thus
comes from either an unusual ¢1,7,—2 or di,r—2. Each event increases the leaf counters
(blue rectangles) connected with the e node. Only counters with count > 2 are shown.

2.6 Detecting the Anomalies

Once all the leaf counters are updated, DWT-MLEAD forms clusters C; of all
leaf counters h; having a neighbor not more than d,,.. apart (Algorithm 1,
line 18). Specifically, a cluster C; is here a set of counters, each counter carrying
its leaf position in the original time series and its event count. For each cluster
C; a sum s; over all event counts is computed. In Fig. 2 for example, all counters
form one cluster with sum s; = 9. If a sum s; exceeds the predefined threshold
B, then the center of cluster C; is labeled as anomaly event (line 23). The center
p(C;) of cluster C; is the weighted center of mass of all leaf positions, where the
weights are the event counts.

3 Experimental Setup

3.1 The Benchmarks

The Numenta Anomaly Benchmark (NAB) [7] is a publicly available dataset
that consists of 58 time series with in total 365,558 data points — the shortest
series containing 1,127, the longest containing 22,695 and the average series
containing approx. 6,300 instances. The majority of the time series are real-
world data coming from application areas such as server monitoring, network
utilization, sensor readings from industry and social media statistics [7]; 11 time
series were generated artificially, from which 5 are anomaly-free. In total, over
all 58 time series, 115 anomalies were labelled, most of which were identified
manually. It has to be emphasized that the 58 time series are very diverse. The
second benchmark we will investigate is the A3 data from the Webscope S5
benchmark [6]. It consists of 100 synthetic time series, each of length 1500, with
in total 850 short-term anomalies. In our setup, the ground truth anomaly labels
are not provided to the anomaly detection algorithms, which have to learn to
separate anomalies from normal behavior in an unsupervised fashion.
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Algorithm 1 DWT-MLEAD, an anomaly detection algorithm using the Dis-
crete Wavelet Transform.

1: Define: ¢ as starting level in DWT for analyzing the time series

2:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

€ for computation of quantiles (e.g., the 1st percentile)
dmaz: maximum distance for same-cluster points
B: threshold for the counter sum in a cluster that triggers an anomaly

: function MLEANOMALY (y = (y1,Y2,---,Ym)) > m is a power of 2

Compute DWT of y for levels £ € {¢',..., L}, with L = log,(m)

Get detail coefficients di,, and approximation coefficients ci ¢ of DWT
Initialize a leaf counter h; = 0 for each y;, counting the events it receives
Set window sizes for each level: wy = max{2,¢ — ¢ + 1}

NS {E’, ..., L}: Build D(Z), c® by sliding window of size w; over di.¢, ci,e
for all X € {DW,C® |¢=¢,...,L —1}UuD® do

(1, X) = MLE(X) > Defined in Algorithm 2
p = LOGPROBDENSITY (X, pt, X) > Defined in Algorithm 2
Compute e-quantile z,

a = PREDICT(P, z¢) > Defined in Algorithm 2

For all a; = 1: Trigger an event moving down the tree to any connected leaf
When all events are processed: Delete all event counters with count h; < 2
Form clusters C; of leaf counters having a neighbor not more than dm,q. apart
S={} > Set of detected anomalies
for all C; do

s; = sum of counter values in C}

if s; > B then

S=Su{u(Cj)} > Add center u(Cj) of C; to anomaly set

return S

Algorithm 2 Helper functions for Algorithm 1.

—_
[\]

15:

16:

_ =
= O LI Ry

: function MLE(X)

n= % > > Vetor ; € RY is the ith row of matrix X € R™*"

= Y (- ) — )"
return (u, )

: function LOGPROBDENSITY (X, p, 3)

peR” > n is the number of rows in X
for each row x; of X do
pi = —1logdet(2n%) — L(z; — pn)" T (@i — p)

return p

: function PREDICT(p, z.)
13:
14:

a: vector of same size as p
for all a; do
1, if p; < zc
a; =

= . > Binary anomaly flag vector
0, otherwise

return a
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3.2 Algorithms and their Settings

In the following, we compare DWT-MLEAD with three online anomaly detection
algorithms, namely SORAD, NuPic, and ADVec. Although we did not system-
atically tune the parameters of each algorithm, we empirically determined for
each algorithm and each dataset the best parameters from an informal search.

DWT-MLEAD Overall, three main parameters in Algorithm 1 have to be set,
which are fixed for the whole dataset: a threshold e € [0, 1] for the e-quantiles,
which is varied to adjust the tradeoff between precision and recall, a parameter
B (threshold for counter sum), and a starting level ¢'. From Sec. 2.4, we use the
empirical quantiles for the NAB data and the Monte Carlo based quantiles for
the A3 data. We empirically determined the setting B = 3.5, ¢/ = 5 for the NAB
data and B = 1, ¢/ = 7 for the A3 data. The window size wy is set by Algorithm 1
in a level-dependent fashion. In its current form the DWT-MLEAD algorithm
operates offline on each time series, the remaining algorithms investigated in this
work are all online.

SORAD In this work we will also report results for a simple online regression
anomaly detection (SORAD) algorithm which we recently developed [10]. The
algorithm has several parameters which are set as follows for the experiments:
We set the forgetting factor of the algorithm to A = 0.98, the anomaly threshold
e will be varied over a larger range, and the window-size is set to w = 10 for the
A3 data and to w = 200 for the NAB data.

NuPic Numenta’s NuPic? [2] requires a large number of parameters which
cannot be set easily. Although NuPic provides a swarming algorithm [1] that
optimizes the parameters, we found that the results for the swarmed parameter
search are not significantly different from those for a standard parameter setting,
which was also used for the reported results in [7]. Hence, we use the standard
parameter setting for all experiments. The only parameter which is adjusted by
us is an anomaly threshold that can be varied in the interval [0,1] and — similar
to € in SORAD and DWT-MLEAD - trades off precision and recall.

ADVec Twitter’s ADVec Algorithm [11], which is available as open-source R
package AnomalyDetection from Github® is the last algorithm which we will
review in this work. The algorithm requires three main parameters, which are as
follows: The first parameter « describes the level of statistical significance with
which to accept or reject anomalies. As in the other algorithms, this parame-
ter can be interpreted as an anomaly threshold. During our experiments, this
parameter will be varied over a large range of values. ADVec requires a second pa-
rameter, a period-length, which we fix to the value 40 — which has shown to give

4 https://github.com/numenta/nupic
® http://github.com/twitter/ AnomalyDetection
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the best results on the investigated data — entirely throughout this work. Finally,
we found that the setting of the parameter max,,oms is crucial for the perfor-
mance of ADVec, especially on the NAB dataset. This parameter determines the
maximum number of anomalies that the algorithm will detect as a percentage
of the data. We choose maxgnoms = 1% for the A3 data and max,noms = 0.1%
for the NAB data.

3.3 Algorithmic Performance Measures

Similar to typical classification tasks, for time series anomaly detection prob-
lems an algorithm has to classify each time series sample as either anoma-
lous (unusual) or as normal (usual). Commonly, correctly identified anomalies
and normal instances are considered as true-positives (TP) and true negatives
(TN), respectively. Misclassifications are accordingly referred to as false-positives
(FP) and false-negatives (FN). In these cases normal/usual instances are falsely
flagged as anomalous (FP) or the algorithm fails to detect real anomalies (FN).
Due to the typically large number of TN for anomaly detection tasks, we re-
nounce reporting this score. Based on the three remaining measures additional
metrics can be derived, which are useful for comparing the performance of algo-
rithms and will be used in later sections.
... TP - TP 1

precision = 55, recall = -G (1)
Ideally, one attempts to maximize precision and recall (with a max. value of
one). However, since precision and recall are conflicting objectives in practice,
the Fi score — which takes both precision and recall into account — can be used
to assess an algorithm’s performance. The F; score is defined as:

precision - recall

! precision + recall 2)

Since temporal anomalies can span over larger intervals, we use so-called anomaly
windows for the scoring process. For the NAB data the already specified anomaly
windows are used and for Yahoo’s Webscope S5 data we place windows of size
10 around the labeled anomalies. While each detection outside of an anomaly
window will be counted as a FP, multiple detections inside a window are only
counted as one TP. Conversely, no detection within an anomaly window will be
counted as one FN as well.

4 Results & Discussion

Table 1 summarizes the results for the four algorithms on the A3 and NAB data.
On the A3 data with short-term anomalies, DWT-MLEAD and SORAD both
clearly outperform the other algorithms NuPic and ADVec, achieving both, a
high precision and recall. NuPic and ADVec produce a large amount of FP and
at the same time miss most of the true short-term anomalies. For the NAB data
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Table 1. Results for various algorithms on the A3 and NAB dataset. Shown are the
sums of TP, FP, FN over all time series and the metrics precision, recall and Fi, cf.
Egs. (1)—(2), derived from these sums. All algorithms have their threshold chosen such
that Fi is maximized (in brackets: Fy for threshold such that FP ~ FN).

LDatasetl Algorithm LThresholdLTPLFP LFNLPrecisionLRecallL Fy Score J

DWT-MLEAD| 0.015 |806| 8 |44 | 0.99 | 0.95 [0.97 (0.95)

A3 NuPic 04  |172[267|678| 0.39 | 0.2 |0.27 (0.26)
SORAD 107* [810/22 (40| 0.97 |0.95 0.96 (0.96)

ADVec 20  [190[216(660| 0.47 | 0.22 | 0.3 (0.26)
DWT-MLEAD| 0.02 |69|65|46| 0.51 | 0.6 |0.55 (0.55)

NAB NuPic 0.55 |76(113[39| 0.4 |0.66 | 0.5 (0.47)
SORAD 1079 |57 (313[58| 0.15 | 0.5 |0.24 (0.21)

ADVec 100 |66 [164[49| 0.290 | 0.57 |0.38 (0.34)

Table 2. Computation times of the algorithms on datasets A3 and NAB. Shown is the
average and standard deviation from 20 runs each. The runs were performed on a PC
with an i7-3520M CPU and 8 GB of RAM.

Computation Time (s)
Dataset| DWT-MLEAD| SORAD \ NuPic \ADvec

A3 13.6 £ 0.3 34.6+£0.1|8109+1.3(26=£0.2
NAB 12.2+0.2 |111.6 £0.2|1636.4 £2.7[5.8 £ 0.5

we observe rather different results: while DWT-MLEAD still outperforms the
remaining algorithms according to the overall F; score, SORAD now performs
the worst according to all metrics. In particular, the precision is rather low for
SORAD, due to the large number of FP. NuPic delivers similar results as DWT-
MLEAD, with a slight advantage for DWT-MLEAD.

Two example time series from the NAB data with the detections of the
individual algorithms are shown in Fig. 3. In the first example it can be clearly
seen that SORAD produces many FP at the recurring spikes in the time series.
This is due to the fact that SORAD has no long-term memory so that such
recurring spikes appear to be anomalous. Only DWT-MLEAD and ADVec detect
both anomalies in both examples, although ADVec produces a few more false-
positives.

