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Probabilistic topic models uncover the latent semantics of text collections and represent each
document by a multinomial distribution over topics. Hierarchical models divide topics into
subtopics recursively, thus simplifying information retrieval, browsing and understanding of
large multidisciplinary collections. The most of existing approaches to hierarchy learning rely
on Bayesian inference. This makes difficult the incorporation of topical hierarchies into other
types of topic models. The authors use non-Bayesian multicriteria approach called Additive
Regularization of Topic Models (ARTM), which enables to combine any topic models formal-
ized via log-likelihood maximization with additive regularization criteria. In this work, such
formalization is proposed for topical hierarchies. Hence, the hierarchical ARTM (hARTM) can
be easily adapted to a wide class of text mining problems, e. g., for learning topical hierarchies
from multimodal and multilingual heterogeneous data of scientific digital libraries or social
media. The authors focus on topical hierarchies that allow a topic to have several parent top-
ics which is important for multidisciplinary collections of scientific papers. The regularization
approach allows one to control the sparsity of the parent—child relation and automatically de-
termine the number of subtopics for each topic. Before learning the hierarchy, it is necessary
to fix the number of topics for each layer. The additive regularization does not complicate the
learning algorithm; so, this approach is well scalable on large text collections.

Keywords: topic modeling; ARTM; topic hierarchies; reqularization

DOI: 10.21469/22233792.2.2.05

1 Introduction

Topic modeling is a popular technique for semantic analysis of text collections. A probabilistic
topic model defines each topic by a probability distribution over words and describes each
document by a probability distribution over topics. In large text collections such as digital
libraries or social media archives, the topics are usually organized in a hierarchy. Topic hierarchy
helps user to navigate through the collection: going down the hierarchy, user chooses subtopics
and finds a small subset of documents to read.

In last years, a lot of research was done about topic hierarchies learning. There is no common
definition and common quality measure of topic hierarchy in the literature. Also, there is still
no common hierarchy learning approach [1].

It is difficult to combine existing approaches with other modifications of topic models:
spatiotemporal [2], short text [3], multilingual [4], multimodal [5], semisupervised [6], decorre-
lated [7], sparse [8], etc. On the other hand, there is a general approach for combining different
types of topic models called additive regilarization of topic models [9,10]. This framework is
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well scalable for large collections [10] and is implemented in open-source topic modeling library
BigARTM.

The goal of this work is to propose a method of learning topic hierarchies via topic model
regularization and integrate it with ARTM.

Let us focus on hierarchies as multipartite (multilevel) directed acyclic graph of topics rather
than a topic tree. While the last definition is a mainstream in literature, an assumption that a
topic can inherit from several parent topics looks more reasonable. It is a common case in any
field of knowledge when specific topic occurs on the edge of two or even more parent topics. For
example, bioinformatics combines applied mathematics and computer science to solve the biol-
ogy problems. This situation is called multiple inheritance. The presented approach supports
multiple inheritance and controllable sparsing of topic graph and automatically determines the
number of subtopics for each topic.

The reminder of the paper is organized as follows. In section 1, an overview of existing
approaches for learning hierarchies is presented. In section 2, a formal problem statement is
given and then, in section 3, the present authors’ approach is described and in section 4, its
implementation in BigARTM is presented. The last two sections are about experiments and
discussion.

2 Related Work

Two basic topic modeling techniques are probabilistic latent semantic analysis (PLSA) [11] and
its Bayesian extension latent Dirichlet allocation (LDA) [12]. A lot of LDA modifications were
developed to meet applications tasks [13].

Additive regularization of topic models [10] is non-Bayesian extension that allows to impose
additional, problem-specific criteria on topic model parameters. Many of LDA expansions can
be interpreted as regularization criteria, this allows to combine several modifications in a single
model.

In hierarchal models, the topics are linked by parent—child relations. Topic hierarchies are
usually constructed in two ways: via generative model complication or as a combination of
several tied flat models. Hierarchical LDA (hLDA) [14] and hierarchical Pachinko allocation
model (hPAM) [15] are the examples of generative models. As other LDA extensions, these
models are trained using time consuming Gibbs sampling that limits available collection size [16]
and integration with other types of topic models. Hierarchical LDA is a tree structure and
hPAM is a directed acyclic multilevel graph with no tools for edges number reduction.

The second group is split into top-down and bottom-up approaches. Tree structured hier-
archies are often learned top-down recursively: firs, a flat model with few topics is learned and
then, process repeats for each subtopic. SplitLDA splits documents between topics accordingly
to the distribution over topics for each document—word pair [17]. Constructing A Topical Hier-
archY (CATHY) approach [18] operates with phrases rather than with words and divides them
between subtopics. In Scalable and Robust Construction of Topic Hierarchies (STROD) [16],
each topic distribution over words can be expanded to a mixture of suptopics distributions
using tensor decomposition algorithm. The drawback of recursive approaches is that they need
heuristics to determine the number of subtopics in each topic. On the other hand, recursive
learning is usually fast, STROD is proven [16] to be the fastest on large collections.