All algorithms examined in this work have a threshold which can be varied
in a certain range and which trades off FP and FN (as well as precision and
recall) to a certain extent. In Fig. 4 the precision is plotted against the recall
for different thresholds. For the A3 data the recorded points of DWT-MLEAD
and SORAD clearly dominate those of NuPic and ADVec. For the NAB data
the results are more diverse: while SORAD shows the worst performance of all
algorithms, DWT-MLEAD and NuPic show the best performance, with NuPic
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Fig. 3. Example time series taken from the NAB data with the anomalies detected
by the algorithms DWT-MLEAD, NuPic, ADVec, and SORAD. The red vertical bars
in the plot indicate the true anomaly windows. True-positives are indicated by green
colors while False-positives are colored red.

having a slightly higher precision in larger recall ranges (recall > 0.6) and DWT-
MLEAD in the lower recall ranges (recall < 0.6).

In Table 2, the computation times for the four algorithms on the A3 and NAB
data are shown (mean and standard deviation from 20 runs). Overall, ADVec
shows the best results regarding the computation time. On the A3 (NAB) data
DWT-MLEAD is faster by a factor of 2.5 (9) than SORAD and 60 (134) than
NuPic. However, we assume that an online implementation of DWT-MLEAD
might require some additional computation time.

4.1 Discussion

The wavelet transform allows to capture features of the time series on differ-
ent frequency levels. This is beneficial for detecting both long- and short-term
anomalies. It is thus not unexpected that DWT-MLEAD is the only algorithm in
our comparison which performs equally well on both benchmarks A3 and NAB.
The event pooling mechanism shown in Fig. 2 with a minimum event count of 2
in each leaf counter is effective in shielding against noise which may produce an
unusual event in just one frequency level. As expected, SORAD operates only
well on short-term anomalies, since it analyzes only a short-term window in the
original time series, which is too short for anomalies with a longer range.
The algorithm DWT-MLEAD in its current form has some limitations:

— We did so far only explore Haar wavelets and only modeled a multivariate
Gaussian distribution to the data. It may be that other wavelets or other
distributions would lead to better results.
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Fig. 4. Multiobjective plot for the NAB and A3 dataset. Precision and recall are com-
puted based on the results of all time series of the corresponding data set.

— It is offline, i. e. the anomaly detection is undertaken when the whole time
series is available. (It is still unsupervised since no information about prior
anomalies is given to the algorithm.) There is however no obstacle to turn
it into an semi-online algorithm on longer time series, where the whole algo-
rithm would be repeated after short time intervals (e.g. 100 or 200) on the
last 2™ (e.g. 1024 or 2048) time steps of the time series.

— We assume a certain degree of stationarity for the algorithm to work. Trends
and change-points cannot be handled well in the offline form. Again, a semi-
online version could offer more flexibility in the sense that trends and change-
points can be learned by looking at the history of all 2™-windows.

— If a time series has long-term periodic structures, not all anomalies might be
detected correctly. This can happen if the frequency of the long-term periodic
structure is lower than the lowest wavelet level £ considered in Algorithm 1.
In such cases it might help to extend the algorithm by a periodicity detector
and subtract such a periodicity prior to analysing the time series with DW'T-
MLEAD.

5 Conclusion & Future Work

We have shown that the discrete wavelet transform (DWT) is beneficial for de-
tecting anomalies in time series on various time scales. Specifically, our new algo-
rithm DWT-MLEAD shows consistently good results on two larger benchmarks,
one containing short-term anomalies (A3) and the other containing long-term
anomalies (NAB). We tested this algorithm against three other state-of-the-art
anomaly detectors and found DWT in first place on both benchmarks. It is
remarkable that a single algorithmic principle works well over such a diverse
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set of time series. Due to the efficient implementation available for DWT, our
algorithm is computationally efficient (fast) as well.

5.1 Future Work

DWT-MLEAD works better than the other algorithms tested in this study, but
it is not perfect yet, especially not on the NAB benchmark. Future work in this
area should focus on improving the first layout of this algorithm, as outlined in
Sec. 4.1 (Discussion): other wavelets than Haar wavelets, other than multivari-
ate Gaussian distributions, a semi-online version of the algorithm, automated
algorithm parameter tuning, and a periodicity detector.
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Abstract. We study a time series model which can generally be de-
scribed as the additive combination of a multivariate, nonlinear deter-
ministic model with multiple univariate, covariance-stationary autore-
gressive (AR) processes whose white noise components follow indepen-
dent scaled t-distributions. These distributions allow for the stochastic
modeling of heavy tails or multiple outliers and provide the framework for
a partially adaptive, robust maximum likelihood (ML) estimation of the
deterministic model parameters, of the AR coefficients, of the scale pa-
rameters, and of the degrees of freedom of the underlying t-distributions.
To obtain the ML estimator, we derive a generalized expectation maxi-
mization (GEM) algorithm, which takes the form of linearized, iteratively
reweighted least squares. The performance of this estimator is evaluated
by means of a Monte Carlo simulation for the observations of a circle in
three dimensions, involving different noise models encountered typically
in the analysis of global navigation satellite system (GNSS) time series.

Keywords: multivariate time series, nonlinear regression model, AR
process, scaled t-distribution, partially adaptive estimation, robust pa-
rameter estimation, GEM algorithm, GNSS time series

1 Introduction

Robust estimation is important in many fields of application where the probabil-
ity density function (pdf) of the random deviations is expected to be heavy-tailed
(e.g., as a consequence of multiple outliers). [5] was an early exposition demon-
strating the use and usefulness of the scaled (Student) t-distribution in robust
maximum likelihood (ML) estimation for regression models. As already indicated
by [1], this kind of ML estimation can be expressed in a computationally conve-
nient form as iteratively reweighted least squares, where the weights are used to
rescale the variances of the random deviations according to their locations under
the pdf. It is possible with this approach to estimate the degree of freedom of
the underlying t-distribution, alongside the regression parameters and the scale
parameter, turning it into a so-called (partially) adaptive estimator.
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2 Robust Multivariate Time Series Analysis in Nonlinear Models

In a multivariate regression model, each observable is modeled as a random
vector which is explained by a vector-valued (possibly non-linear) deterministic
regression function and a vector of random deviations. [6] assumed a multivari-
ate t-distribution with unknown scale factor and unknown degree of freedom for
each vector of random deviations and investigated different forms of the expec-
tation maximization (EM) algorithm for the purpose of estimating the unknown
model parameters. It was shown earlier in [7] and [10] that the expectation
conditional maximization (ECM) and the expectation conditional maximization
either (ECME) variants can speed up the convergence of the EM algorithm
considerably. To handle models that do not allow for closed form solutions by
EM, the optimization principle of generalized expectation maximization (GEM)
was proposed by [1]. The idea is to approach the maximum expectation within
each EM step rather than trying to reach it fully. GEM algorithms employing
Newton-Raphson steps have been applied frequently [9]. A GEM algorithm can
in particular be used to handle non-linear regression models. In this situation,
an iteratively reweighted least squares algorithm with Gauss-Newton steps was
found to be a suitable form of GEM [14, 5].

Besides heavy tails, multivariateness and non-linearity, a further aspect that
complicates (partially adaptive) parameter estimation consists in the frequently
encountered autocorrelatedness of the random deviations. For instance, many
types of sensor data such as inertial sensor data, satellite gravity gradiometry
data and GNSS data give measurement results where the random deviations ex-
hibit pronounced colored noise characteristics (see, e.g., [17,13, 16, 8]). Typically,
such datasets contain numerous outliers, so that robust estimation approach is
generally desirable. To deal with situation, the aforementioned partially adaptive
estimator for regression models based on the scaled t-distribution was extended
in [4] to include autoregressive (AR) random deviations, where the white noise
components of the AR process are independently and identically t-distributed.
A limitation of that method is however that the observables describe only a
univariate time series involving a linear regression model.

The purpose of this contribution is to extend the existing univariate, linear
model to a multivariate and nonlinear (differentiable) regression model. Con-
cerning the setup of the AR model, we currently limit ourselves to the case
where each time series component is associated with a univariate AR process of
individual order, independently of the AR processes of the other components.
We thus exclude the modeling of cross-correlations, a task which would require
the use of vector AR (VAR) processes and which is beyond the scope of the
present, contribution. The paper is organized as follows.

First, the time series model is described in detail in Sect. 2, and the deriva-
tion of a corresponding GEM algorithm is outlined in Sect. 3. Here, it is shown
on the one hand how the scaled t-distributions are taken into account within
the E step. On the other hand, the linearization of the nonlinear deterministic
model is demonstrated in connection with the M step, which is broken up into
conditional maximization steps with respect to the different groups of estimated
model parameters. In Sect. 4, a time series model for GNSS observations of a
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Robust Multivariate Time Series Analysis in Nonlinear Models 3

circle in 3D is proposed, and the results of a Monte Carlo simulation as well as
real world application based on this observation model are discussed. These find-
ings are used to evaluate the performance of the implemented GEM algorithm
in this scenario.

2 The Observation Model

We consider ¢-dimensional observables Y; = [Y1¢--- YN,t]T measured at equidis-
tant time instances t = 1,...,n. The task is to approximate the corresponding
measurement results yi,...,y, by a (vector-valued) nonlinear function h;(&) =
[h1,4(&) - hn(€)]T of unknown parameters € = [&1,...,&n]T. We model the
uncertainties of the measurement process by means of random deviations E; =
[Erg--- EN,t}T between the observables and the functional model, so that the
observation equations take the form

Yt:ht(g)‘i’Et (t::l,,’fl) (1)

Here, we assume that each of the N components of the random deviations is
subject to autocorrelations in the form of a covariance-stationary autoregressive
(AR) model

Ek,t = ak,lEk,tfl'i‘- . ~+ak,pkEk,t7pk +Uk,t (k =1,...,N;t=1,... ,n), (2)

in which the random variables Uy 1, ..., Uy are, for every k = 1,..., N, inde-
pendently and identically t-distributed according to

Ukt ~t,(0,08) (k=1,...,N;t=1,...,n). (3)

Thus, we allow each white noise series Uy.1, ..., Uk, to have an individual
fluctuation and tail behavior, as determined by the component-dependent scale
parameter o7 and degree of freedom vj. These quantities, alongside the AR
coeflicients, are considered as additional unknowns to be estimated jointly with
the functional parameters &. The probability density function (pdf) of the scaled
t-distributed white noise components Uy, ; is thus defined by

_vetl

Flugs) = ) [1 " (“’“t)z/uk] 2 (1)

vgmop I ("7’9) Ok

(where I represents the gamma function). The preceding assumption of stochas-
tic independence of the white noise components uy = [ug1 - ~uk7n]T for each
k=1,...,N implies that their joint pdf is given by

Flg) =T Flu) =11 \/VI;T(;ZZFz"k) [1 + <7fjkkt> /yk] . (5)

We assume that no stochastic dependencies between the N white noise series
exist, so that the joint pdf of the white noise components throughout all series
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4 Robust Multivariate Time Series Analysis in Nonlinear Models

can be written in the factorized form f(u) = f(uy)--- f(uy). This implies also
that the N colored noise processes (2) can be treated separately. Note that we
generally allow these AR processes to have different orders py,...,pn. Since we
intend to apply the preceding model to rather large time series (with n being
at least 100), we deal with the initialization problem of the AR processes in
a practical manner, by setting all quantities occurring at time instances t =
0,—1,... equal to 0. Moreover, we assume all AR processes to be invertible, so
that we can rewrite them in the form

Ukt =FEpi —ap1Eri-1— ... —agp Ert—p, = ar(L)Eg 4, (6)

using the lag operator LV F; := E,_; and the lag polynomial o (L) := 1—ay, 1 L—
... — Q. p, LP*. We can interpret the latter as a digital filter, which decorrelates

the colored noise series e 1, ..., ek, (into the white noise series ug 1, .., Ukn)-
A maximum likelihood estimation of the unknown model parameters &, o,
conan,o2 ... 0% and v, ..., vy based on the pdf f(u) or its natural logarithm

z r(a)
log L(6;y) = log f(u) = log [f(u1) - -- f(un)] = (”10 [;u]
6.£0:3) =log f(u) =g 2\ | Ve ()
_V’“g_lzlog

2
- (ak@)(yk,t - hk,t@))) /D @

Ok

and given measurement results y requires numerical optimization since a closed-
form expression of the estimator is unavailable. Following the ideas of [1] and
[5], we transform the preceding t-distribution observation model into an easier-
to-manage form by introducing latent variables

2

gt o~ =G (2 R) (=1, Nt =1,.m), (8)
Vi 2 2

Wit

where the gamma distribution is defined by the pdf

Vi \ VR /2
I (wk,t)”k'/z_l ceTVR/2 Wkt if wg,t > 0,

(%)
0 if ’LUk,t S 0

~

f(w1|0) = (9)

(using 0 for convenience as the vector consisting of all the unknown model param-
eters). These variables are assumed to be stochastically independent within each
series, resulting in the factorization f(w|@) =[], f(wk,:|0). The idea is now
to define further stochastic properties of the white noise Uy = [Ug,1 - Uk,n]T
and the latent variables Wy, = [Wj 1 -+ Wi |7 in such a way that the Student
pdf (5) is obtained as the marginal distribution from the joint pdf f(u, w|6)
(cf. [9]). This is achieved on the one hand by employing the conditional Gaussian

_ 1 B u%t
(el 0) = 27(0k/ /Wt )2 eXp{ 2(ok/ \/Wk,t)? } . (10)
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Robust Multivariate Time Series Analysis in Nonlinear Models 5

On the other hand, Uy, ; is assumed to be independent of the white noise compo-
nents and latent variables occurring within the series k at the other time instants
1,...,t—1,t+1,...,n and within the other series 1,...,k—1,k+1,..., N at
all time instances, conditional on the values wy ; and €. This conditional inde-
pendence assumption allows us to apply for instance the simplification

FUh |0k, 1, We 1 - oy Wk 15 W 1, Uk 1y Whit41s - - - 3 Uhooms Whony Wit 0)
= f(uk,t|w,t, 0) (11)

in the derivation of the desired joint pdf (similarly to the proof in [2])

Flur e, wro]0) - T funs,wn.l0)

t=1

f(wl,t|0) f(ul,t|w1,t7 9) s H f(wN,t|0) f(UN,t|wN,t7 0)-(12>
t=1

=

f(u, w|0) =

-
Il
_

I
=

~
Il
-

We define this be the likelihood function £(8;y,w) of the extended observa-
tion model. Before proceeding with the corresponding ML estimation, we note
that the second factor in f(wg,,ur|0) = f(uk|0) f(wk|uk,|@) defines the
conditional gamma distribution G(a,b) with parameters a = (v, + 1)/2 and
b= (v +uj ,/0})/2, given the value uy,; (applying a proof in analogy to [3]).

3 The Generalized EM Algorithm

In view of (12), (9) and (10), the log-likelihood function takes the form

N N N
vy, W) = cons EZ 2y, T vk "
10g£(97Ya ) = const. — 5 log(o-k) + 5 E n log ( 5 ) angf ( ! >
=t k=1 k=1
N n ) N
E E 1 (L) Yk, — hi(§) 1
- 2 ’ S (g — 1)1 ,
k=1 t=1 2 et ( Ok e kZ:l ; Q(Vk ) log e

(13)

To set up the generalized EM (GEM) algorithm, we define the Q-function as the
conditional expectation of the preceding log-likelihood function (treated now as
a random function), given measurement results y and trial parameter values
G(i), in the sense of

Q(610Y) = Eyy\y.g {log £ (8;y, W)} (14)

3.1 The E Step

Recalling that the likelihood function was defined by (12), we condition directly
on the white noise outcome u and on 6% (which values give y through the
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6 Robust Multivariate Time Series Analysis in Nonlinear Models

equations (1) and (2)). Then, (13) yields

N N N
Q810" = const. — Z};log(ai) + ;Lkz_lyk log (%) - n;logF (l;—k)

n

Vg + (ak(L)(yk,t - hk,t(ﬁ))z

EW\u;G(i) {kat}
Ok

2

+

M- 1M

N |

(v — l)EW‘u;om{log Wit} (15)

1= T

x~
Il
—_
o~
I
—

Here, we observe in light of [2] that the two conditional expectations simplify to

Ewiwoo {Wki} = Ew, juy 00 Wt}
Ewiwe {108 Wit} = Ew, . 00 {log Wit}
Since the latent variable W, ; given the value uy, + follows the gamma distribution

G(a,b), the previous two expectations are, respectively, a/b and v (a) — log(b)
(where v is the digamma function), so that we obtain (cf. [3] for details)

(1)
i v, +1
wl(c,)t = EWk t\Uk.t;G(“{kat} = ) k 29 (16)
S (), [ @ (@) (ke —hi. (D)
vt P

() ()
i v, +1 v, +1
By, u00 {log Wi} = logw,(€7)t + ('“2> — log < k 5 > . (17
Consequently, we may rewrite (15) as

N
Q(6]6") = const. — < > log(a?) - 2 557 2 ke (L) = b O

1
2
k=1 =1 20}, t=1
n al v
k
+§’;Vklogyk — n;logF (3)

+EXN: » v +1 1 ((i>+1>+l§:(l @) _ (i)) (18)
5 Vi 5 og vy, n 2 Ogwyy — Wy || -

We see in light of (16) that the computation of initial weights requires initial

parameter values. In cases where these are not given, we choose unit weights

w,(coz =1lforallk=1,...,N and allt=1,...,n for the subsequent M step.

3.2 The M Step

We break up the M step into four conditional maximization (CM) steps (see
[10]), one for each of the parameter groups, and substituting the most recent
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Robust Multivariate Time Series Analysis in Nonlinear Models 7

available estimates whenever needed. Since the regression function hy; were
assumed to be nonlinear functions of &, it is linearized within the first CM-Step
with respect to that parameter group. Choosing for the Taylor point the estimate
£(i) of the preceding iteration step, we obtain for the partial derivative of the
Q-function with respect to &;

0 (0 Sl 00 2
=% Q(616Y) = kz:l 507 tz:; wk’té)ifj loek (L) (Yk,t — e, (€))]
=N PR @y, Ohi(€Y) (i) :
— ,Z R Zwkta—gj ap(L) | Y — | e (€Y) + T(g —-£Y)
k=1 t=1
=3 5z 2wl (D) (A - A Ag)|
k=1 %k =1

) ) . G
where Ay = yp,t — hkyt(f(z)), AL =¢—¢9 and A,(fz5 = 6}1’“’572&)). Denoting

in addition Al(;)t = %’”575(5(1)) and forming also the diagonal matrix W) from
the values wg ), e wgf), we can derive the system of m equations
v, [ @ADL e aDAL ar(L)(Ays1 — AL Ag)
_ . . () .
0= Z 0713 : : Wi :
k= 7 i i
Y lawaf, - annaf),, ar(L)( Ay — AL, AE)

Fixing now the values of the unknown scale parameters and AR coefficients by
taking the estimates from the preceding M step i, we can filter the reduced
observations and the Jacobi matrices (for every k = 1,..., N and every ¢t =
1,...,n) according to

(4) i —(4) i 7 (1)
Bypy = o) (L) Ayee, Aoy = o) (DA, A= o) (LAge (19)
and restate the preceding normal equation system as

—(?) —(9) - <
N 1 Ak,l,l Ak,n,l 4 Al/m — Ay 1AL
0= Z : : : w :

Ak,l,m Aknm

Tyk,n - Kk:,n Aé

Consequently, the estimate of the update AE is given by

; o X =<0 () A=)
Ag(H—l = Z( 2)(,’) (Ak‘ )TWkl Ay
k:l k=1 \k
(20)
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8 Robust Multivariate Time Series Analysis in Nonlinear Models
This update is added entirely or partially to the trial solution (in the sense of a
Gauss-Newton step with step size v € (0, 1]), resulting in

£ (i+1) _ 5(1 ’VAE(HU (21)

In the first iteration step, we would typically use unit weight matrices W,(Co) =1,,

neutral filters afco) (L) = 1 and identity scale factors (07)(?) = 1, corresponding to
the initial assumption of normally distributed, uncorrelated and homoskedastic
white noise components throughout all time series. For the subsequent CM step
with respect to the autoregressive coefficients, the colored noise residuals

et = gy — g (€YY (k=1,.. Nit=1,...,n). (22)

will play a central role. We assemble for this purpose the matrices

LD (i+1)
_ €k,0 T Ch1—py
ETY = | : (k=1,...,N), (23)
(H—l) oo (D)
k n—1 k,n—pp
in which we substitute the initial values e,(cﬂ) =...= e,(;Jlri)p = (. Setting now

the first partial derivative of (18) with respect to the jth AR coefficient within
the Kth time series equal to zero, we have

0

0= Far; Q0107) = - O3 ) o) (s — D (€))

1 <& (4) 0 2
= —— w [ax(L)ex t]
20’% t=Zl K.t 804[()3‘

Substituting for the unknowns £ within the residual ex; the already available
estimates 5(”1) (according to the principle of conditional maximization) and
collecting all j partial derivative with respect to the Kth time series in a sin-
gle equation system, we obtain then for every K = 1,..., N the iteratively
reweighted least squares scheme for the estimation of the AR coefficients ax

. . . . -1 1 3 ]
ag?rl) _ ((Egz“))TW%)E%H)) (E%+1))TW%)6%+1). (24)

Since we aim for covariance-stationary and invertible AR processes, it is nec-
essary to determine whether all roots of a(;rl)(z) = 0 are located within the
unit circle. In case this is not true, we stabilize the preceding polynomial by
mirroring all roots with magnitude exceeding 1 into the unit circle (cf. [15]),
using MATLAB’s polystab routine. We see from (24) that the individual AR
processes can be determined independently, and we use them to filter the colored

noise residuals according to (6) through

u ) =Ly TV (k=1,...,Nit=1,...,n) (25)
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in order to obtain the estimated white noise residuals. We are now in a position
to estimate within the third CM step each scale factor 0% via the N independent
conditions

%Z L)(yxt — hict (€))7

UK

in which we substitute the current estimates £(i+1) and a%+1). Making use of
(25), we therefore arrive at the solutions

i Lo (D)W Oy (D)
(Ug()(ﬂ):ﬁzw(z) ( %tl)) K ) - KUK (26)

t=1

It remains for us to compute the solutions for the degrees of freedom of the
t-distributions underlying the N time series. Instead of using the @Q-function
for this purpose, we follow the recommendation of [7] and maximize the log-
likelihood function (7) with respect to these parameters (which turns the current
ECM algorithm into an ECME algorithm). Using the digamma function 1, it
can be shown that

v +1

RS P
e+ (B hm<£>>>2

OK

0= -2 logr(0:y) = w(
vk
1 n
t=1
1 ) ~
_i(l/K“f‘ )Z

t=1

-1

OK

vic + (%(L)(zm,t ~ hici(8)) )2]

As with the previous three CM steps, we utilize the most up-to-date parameter

estimates, now for €, ay, ..., an, 0%, ..., 0% Denoting furthermore the desired
solution by V§é+1) for every K =1,..., N, where we define w%tl) in analogy to

(16), we can derive the N equations

(i+1) (i+1)
1 .
0 =log I/(H_l) +1-9 <VK2> + <2+> —log (l/gﬂ) + 1)

+- Z(log (ZH) E?;l)). (27)

Thus, the estimates V£i+1)7 cen 1/1(\#1) constitute the zeros of these equations,

which are to be found numerically (using for instance MATLAB’s fzero rou-
tine). Note for normally distributed white noise components that these degrees
of freedom tend to infinity, in which case the function on the right-hand side
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10 Robust Multivariate Time Series Analysis in Nonlinear Models

of (27) does not change its sign. This numerical problem with the zero search
is circumvented by testing for the existence sign change over a sufficiently large
interval, say, over [107%,10%]; if this does not happen, the estimated degree of
freedom should be set to a large value (say, to 10000). We stopped the reiteration
in case the maximum number of iteration steps (500) was reached or in case the
parameter values of the preceding step i did not change significantly within step
1+ 1. We specified two thresholds with respect to largest maximum parameter
changes: 10~ for the degrees of freedom, and 10~ for all other parameters.

4 Monte Carlo (MC) Results and Real World Application

4.1 The Framework of the Simulation

We consider in this section a multivariate, non-linear regression model in terms
of a circle in N = 3 dimensions, having the following six parameters: two for the
orientation (azimuth angle & € [—m, 7| and zenith angle 6 € [0,7]) of its unit
normal vector, one for the radius (r), and three for the circle center (C,, Cy, C.)
(see pp. 24-27 in [11]). The observable 3D circle points are described by

X —rcos(T3) sin(®@) + rsin(T3) cos(9) cos(P) + Cy, Eyy
Y, | = rcos(Ti)cos(P) + rsin(Ti) cos(0) sin(P) +Cy | + | Eap | (28)
Z, —rsin(T;) sin(8) + C. Es,

with t = 1,...,n. In our current simulation study, n = 100,000 time instances

in (28) are sampled equidistantly between 77 = 0 and T;, = 27 (corresponding
to the time interval [1,10000] sec), and the circle parameters & were assumed to
take the true values: r = 0.487 m, ® = O rad, § = —w rad, C,, = —2487.211 m
Cy = —6053.041 m and C, = —26.293 m. according to a realistic scenario
within the aforementioned application. Concerning the random deviations E,
we generated three different kinds of time series: (1) a pure white noise process,
which may be viewed as an AR(0) process, (2) the AR(1) process

Epi=—09E 1+ Uk, (k: 1,...,3;t:1,...,n), (29)
and (3) the ARMA(3,2) process (used for all k =1,...,3)
Ey+=—-0.73E; ;-1 —0.38E; -2+ 0.14E) ;3 4+ U+ — 0.33U% 1—1 — 0.35U% 1—2.

(30)
These models were investigated in the extensive study [8] (see pp. 230) on the
stochastic modeling of GNSS data, where the white noise processes Uy, 1, . . ., Uk
were assumed to be Gaussian. Besides generating the white noise components
Uk, ..., Ugpn with the Gaussian sampling distributions
Ui, Usy ™ N(0,0.0012), Us, ™' N(0,0.0022), (31)
we sampled also from the scaled t-distributions
ind 2 ind 2
U,,Uzy ~ t2.5(0,0.001%), Uz, ~ t2(0,0.0027) (32)
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and from the contaminated normal distributions

U, Usy % 0.6+ N(0,0.0012) + 0.4 - N(0,0.0082) (33)
Us, ™ 0.6 N(0,0.0022) + 0.4 - N(0,0.0082) (34)

to induce heavy tails or outliers. As the Z coordinates measured by GNSS are
known to have much larger random fluctuations than the other coordinate com-
ponents, the true variances in (31), true scale factors in (32) and true variances
of the first Gaussian mixture component of (33) — (34) were chosen differently for
the X /Y components (corresponding to k = 1/k = 2) and the Z component (as-
sociated with k£ = 3). Fluctuations due to systematic effects can also be expected
to be largest for the Z components, so that the degree of freedom with respect
to the variables Us,; in (32) is assumed to be less than for the components U ¢
and Us ;; thus, we assume the Student white noise in the Z coordinates (vertical
coordinates) to be more heavy-tailed than the noise in the other components.

We generated 1000 random samples for the multivariate white noise series
Uy, ..., U, from each of the distributions, from which we subsequently com-
puted the corresponding noise series Eq, ..., E, and then via (28) the simulated
observation time series Y1, ..., Y,,. The proposed GEM algorithm was applied
to each of these observation samples in order to estimate the six circle parame-
ters, the coefficients of AR processes (having a suitable, identical order for each
coordinate component), and the scale factors as well as degrees of freedom of the
three underlying t-distributions. Note that neither the ARMA(3,2) model (30)
nor the contaminated normal distributions (33) — (34) constitute special cases
of the stochastic model (2) and (4) underlying the applied GEM algorithm.

4.2 Results of the Simulation and Real Data Application

Concerning the functional parameter &, the Table 1 gives the means of the esti-
mates of the first and third parameter (# and é), computed from the 1000 MC
runs. The approximation of the true parameter values by these means leads to
bias free estimates for the AR(0) and AR(1) model. Only an insignificant bias
in 0 in case of the ARMA(3,2) model can be detected.

To assess the goodness-of-fit of the AR models, a periodogram-based white
noise test (WNT) is applied within each MC run to each of the three decorrelation-
filtered residual series 1,1, Ux,2 and 4y 3. The test statistic determines the max-
imum cumulated periodogram excess over a cumulated, theoretical white noise
periodogram (see [4] for detailed information concerning the computation of the
test value). The white noise hypothesis is rejected if this maximum excess is
larger than the critical value at a 95% significance level. More specifically, the
critical value of the test is determined individually for each sample size n and
each probability distribution in such a way that the acceptance rate, through-
out all MC runs with generated random deviations e, es and ez following the
AR(0)-white noise model, is identical with the desired significance level 0.95.
This critical value is then employed for the current sample size and probability
distribution to determine the acceptance rates with respect to the estimated
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AR(1) and ARMA(3,2) models. To approximate the ARMA(3,2) model in the
applied GEM algorithm we increased the order an AR-processes gradually un-
til the white noise test has been accepted. This results in appropriate model
order 30. The WNT results are given in Table 1. Generally, the WNT accep-
tance rates increase with the AR model and reach 95,0% for AR(0). Apparently,
the ARMA(3,2) models (approximated by an AR(30)) are estimated already
reasonably well for this large sample size.

The performance of the estimation of the scale factor o with respect to the
t, (0, 0?)-distribution underlying the algorithm in Sect. 3 can be assessed only in
the two cases that the white noise sampling distribution is (32) or (31), because
the latter distributions are special cases of the family of scaled ¢-distributions.
For the AR(0) and AR(1) models the mean value of the MC estimates ¢ coincides
with the true value 0.001 for X/Y and 0.002 for Z (see Table 1). In contrast, for
the ARMA(3,2) model the estimated scale factor is underestimated. In case of
sampling by means of the contaminated normal (CN), the estimated scale factor
can evidently not capture the effect of the two different variances in the data.

The evaluation of the algorithm’s performance in estimating the degree of
freedom of the underlying t-distribution is based on the mode of the MC esti-
mates . As for the scale factor, the sampling distributions (31 and 32) allow
for direct comparisons of the mode of the © with the corresponding true values
v =2/2/2.5 (with respect to X/Y/Z) and v — oco. The maximum value of an
estimated © is 10000 for numerical reasons, which we therefore take as a suffi-
cient approximation of v — oco. Table 1 shows that the degree of freedom tends
to be overestimated for the ARMA(3,2) model.

Finally, the root mean square error (RMSE) measures the estimator’s ability
to predict the true observations. Since the predicted or adjusted observations are
a consequence of the estimation of all four groups parameter groups &, a, 02 and
v, the RMSE expresses the overall performance of the proposed GEM algorithm.
This error measure includes both the variance and the bias of the estimator, and
should therefore approach 0 for different AR models. The RMSE is computed
for each MC run, and the resulting mean value is given in the Table 1. It can be
seen that the mean of RMSE is substantially reduced with each increase in the
AR model orders and for all error models. Only in case of t-distributed errors
for the ARMA(3,2) model, one sample from the tail of the distribution occurred,
which lead to an extreme estimation result and therefore to an unusually high
RMSE value. To accommodate for this sampling effect we computed also the
median of the RMSE values, as a robust measure of goodness of fit. As could
be expected, the model reproductions based on the t- and the normal sampling
distributions are much superior to the contaminated normal.

We also applied the GEM algorithm to approximate a measured and prepro-
cessed 3D GNSS time series (see [12]) by the circle given in (28). One application
of this model serves the geo-referencing of terrestrial laser scanner data where
the 3D circle describes the circular, horizontal motion of two global navigation
satellite system (GNSS) antenna reference points. Dual frequency receivers with
individually and absolutely calibrated GNSS antennas were used. The origin of
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the coordinates lies in the nearby reference station with a baseline length of ap-
proximately 14 m. For further information on the measurement setup (see [12],
p. 69). A full rotation consists of 7609 points (acquired with a data rate of 1
Hz) with respect to one antenna. We employed an AR model of order 12 for
each time series component. Figure 1 shows the adjusted circle and the observed
3D points. Having obtained an estimated degree of freedom of 10,000 for each
component we conclude that given GNSS series are normally distributed.

Table 1. Estimation results based on 1000 MC runs from the generated Student (t),
normal (N) and contaminated normal (CN) error models according to (31) - (34). For
WNT acceptance rates, Mean(é) and Mode(?) results are listed one below the other
for the three time series components (X/Y/Z).

| AR(0) | AR(1) | ARMA(3,2)

Error model | t N CN t N CN t N CN
Mean(7) | 0.4874  0.4874  0.4874 | 0.4874  0.4874  0.4874 | 0.4874  0.4874  0.4874
Mean(f)  |-3.141593 -3.141592 -3.141585|-3.141592 -3.141592 -3.141589]-3.141593 -3.141592 -3.141573

WNT 0.95 0.95 0.95 0.962  0.972  0.955 | 0.999 1 1
0.95 0.95 0.95 0.962  0.972  0.955 | 0.999 1 1
0.95 0.95 0.95 0.962 0972  0.955 | 0.999 1 1
Mean(6) 0.0010  0.0010  0.0616 | 0.0010  0.0010  0.0616 | 0.0006  0.0005  0.0296
0.0010  0.0010  0.0616 | 0.0010  0.0010  0.0616 | 0.0006  0.0005  0.0296
0.0020  0.0020  0.0663 | 0.0020  0.0020  0.0663 | 0.0012  0.0010  0.0318
Mode(D) 2.50 10000 10000 2.50 10000 10000 3.00 10000 10000
2.50 10000 10000 2.50 10000 10000 3.01 10000 10000
2.00 10000 10000 2.00 10000 10000 2.40 10000 10000
Mean(RMSE)
x107¢ 8 6 271 4 3 142 7961 4 191
Median(RMSE)
x107° 8 6 267 4 3 140 6 4 187
0.03
002
E
Q
=l

124
122

-16.4
-16.6

JETY

North [m] East [m]

Fig. 1. 3D view of observed (black points) and adjusted circle (red line) for n = 7827

real three-dimensional GNSS measurements taken from [12], displayed in a North East
Up (NEU) coordinate system.
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14 Robust Multivariate Time Series Analysis in Nonlinear Models

5 Conclusions

To achieve an adaptive robust adjustment of a multivariate regression time series
with outlier-afflicted /heavy-tailed and autocorrelated errors, we described the
theory and implementation of a generalized expectation maximization algorithm.
Monte Carlo simulations based on different error sampling distributions showed
that the bias of the parameter estimates is insignificant when a sufficiently large
number of observations (here 100,000) is adjusted. The presented algorithm was
also tested in a real-data experiment using GNSS measurements.
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Abstract

In Black-Scholes Model (BSM), the pricing of options is based on normality as-
sumption of asset returns. The crucial assumption underlying the BSM model is that
the underlying asset return dynamics are captured by the normal distribution with con-
stant volatility. The option price is not a linear function of the underlying asset price,
therefore when the portfolio contains options the pricing and modeling in risk manage-
ment is complicated. Modeling of variance is one of the frequently used method of
measuring risk. The time varying variance models such as GARCH models have been
used extensively in this regard because these models are capable of describing the un-
conditional non-normality of the data. In order to allow the skewness and kurtosis the
normal distribution model can be modified using various mathematical expansions. The
study of stock price models under the GARCH volatility is a new horizon in derivative
investment instruments. Duan was the first to provide a solid theoretical foundation for
GARCH option pricing. In the recent past a Black-Scholes model with GARCH vola-
tility was introduced. In this article we derive the kurtosis formula for underlying fi-
nancial time series using BS-Model with GARCH volatility for the case of in the money
option. We present the kurtosis formula in terms of the model's parameters. Also we
compare our computational results by using another measure of kurtosis for different
values of volatilities. We compare performance of GARCH volatility models for un-
derlying financial time series data.

1. Introduction

Fischer Black and Myron Scholes published an option valuation formula in their
1973's article [3] that today is known as Black-Scholes model. The model has some
restrictions for example; a constant risk frees interest rate » and a constant volatility o
which do not seem to be realistic. Trading option is risky due to the possibly high ran-
dom components such as volatility. The concept of non-constant volatility was intro-
duced by Bollerslev’s GARCH process [7]. Duan was the first to provide a solid theo-
retical foundation for GARCH option pricing [9]. Recently a Black-Scholes model with
GARCH volatility has been introduced [11]. The volatility measures, the variation of
price of financial instrument over time and implied volatility can be derived from the
market price of a traded derivative. In financial literature researchers use GARCH mod-
els frequently in order to forecast the volatility of underlying stock market [10]. Sheraz
and Preda studied the case of at the money options to compute the kurtosis in Black-
Scholes model with GARCH volatility [15]. Taylor series approximations have been
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used extensively in option pricing. In Risk management particularly first and second
order Taylor approximations are crucial. Taylor approximations have been also used in
Black-Scholes option pricing formula [6,13].

In this article we consider Black-Scholes model with GARCH volatility [11]. In Sec-
tion 2 Black-Scholes option pricing model and GARCH framework have been dis-
cussed. In Section 3 we present our results of kurtosis formula for the case of in the
money option (ITM) and kurtosis of formula of a nonlinear time series if volatility pro-
cess follows AGARCH-(0,1) model. In section 4 we present empirical performance of
standard GARCH and Exponential GARCH models. Section 5 concludes our results.

2. Black-Scholes Model and GARCH Processes

Let (Q, F, P) be the probability space then price S of an asset at time t is a Geomet-
ric Brownian Motion (GBM).

dS; = rS.dt + oS, dW; (2.1)
where {W,} is a standard Brownian motion and ais the volatility. We know that ac-
cording to Black-Scholes option pricing model a European call option for a non-divi-
dend paying stock if Black-Scholes framework is given by

Cpsm = S¢(dy) — Ke " ¢p(d;) (2.2)

log(%)+(r+%2)r i . o .
where d; = — Y d,=d;, — o\t and ¢(.) is a cumulative distribution

function for standardized Normal random variableand T = T — t and S is a price of an
asset, Kis the strike price, r is the interest rate and T denotes the time to expiry.

Definition 1 [3] If S is the stock price, r is risk free interest rate then C is a Euro-
pean call option that, gives its holder the right, but not the obligation to buy the one unit
of underlying asset for a predetermined price K at the maturity date T.

When variance of the log of stock returns changes with time i.e. o = 6, then a

Black-Scholes model with GARCH volatility for a financial time series let say y,, is
given by [11].

dSt = T'Stdt + Qtstth (2.3)

yv: = log (Sf—fl) —E <log (Sf—fl)) =0,Z; (2.4)

where {W,} is a standard Brownian motion and {6, } is a volatility process. The call
option for the model is given by

Cpsme = SEet(¢(d1)) - Ke_rTEet(d’(dz)) (2.5)

) +rr+E(9§)
F(E6D)) = (dy) = 22—~
5e7)

where

(2.6)
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£(68)

log(%)ﬂ”r— >

E(67)
Definition 2 [7] 6,is a stationary GARCH process having mean uy and variance o2
and GARCH (p,q) process of Bollerslev (1986) is given by

9(E6) = ¢(dy) = @2.7)

07 = w+ X g + X B0 (2.8)
gt = tht'

where, Z, ~ N(0,0¢) and w > 0,a; = 0, B; = 0. Option pricing based on
GARCH models have been studied under the assumption that the innovations are stan-
dard normal (i.e. under normal GARCH).
Theorem 1 [11] For a twice differentiable functions f and g the call price (2.5) can
be written as :

1
CBSMG = 5<f(E(9 )) +5 f (E(H )(gk(y) - 1) Ez(etz)) -
Ke T (g(E(ez)) +29 (E63) Gk - 1) EZ(GE)) 2.9)

where k@) = igyt) kurtosis of the observed log-returns y, and f (E(62)), g (E(62))

denote second order derivatives of f(E(62)) and g(E(62)) respectively therefore,

{—(2(log(%)+rT)+E(9%))2}
FEep)=tel )lM_

8E(6¢) [E(0¢)

(Ez(eﬂ 4(109 (g )”T)> Ftel)-2fenlg) ) (2.10)
8

5(6)) 4£(02) [E(67)

{—(2(109(%)+TT)—E(9?))2}
8E(67) l (
J.

S 2
) (561 k oal+r1)+EE0) |
g (E69) = \/_e 8E2(07) [E(67)

52(67)-4(10g(S)+r7)" | [ E(62)+2(10g(S)+rT) 211
(r(o2)” 45(07) [£(07) '
Then for the case of ATM the value of the kurtosis in terms of the model’s parameters
for Black-Scholes call option with GARCH volatility is given by

2 C
768( 67 BgMG 1)
k) = +3 (2.12)

(E(6¢)+4)(E(67)-8)
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where Cggpe 1S the value of call option for BS-model with GARCH volatility,S is
the stock price and 6, is the GARCH volatility. Consider different values of Call option
Cgsme and different stock prices S for BS-model with GARCH volatility proposed in
Gong et al. (2010). We consider the kurtosis formula for different values of volatility.

Volatility Call Price KurtO.SIS () Stock Price
Classical
0.3 25.33 19.473 400
0.3 20.40 20.848 405
0.3 15.58 22.162 410
0.4 25.33 20.202 400
0.4 20.40 21.382 405
0.4 15.58 22.508 410

3. Kurtosis Computations in Black-Scholes Model with GARCH Volatiltiy

An option is called in the money (ITM) if the strike price K and the current spot price
S of the underlying asset are different. In the following theorem we propose a formula

to compute kurtosis when Black-Scholes model follows GARCH volatility.

Theorem 2 For a twice differentiable functions f and g the call price (2.5) can be writ-

tenas:
Caswe = S(FE(BF)) — Ke"g(E(62)) +3 (k@ — 1) (SF (E(63)) -
Ke™'g (E(67))) E*(67)
Then for the case of ITM options the value of kurtosis is given by

k(y) _ 6<CBSMG —WE(Q?)—\/E‘U E(Gtz) - Zuv) 43
(s7 (5(07))-ke"T3 ((62)))E2(07)
where , u = log(£)+rT,v =S—Ke T, w=S+Ke T
Proof. Using the property, d, — d, = /E(8?%) and expansion

3 2 5 2
E207) 50D

2y
E(6¢) 5 20

(5(92)) = 1+ i[
¢ t - 2 m
we find

SFEOD) — Ke™Tg(E©OD) =S (5 + =) — ke TG+ 722)

_ S-ke™'T

=Ky %(Sdl — Ke™T(d; —JE(62)))

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7

@1

3.2

40



Ke™™T /5(92)
(3 + i) (S — Ke—TT) + NV
2 V2w V2m
2
tog( ) +rr+20E) 5 — ge-my 4 [e(6?)

2z |E(6?) &

(s+Ke™T)E(62)+Z(s-Ke ™) [E(67) +200g(2)+r)(s-Ke ™) 03
= 3.3
2v2m |E(62)

Now equation (3.1) can be written as :

NP

+

2<CBSMG—(5f(E(9§)))—Ke—TTg(E(eg))>
(s7 (5(62))-Ke T4 ((07)) )52(62)

1k 1 =
3

6<CBSMG—(Sf(E(HcZ)))—Ke_rTg(E(th)»

(s7 (5(62))-Ke"T4 (E(07)))E2(62)
Using equations (2.10), (2.11) and (3.3) we get equation (3.2).In example 3.1 we
have considered data used in [11].
Example 3.1 Consider S= 425.33, K =395, Cggye=31.33, T = 24, r = 0.00008 and
volatility is 0.1 then we obtain k©)= 39.28. Similarly if S= 425.68, K= 430, Cpspc=
0.15 T = 24, r = 0.00008 and volatility is 0.1 then we obtain k@)= 67.

KO =

3.1 Nonlinear Time Series and Kurtosis

Nonlinear time series display features such as time-changing variance, asymmetric
cycles, higher-moment structures, thresholds and breaks. Higher kurtosis indicates a
peaked return distribution and a greater chance of extremely large deviations from the
expected return. Recently, there has been growing development in the use of nonlinear
volatility models in financial literature. Black-Scholes option pricing models has some
contradictory assumptions, such as constant volatility and normally distributed log re-
turns. In many financial time series, empirical studies reveal some facts such as stock
returns and foreign exchange rates that exhibit leptokurtosis and stochastic volatility.

A sequence of random variables {y, } is called an RCA(1) time series if it satisfies
the equation
ye=(@p+b)yi1+& ,tEL (3.4)

The two necessary and sufficient conditions for second order stationarity of {y, } are

as follows:

o O-(0(F )

ii. Pp*+of <1

The sequences {b, } and {&, } respectively, are the errors in the model. A full descrip-
tion of RCA models and others properties can be found in [1,15,]. Peiris et al [16 ] have
studied a doubly stochastic model of the form given by
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Ve =(p+b)y,1+e& ,tEL
bt+1 = abt + (1 + bt)vt‘l'l ) t e Z (35)
The above model satisfies the following conditions.

003 )

ii. 1-a?—-o02<1
iii.  1-a?-202—¢%+¢%a’+ o2 <1

The asymmetric GARCH (AGARCH) by Engle and Ng and various other nonlinear
GARCH extensions have been proposed to capture asymmetric effects [8]. Consider
the doubly stochastic volatility process (3.5) with AGARCH (1) — (0,1) errors of the
following form [19].

& = 0.7,

0= w+a(g_q +71)° (3.6)
We can find using equation (3.5)

2y(1—g2— 62)52
E(ytz) - (w+ar®)(1-a“— of)oz (37)

(1-ac2)(1-a?-20%—p2+p2a2+¢p2a2)

4y _ 307E(of)+602(E(bE)+¢2)E(cP)E(¥E 1)
EGe) = (1-¢*-E(bf)-6¢2 E(b})-4¢E(b})) (38)
Then we can find the kurtosis of {y, } is given by
) = _E0P)
k) = Gony (3.9)

_ (302E(of)+602 (E(b)+$?)E(REWE)(((1-aoh)(1-a?~205 -4 +§2a? +¢2a}))”)

(1-¢p*-E(bf)-602 E(b7)-4¢E®D) (0 +ar?)(1-a?- 63)02)")

4. GARCH Modeling and Volatility Forecast

If S; is the the price of an asset and t € [0,T] , R, denotes log-return then

mathematically R, = log (Si) and generally in financial econometrics we write:
t-1

Re=p+e ,&/F~N(u a?) (4.1)
The distribution of error term &, (residuals) is conditional on information set F, and
assumed to follow a standard Gaussain distribution with mean zero and variance 1.
There are various conditional distributions used in GARCH models such as Student-t ,
generalized error distribution, skewed normal , skewed student-t , skewed generalized
error distributions, Johnson reparametrized distribution, generalized hyperbolic distri-
bution and many others.
The generalized hyperbolic distribution reveals the fact that the logarithm of the den-
sity function is of hyperbolic shape. On other hand the logarithmic values of the normal
distribution are parabolic. The density of the is given by
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AL

GHYP(x; L, a,8,8,1) = a(h,a, B, 8) (8% + (x — w)?) = 4.2)

x K, 257+ G = 07 )el0e)

where ALpu€ER,§>00=<|B|<a and,a(L,a,B,6) =

(az_ﬁz)l/z

ﬁaa—%slxl<s a2—ﬁ2>

The parameter A can be used to define further classes of GHYP distribution, where
& and p are location and scale parameters respectively.
For 2 = 1 we get hyperbolic distribution, a special case of generalized hyperbolic dis-
tribution. In other word the parameter A can be describes as a distribution class selec-
tion parameter. If we select 1 = —%we get the Normal inverse Gaussian distribution

[5,17].The density function of NIG is given by
as (6a?=pZ+p(x—p)) K1(ay/8%+(x-p)?
NIG(x; a, B, 6, 1) = ?e( )ﬁ 4.3)
where x,u €R,0 < 5,0 < |B| < a. There are various types of GARCH models
which have been frequently used in the financial literature. We consider one useful type
called exponential GARCH (EGARCH) to model time series of European Brent Crude
Oil. Nelson (1991) introduced EGARCH model [14].
loga? = w + XV, aig(z_) + X0, Bjlogo? ; (4.9)
9@e) =vzei + Azl — Elze_i)
where w, a;, By, and 4 are real parameters. The coefficient a; captures the sign ef-
fect and A the size effect. We used R package Quandl to download the daily prices of
crude oil for the period 2008-2015. In Table 1 we present the descriptive statistics for
the daily returns of our selected oil prices.

Table 1 Descriptive statistics for daily returns
Data Min Max Mean | Var SD Skew | Kurt

2008-2015 | 16.832 | 18.129 | -0.029 | 4.498 | 2.120 | 0.028 | 8.576

Model selection is always a crucial problem in any empirical study. The maximum
value of likelihood functions (LH) could simply compare the two models when num-
bers of parameters are same, but for different number of parameters we can use Akaike
Information Criterion (AIC for “n” number of parameters of model “m” with N obser-
vations. We want to estimate w, a, 8,y from the daily returns series. We fit the model
to the data and investigate the output. It is evident that estimates of w, a, 8,y are all
highly significant. The Jarque—Bera test suggest that the null hypothesis of joint zero
skew and zero kurtosis is easily rejected. We also observe from the Box—Ljung test that
the null hypothesis of independence of residuals is easily accepted.
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Figure 1 Histogram and Time Series Plot
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Table 2 Parameter Estimates of GARCH and EGARCH Models

Model Dist 1] w e Jé] y
GARCH | GHYP | -0.0447 | 0.0094 | 0.0452 | 0.9529

GARCH | NIG -0.0458 | 0.0094 | 0.0446 | 0.9535
EGARCH | GHYP | -0.130 | 0.0030 | -0.060 | 0.997 0.085
EGARCH | NIG -0.131 | 0.0032 | -0.061 | 0.997 0.083

For the returns from 2008-2015 EGARCH with Normal Inverse Gaussian Distribu-
tion (NIG) is the best fitted model based on AIC value. In Table 4 series and sigma
forecast of underlying data series is given.

Table 3 Model Selection

Data Model Distribution | AIC
2008-2015 | GARCH | GHYP 3.8860

GARCH | NIG 3.8861

EGARCH | GHYP 3.8748

EGARCH | NIG 3.8738

Table 4 Series and Sigma Forecast EGARCH with Nig Distribution

Forecast T+1 T+2 T+3 T+4 T+5
Series -0.0485 0.0626 0.0225 0.0370 0.0317
Sigma 1.8489 1.8517 1.8545 1.8572 1.8599

5. Conclusions

Kurtosis describes the shape of the probability distribution curve. Positive excess
kurtosis indicates that distribution has fatter tails than a normal distribution. In practice,
return distributions for stocks and most other assets are not symmetric therefore high
(low) value of kurtosis shows large(small) deviations from the expected returns. The
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proposed kurtosis formula contains the parameters of BS models with GARCH volatil-
ity. An extension of GARCH models that is AGARCH-(0,1) has been discussed to ob-
tain kurtosis formula of underlying financial time series. Empirical study results show
that kurtosis value is greater than 3 which strongly affirms the non-Gaussian, return

distribution.
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Abstract. In this paper, the effect of additive outliers is considered in
the estimation of the covariance and correlation matrix functions of a
multivariate stationary process. Robust estimators of these matrices are
presented to mitigate the effect of outliers. Some Monte Carlo simulations
are carried out to empirically clarify the impact of additive outliers in
the standard estimators and to assess the robustness of the proposed
estimators. As an illustration, the proposed estimation method is applied
to fit a vector autoregressive model to a real data set.

Keywords: Multivariate Time Series; Covariance Matrix; Outliers; Ro-
bust Estimation.

1 Introduction

The estimation of the covariance and correlation matrix functions is an impor-
tant step in the identification and estimation of a multivariate time series model,
e.g., for parameter estimation using the Yule-Walker equations. It is well known
that outliers in time series affect the correlation structure of the data which
may lead to erroneous estimators [1]. How to mitigate this phenomenon is still
a challenging problem.

Robust estimation theory has been extensively studied in the statistical com-
munity since the 1970s following the seminal works of Huber and Maronna |2,
3]. Several efforts have been done by the time series community to weaken the
impact of atypical observations. A concise review of the fundamentals can be
found in [4].

In the univariate context, [5] proposed highly robust estimators of the auto-
covariance (ACOVF) and autocorrelation functions (ACF). The estimators use
the so-called @, (.) estimator proposed in [6] which has an appealing feature
such as being location-free, a high breakdown point (50%) and a bounded influ-
ence function. The robustness and efficiency properties of the estimators have
also been investigated through analysis of numerical experiments and real data
analysis for univariate time series. For further details on these theoretical and

Proceedings ITISE 2017. Granada, 18-20, September, 2017.1SBN: 978-84-17293-01-7

47



2 Higor Cotta, Valdério Reisen, Pascal Bondon and Wolfgang Stummer

numerical studies, see [7]. For the multivariate context, highly robust estimation
of the covariance and correlation matrices for time independent data sets are
proposed in [8]. The case for time correlated data is the primary motivation of
this work.

In this paper, we extend to a multivariate stationary time series the robust
estimator of the autocovariance and the autocorrelation functions of a univariate
stationary time series proposed by [5, 8]. We compare the proposed estimator to
the sample estimator by means of temporal breakdown point and through Monte
Carlo experiments.

This paper is organized as follows. In Section 2, the effect of additive outliers
in the covariance and correlation matrix functions of a multivariate time series
is shown, and the robust estimators of the covariance and correlation matrix
functions are proposed. Section 3 presents some Monte Carlo experiments. A
real data example is considered in Section 4 and some concluding remarks are
provided in Section 5.

2 Robust estimation of covariance and correlation matrix
functions

2.1 Linear Time Series

Let X¢ = [X1,4,Xo4,---,Xit), t € Z be a k-dimensional linear vector process
defined by

Xi=p+37Piej, (1)
where p = [p1, ..., ug] is the mean vector of { X}, ¥y is the identity & x k ma-
trix, ¥;, j = 1,..., 00 are k x k matrices of coefficients satisfying 72 ;% <
oo, where || A|| is the matrix norm of matrix A defined by ||A||*> = Tr(A’A). The
process €, = [€1,4,...,Ek¢] 1S & zero-mean vector white noise, i.e., E(g;) = 0 and

Cov(et, €14n) = Ye 1{p—0y- Thus, although the elements of e; at different times
are uncorrelated, they may be contemporaneously correlated. It results from (1)
that

YX(h) = Cov(X¢, Xein) = 3720 O NeWyp, h>0. (2)

The lag-h correlation matrix function of {X,} is defined by
p¥(h) =D~ 2y (D™, 3)
where D = diag[y{% (0),...,7/%(0)]. The (i, j)th element of p* (h) is

Cov(Xi, Xj (t4n)) 73 ()
X (p) = = . : 4
sz( ) \/V&T(Xi,t> Var(X; ;) \/75(0)’}/])5(0) (4)

We denote by 4% (h) and p*(h) the sample estimates of vX (h) and pX(h),
respectively, i.e., the estimate obtained by replacing the unknown covariances in
(3) by their sample estimates.
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A parametric class of linear time series satisfying (1) is the vector autoregres-
sive moving average (VARMA) model of orders (p, q) defined by the difference
equation

®(B)(X, - p) = O(B)ey, (5)

where B is the backward shift operator (BX; = X;_1), #(B) =1-)."_, &;B’
and @(B) = I+ .7_, ©,B" where ®; and ©; are k x k matrices, and {e;} is
a zero-mean vector white noise process. When the polynomials #(z) and ©(z)
satisfy det(®(z)) # 0 and det(©(z)) # 0 for all z € C such that |z| < 1, (5)
has a unique stationary causal and invertible solution and the matrices ¥; are
determined uniquely by ¥(z) = Zj Wiz =& (2)0(2) for |z < 1.

2.2 Impact of additive outliers in multivariate time series

Outliers can affect the dependence structure of a multivariate time series. In
this section, some results related to the effects of outliers on the covariance
and correlation structures of a correlated process are derived. We suppose that
the observed process {Z;} results from the contamination of {X;} by additive
random outliers, i.e.,

Zt :Xt+9(st, (6)

where 2 = diag[wy, ..., wg] and w;, i = 1,..., k, is the magnitude of the outliers
which affects {X;+}, 8; = [01.¢, ..., Or,¢)’ is @ random vector indicating the occur-
rence of an outlier at time ¢. We assume that {X;} and {d;} are uncorrelated
processes and that P(6;,, = —1) = P(6;, = 1) = p;/2, P(6;;, = 0) = 1 — p; for
i=1,...,k where 0 < p; < 1. Then E(é;+) = 0 and Var(d; ;) = p;,- We assume
also that Cov(dy,d:) = Xs = diag[ps, ..., pr] and that Cov(d;,d:4p) = 0 when
h #0.

It follows from (6) that E(Z;) = E(X;), vZ(0) = vX(0) + X562 and
~Z(h) = 4% (h) when h # 0. Therefore

’Y” X(h) L0

Z(h) _ ) V/OEO)+piw (W], (0)+pjw3)’ 70, (7)
Pij - Yii (0)+P1W 1i=j) h=0
VOE O +piw?)(1E 0)+pw?)’ )

We observe that pZ(h) — 0 as |w;| — oo or |w;| — co when h # 0, these con-
clusions are deeper analyzed in Proposition 1. The works of [9] and [10] discuss
this problem in univariate time series with short and long memory properties.

Proposition 1. Suppose that Z1 4, Z2,...,Zn, 15 a set of k-dimensional time
series observations satisfying (6) and m is the total number of additive outliers
affecting these observations. Let [)ZZ](h) = '?g(h)/( ’yﬁ(O)’?ﬁ(O)), foralli,j =
1,... k.

a. Assume that m =1, say only one outlier occurring at {Z;+} for a given pair

(i,t). Then, for any j = 1,...,k and h # 0, we have

lim plim p;; Z(h) = 0.

n—00 (y;, —00
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b. Assume that m = 2, say only two outliers occurring at {Z;:} and {Z; 4},
where when t = t*, necessarily i # j, and when t # t*, we may have i = j
ori # j. Then, for any h # 0, we have

. . ~Z
g, Pl P25 () =0
and/or

The proof of Proposition 1 follows the same lines as in [9,10] and is not
presented here to save space. Proposition 1 shows that the presence of additive
outliers in the process leads to a decreasing of the correlation which is due to the
increasing of the variability. This phenomenon is observed as long as one series
contains at least one outlier.

2.3 Robust estimation of the covariance and correlation matrix
functions

Let Xi,...,X, be independent and identically distributed univariate random
variables with finite variance, and let X = (X3,...,X,,)’. The @,(.) estimator
of the standard deviation of X is the kth order statistic defined by

Qn(X) = c{1Xi = X5l <jlwy, 67 =1.m, (8)

where ¢ is a constant to guarantee consistency (¢ = 2.2191 when X; is Gaussian),
k= [((5)+2)/4]+1 and |z] is the largest integer smaller than z. The asymptotic
breakdown point of Q,,(X) is 50%, see |6].

For any univariate second order random variables X and Y, we have

Cov(X,Y) = aff(Var(X/a—i—Y/ﬁ) — Var(X/a —Y/B)), (9)

for any «, 5 € R.

Now, let {X,}, t € Z, be a univariate stationary time series with finite vari-
ance. Taking o = # in (9) and replacing Var(.) by Q2(.), [5] proposed the
following highly robust estimate of the autocovariance function of {X;},

Yo (h) = 1 (@n(U + V)~ Q3 (U - V), (10)

where U = (Xq,...,X,—p) and V = (Xp41,...,X,). The autocorrelation
function of {X;} can be estimated by

w U+ V)=Qp ,(U~-V)
s W U+V)+Q; ,(U-V)

P (h) = (11)
The consistency and asymptotic normality of 4q, (h) and pg, (h) are studied in
[7] and [11] when {X}} is a short and a long memory process.

In this work, we extend to multivariate time series the estimators (10) and
(11). Let { X} be a k-dimensional stationary vector process with finite variance,
we robustly estimate v (h) by

Proceedings ITISE 2017. Granada, 18-20, September, 2017.1SBN: 978-84-17293-01-7

50



Robust estimation of covariance and correlation functions 5

Yo, (h) = Bt (m))k (12)

. Uu Vv v v
5K X5) (1) = % ( 2 (a + B) -Q%_, (a - ﬂ)) ;o (13)

where,

U=(Xi1.... Xin0), V=Xjnt1,--, Xjn),a=Qn(X;)and 8 = Qn (X, ).

The correlation matrix function of {X;} can be estimated by

ﬁQn (h) _ [ﬁEgXi,t,Xj,t)]k (14)

n—h 4,j=1
) )

2 Uu, v 2 U
(X0, Xg0) | Yn—h (g + F) -Qi_, (E
Qn-n -

RN CE

where U, V, @ and S are defined in (13).

(15)

ENEN

2.4 Temporal breakdown point

The breakdown point of an estimator is the largest proportion of data that
may be considered as outliers, and the estimator still gives relevant information
about the distribution of the uncontaminated data, see [3]. Contrarily to the
case of non-correlated data, the position of atypical observations in a correlated
time series leads to different perturbations patterns. Therefore, the concept of
breakdown point of an estimator was extended to the time series context by [5]
to accommodate the time location of the outliers.

It is known that the sample autocovariance function has a sample breakdown
point of zero and its temporal breakdown point is also zero for any lag. As pointed
by [5], (10) and (11) have temporal breakdown point of 25%. Now, consider the
construction of U and V from {X.}, as in (13). One may see that the worst
scenario happens when both series {X; .} and {X;,} contain outliers spaced
by h observations, for a given lag h > 1. In this scenario, the highly robust
estimator of the covariance and correlation matrix functions given by (13) and
(15), respectively, have a temporal breakdown point of 25%. That is, as long as
the combined number of outliers presented in {X;,} and {X;,} is not superior
to 25%, the proposed estimators still provide reliable estimates of the correlation
or covariance matrix. To verify this, note the construction of U and V, where
pairs composed by {X;.} and {X;+} are made. Each pair can be seen as one
observation, thus leading to (13) and (15), sharing the same robust properties
of (10) and (11). This property will be empirically investigated in Section 3.

3 Empirical results

This section reports the results of several Monte Carlo experiments to empir-
ically analyze the impact of additive outliers on the autocorrelation function.
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The computational experiments were performed using the R programming lan-
guage and estimators that we propose are available in the tsqn package on “The
Comprehensive R Archive Network (CRAN-R)”.

The process { X} is generated as in (5) where k =3, (p,q) = (1,0), p =0,

0.6 0.3 0.0
& = (010200], (16)
0.10.80.4

and {e;} is a zero-mean Gaussian white noise process with covariance matrix

1.00 0.70 0.70
.= 0701.000.95] . (17)
0.70 0.95 1.00

The contaminated process {Z;} is simulated according to (6) where w; =
44/Var(X;,) and p;,i = 1,2, 3 are given in the plots and tables. The sample size
n is 500 and each experiment is repeated 1000 times. The sample estimate ﬁz(h)
is defined in the same manner as p™~ (h) and i)gn(h) is obtained by (14) where
{X,} is replaced by {Z,}. The means of p (h), ﬁ‘gn (h), pZ(h) and ﬁg (h) are
computed over the 1000 replications for each lag h, 0 < h < 7.

Figure 1 displays the true value p:%(h) and the estimates p:% (h), ﬁgi’jh(h),

p% (h) and ﬁgln:h(h) Figure 2 plots the true value pi%(h) and the estimates
pis(h), ﬁé;iii:xz”t)(h), p%,(h) and pAéQan’f’Z“)(h). For the other components of

h

{X} and {Z,}, we obtain similar figures. In both figures, the effects of additive
outliers appears by comparing the true correlation to the sample estimates f)z (h)
obtained in the contaminated case. Indeed, the values pZ (h) and p%(h) are much
smaller than pf(h) and p:%(h), respectively. These graphical results empirically
confirms Proposition 1, and are also in accord with the discussion in [7, 10] for the
univariate context. In addition, we observe on both figures that the sample and
the robust estimators have similar behaviors in the absence of contamination.
Thus, in a practical situation, when the practitioner is uncertain of the presence
outliers, (13) and (15) are still reasonable choices. When there are outliers in all
components of the vector time series, i.e., p; # 0 for all 4, the sample estimator
is clearly affected by additive outliers while the robust estimator is not much
affected when the percentage of contamination is 5%. Therefore (13) and (15)
are good alternatives when outliers are present in the data.

In Table 1, we present the root mean squared errors (RMSE) of p3%(h),

ol (h), p% (k) and pott  (h). Table 2, gives the RMSE of 535 (h), o5 "> (h),

p%(h) and ﬁgZ:‘_t;Z2’t)(h). From both tables, we observe that the sample and the
robust estimators have RMSE close to the each other in the absence of contam-
ination while the RMSE of the sample estimate is much larger than the RMSE
of the robust estimator when the percentage of contamination is 5%. Moreover,
the RMSE of the robust estimator is almost the same in the uncontaminated
and the contaminated cases. It is also noted the reduction of the RMSE as the
correlations decay to zero.
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Fig. 1. Autocorrelation function of {Z1}. From left to right and top to bottom, plots

are X (h), p%(h), o', (h), and p% (h), po", (h) when p; = 0.05, i =1,2,3.

X1

Table 1. RMSE of p{i(h), pg"", (h), pfi(h) and [)gln'ih(h) when p; = 0.05, i = 1,2, 3.

Lag h 0 1 2 3 4 5 6 7
ﬁ'lxl (h) ]0.00000 0.03050 0.05138 0.06391 0.06965 0.07290 0.07506 0.07590

ﬁgl’t} (h)|0.00000 0.03257 0.05545 0.06855 0.07450 0.07740 0.08050 0.08187
n—n

;3121 (h) ]0.00000 0.33091 0.23215 0.16371 0.11777 0.09080 0.07516 0.06827

ﬁQl’t ; (h)|0.00000 0.06132 0.07724 0.07927 0.07782 0.07682 0.07804 0.07806
n—n

In order to empirically investigate the breakdown point of the proposed es-
timator, the RMSE of p%(h) and ﬁgrj’_"}’bzz”(h) as the percentage of outliers in
{Z,} increases are presented in Tables 3 and 4, respectively. Remark that out-
liers are present in both {Z;;} and {Z5:}. Comparing both tables, note that
increasing the percentage of outliers in each series reduces the performance of
both estimators. However, not surprisingly, ﬁgjfiizz't)(h) is less affect by the
outliers.

4 Real data example

In this real data example, we consider the estimation of the samples correla-
tion function (CF) of the monthly personal consumption expenditure (PCE)
and disposable personal income (DSPI) of the United States from January 1959
to March 2012 obtained from the Federal Reserve Bank of St. Louis (FRED
Economic Data). This data set has 639 observations and has already been con-
sidered as an example in [12]. As pointed out by the author, the original series are
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Fig. 2. Correlation function between {Z;;} and {Z2:}. From left to right and top
to bottom, plots are pis(R), pin(h), ﬁ(Q)il_’i:Xz’t)(h), and p%(h), ﬁ(QZ:’_t;LZQ’t)(h) when
pi =0.05,¢=1,2,3.

Table 2. RMSE of p%5(h), o "% (h), p%(h) and ply " #* (h) when p; = 0.05,

—h h

i=1,2,3.
Tag h 0 1 2 3 1 5 6 7
5 (h) 0.02595 0.03459 0.04592 0.05291 0.05451 0.05496 0.05685 0.05755
”gilj}ixl”(h) 0.02913 0.03804 0.04962 0.05748 0.05939 0.05979 0.06128 0.06269
b2 (h) 0.28934 0.26774 0.19370 0.13680 0.09784 0.07479 0.06176 0.05521
A;z;fh,’zg,m(h) 0.05754 0.06356 0.06710 0.06538 0.06236 0.05965 0.06068 0.06170

not stationary. Thus we work with the differenced observations, in percentages,
after applying the log transformation. Figure 3 displays the time series. These
plots show the presence of some possible outliers which justifies the comparison
between robust and non-robust methods.

In Figures 4 and 5 we present the plots of p~ (h) and pg (h), respectively.
Comparing both plots, notice that vertical scales of both plots are different.
Indeed, as a mere evidence, the values of the classical sample autocorrelation
are -0.02, -0.03 and -0.02 for lags h = 1,2, 3, respectively, while the robust
autocorrelation given by (15) provided 0.32, 0.16, 0.09. Now, for the classical
sample cross-correlation between PCE and DSPI the values are 0.25, 0.11, 0.11
and 0.14 for lags h = 0,1, 2, 3, respectively. The robust cross-correlation given
by (15) are 0.3, 0.16, 0.22 and 0.25.
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Table 3. RMSE of p&(h).

Lag h i
pii=1,2,3 0 1 2 3 4 5 6 7
0.05 0.28934 0.26774 0.19370 0.13680 0.09784 0.07479 0.06176 0.05521
0.10 0.39047 0.35826 0.25729 0.17943 0.12558 0.08903 0.06950 0.05666
0.15 0.44192 0.40677 0.28982 0.20084 0.14067 0.09991 0.07345 0.06005
0.20 0.46956 0.43148 0.31149 0.21421 0.14771 0.10663 0.07947 0.06249
0.25 0.48315 0.44506 0.32042 0.22194 0.15276 0.10569 0.07697 0.06118
Table 4. RMSE of 357" (n).
Lag h .
pii—133 0 1 2 3 4 5 6 7
0.05 0.05754 0.06356 0.06710 0.06538 0.06236 0.05965 0.06068 0.06170
0.10 0.10492 0.10795 0.09833 0.08348 0.07124 0.06395 0.06177 0.05992
0.15 0.16088 0.16147 0.13579 0.10610 0.08424 0.07054 0.06293 0.05969
0.20 0.22260 0.21759 0.17829 0.13229 0.09814 0.07742 0.06682 0.05891
0.25 0.28858 0.27794 0.21815 0.15885 0.11540 0.08578 0.06693 0.06026

Now, consider the estimation of the ARMA parameters in (5). We concentrate
on VAR(p) models, and the Yule-Walker equations give

Te =7 (0) + D 87 (=) (18)
and .
'yX(h):Z@j'yx(h—j), h=1,...,p. (19)

Replacing v (.) in (18) and (19) by 4% (.) leads to the Yule-Walker estimators
whose equation system is solved using the Whittle’s algorithm. This estimation
procedure can be robustified replacing 4 (.) by Yq,, (h) given by (15).

Returning to the model analysis, based on information criteria, [12] selected a
VAR(3) model to adjust the data. Figure 6 presents the standard and the robust
correlation matrix function of the residuals of the selected model. In order to
save space, only the ACF of PCE and the cross-correlation between PCE and
DSPI are shown, the others plots present a similar behavior. Contrasting both
plots, we observe that f)Qn(h) presents higher values of cross-correlations; for
example, the cross-correlation between PCE and DSPI at lag h = 12 is 0.003
and 0.16, for p~ (h) and pg (h), respectively. This result is in accordance with
Proposition 1 which shows that one outlier is enough to destroy the properties
of the sample correlation matrix function, and thus impacting in any other sub-
sequential estimation step.

Now, we robustly estimate the parameters of the model. After, the plots
of the sample and robust estimates of the correlation matrix function of the
residuals are shown in Figures 7, respectively. Comparing Figures 6 and 7 one
may note the reduction in the values. Also, confronting the sample and robust
estimates, we note that the values of correlations are more alike; for instance,
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Fig. 3. Time plots of the U.S. personal consumption expenditures and disposable per-
sonal income, in percentages.
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Fig. 4. p* (h) of PCE and DSPI.

the value obtained by the sample estimate of the cross-correlation between PCE
and DSPI at lag h = 12 is 0.01, while the robust estimate is 0.03.

5 Conclusions

The effect of additive outliers on the estimation of the covariance and correlation
matrix functions of a stationary multivariate discrete time series is addressed. A
robust estimation method was proposed as a generalization of existing results in
the univariate case. Monte Carlo simulation results illustrated the good behav-
ior in terms of mean square error of the proposed robust estimator even when
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Fig. 6. The sample and the robust estimates of the correlation matrix function of the

residuals of the fitted VAR(3) via Yule-Walker.

the data contain a considerate number of atypical observations. A real data set
was analyzed where the proposed robust covariance estimator replaced the stan-
dard sample covariance estimator in the Yule-Walker equations. Future research
will develop the influence function and the asymptotic theory for the proposed

estimator.
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Fig. 7. The sample and the robust estimates of the correlation matrix function of the
residuals of fitted VAR(3) via robustified Yule-Walker.
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Abstract. At the end of each year, the German Federal Highway Research In-
stitute (BASt) publishes the road safety balance of the closing year. They de-
scribe the development of accident and casualty numbers disaggregated by road
user types, age groups, type of road and the consequences of the accidents.
However, at the time of publishing, these series are only available for the first
eight or nine months of the year. To make the balance for the whole year, the
last three or four months are forecasted. The objective of this study was to im-
prove the accuracy of these forecasts through structural time-series models that
include effects of meteorological conditions. The results show that, compared to
the earlier heuristic approach, root mean squared errors are reduced by up to
55% and only two out of the 27 different data series yield a modest rise of pre-
diction errors. With the exception of four data series, prediction accuracies also
clearly improve incorporating meteorological data in the analysis. We conclude
that our approach provides a valid alternative to provide input to policy makers
in Germany.

Keywords: Road Safety - Meteorological effects - Structural time-series model

1 Introduction

Reliable accident numbers are essential for monitoring road safety. Obtaining such
numbers and analyzing them with respect to short- and long-term trends is, however,
not a trivial task. The difficulties that road safety agencies are facing in many coun-
tries are both practical and theoretical in nature. Apart from various causes of un-
derreporting, police records are often difficult to obtain directly and/or without seri-
ous administrative bottlenecks. Publication of official accident numbers thus typically
involves considerable time-delays, which is, of course, detrimental to effective policy
making.

In Germany, the Federal Highway Research Institute (Bundesanstalt fur Straf3en-
wesen; BASt) collects accident numbers from 1991 (for the whole of Germany) and
publishes a yearly report on the balance of national accident numbers. The evolution
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is considered on a monthly basis for several subcategories (27 in total), based on road,
user and accident variables (e.g., type of road, age, cyclist, fatal, damage only, influ-
enced by alcohol, etc.). The report is prepared and published in December. At that
time, however, preliminary accident numbers have only been released up to August of
the running year for most subcategories and maximally up to September. At the same
time, these numbers are still subject to up- or downward corrections and final num-
bers are only released in the next year (typically around June).

To deal with this particular situation, BASt has developed heuristics to predict (a)
adjustments between provisional and final data from January to August/September
and (b) the evolution of accident numbers in the different subcategories from Au-
gust/September to December. Throughout the years, these heuristics have been re-
fined as the result of a continuous learning process. In particular, the experience with
typical responses of accident numbers to weather conditions have had an important
impact. This is not surprising, given the variety of countries where correlations be-
tween accidents and weather variables have been demonstrated (see e.g., [1]). These
correlations arise from complex underlying dynamics. There are, however, two main
sources. The first concerns the fact that certain weather conditions have an impact on
the risk of accidents. The second type of correlation arises from the impact on risk
exposure.

Precipitation like snow and rain increases accident risk because of reduced friction
between vehicles and the road surface and because visibility is reduced (precipitation
itself, splashing water, frozen/fogged windscreens, etc.). Research shows that, certain-
ly in the case of rain, this increase is not overruled by compensation behaviour such
as reduced speed, less frequent overtaking, etc. [2]. The correlation with risk exposure
arises from relationships between weather conditions and mobility patterns.

When a substantial amount of snow has fallen, all road users avoid unnecessary
trips, while rain, frost and small amounts of snow are thought to reduce mostly the
mobility of two-wheelers and pedestrians. The lowering effect on the traffic volume
can be so strong, that even with increased accident risk, fewer accidents are observed
in bad weather. How specifically the risk- and exposure-related effects combine into a
net effect on accident numbers, varies strongly across different weather conditions
and road user (e.g., [2,3]).

In the German scenario, it remains hard to make valid predictions about the evolu-
tion of accident numbers, even though the pattern of weather conditions is almost
entirely known at the time of the analysis. As mentioned above, the weather influence
on risk and exposure generates different and sometimes even opposite effects for
different accident types, or even for one and the same accident type. Given the inher-
ent correlation of weather variables (e.g., snowfall and temperature) it is also not
straightforward to identify the critical variables and their critical values with respect
to accident occurrence. Some variables also clearly interact. ‘Warm and dry’ will
have a different impact than ‘warm and wet’ or ‘cold and dry’ or ‘cold and wet’.
Weather variables also correlate and/or interact with other sources of variation, such
as daylight hours, school/public holidays, alcohol consumption, etc..

In the present work we developed a time-series modelling strategy that quantifies
the impact of weather conditions on accident numbers in Germany. It must be empha-
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sized, however, that it was not the goal of this strategy to disentangle the effect of
meteorological conditions on accident risks and occurrences. The sole objective was
to develop a tool which would improve the accuracy of the year-end forecasts by
BASt, concerning various types of national accident/injury numbers. The main ingre-
dients of our approach are (a) a decomposition of historical data according to structur-
al time-series models with seasonal, trend and weather-regression components and (b)
a projection of these models together with known weather values to impute missing
accident numbers from August/September to December.

This approach allows to disentangle long-term trends (e.g. casualty reduction due
to better occupant protection) from seasonal patterns (e.g. variation in crash-
occurrence due to changes in day-light patterns or school holidays). For