Multiple inheritance supporting hierarchies are usually learned level by level. In [19], the
hierarchy is learned in two steps: first, flat LDA models are learned for each level and next,
topics between levels are linked using special subsumption criteria. An advantage is that
changing a threshold in subsumption criteria controls the hierarchy sparsity. The disadvantage
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is that specific topics are modeled independently from their parent topics. Also, the authors
propose a simple agglomerative clustering based method for determining the number of topics
in levels.

In [1], the hierarchy is constructed by bottom-up strategy. The last level of topics is learned
first and then, these topics are treated as pseudodocuments and the next level model is learned
from them. In this case, subtopic-pseudodocument proportions specify the topic graph structure
and there is no ability to control the graph sparsity.

Almost all hierarchical topic models are based on Bayesian inference, it makes difficult to
combine other topic model modifications with hierarchy. The present authors propose a top-
down hierarchy learning framework based on ARTM that incorporates few reasonable ideas
from other approaches.

3 Problem Statement

Let D denote the text collection. Documents d € D may contain not only words but also other
elements such as tags, links, location marks, etc. Let us refer to such types of elements as
modalities. For example, a scientific paper usually contains three modalities: text, keywords,
and references. Let M denote a set of all modalities in the collection. Modalities m € M are
defined by disjoint dictionaries W = || W™.

meM
A document d € D is a sequence of ng elements: (wy, ws, ws, ... ), w; € W. In this paper,

an order of elements is not important. Thu, collection can be represented as a counters matrix
{naw}pxw where ng, is the number of w occurencies in d.

Given the text collection, the goal is to organize its documents into comprehensive hierar-
chical structure. Let us define a topic hierarchy as an oriented multiparticle (multilevel) acyclic
graph of topics so that the edges connect the topics from the neighboring levels. If there is an
edge a — t in the hierarchy, then the topic a is called parent, or ancestor, topic and t is called
child topic, or subtopic. The parent topic is divided into several more specific child topics. The
number of topics in each following (child) level is usually greater than in the previous (parent)
level. Zero level consists of only one topic called root. An example of topic hierarchy is given
in Fig. 1.

Each topic in the hierarchy is associated with distributions over each modality dictionary.
This allows one to represent a topic by a top of most probable words saying what this topic is
about. The same can be done with other modalities.

To construct the hierarchy, let us learn several flat topic models and tie them via regular-
ization.

v k parent level
t

|| childlevel

Figure 1 An example of topic hierarchy
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In the rest of the paper, an operator norlm[yi] = max{y;,0}/> ., max{yy, 0} transforming
1€

real vector (y;)icr to a probability distribution is used.

4 hARTM framework

4.1 ARTM: flat topic models

The flat topic model describes collection D by finite topics set 7. In ARTM [10], document
distribution over each modality is modeled as a mixture of topic distributions:

p(w|d) ~ pr|t (t|d) de D,weWm.

teT

In other words, for each modality m, the topic model is a low-rank approximation
F™" ~ ®"O

of the frequency matrix F™ = { fuq}wmxp where fu,q = norm [Naw] is the frequency p(w|d). The
we m

model parameters are the matrices ®™ = { @y }wmxr With @, = p(w|t) and © = {04} rxp
with 6,4 = p(t|d), & and © being the stochastic matrices:

Z Pwt = Zetd =L <1>

weWm teT

For brevity, let is denote vertically stacked ®™ and F™, m € M, by ® and F', respectively.
Then, the topic model in an approximate matrix factorization F' ~ 0.
Let us maximize the weighted sum of modality log-likelihoods and regularizers R; to learn ®

and © :
Z Y, Z Z Ny 1N Z Ouwtbra + Z R ) — max. (2)

meM deD wewm teT ’

Weights sz, are used to balance log-likehood of modalities. Regularizers R; impose additional
problem-specific criteria on the model parameters. Regularizer coefficients 7; balance the im-
portance of regularizers and log-likehoods. If the regularizer term R = ). 7, R;(®, O) equals
zero and there is only text modality, then described model simplifies to PLSA.

Theorem 1 (see [10]). If all regularizers are continuously differentiable on ® and O, then the
stationary point of the problem (2) with constrains (1) satisfies the following system yielding
expectation-maximization (EM) algorithm for model training:

E-step : p(t|d, w) = n?rjm[gowtﬁtd], weW,de D, )
(S
OR
M-step :  p,; = norm [nwt + gowt] , o Myt = Z Nawp(t|d, w),

wewn Opu deD (3)
weWm™teT me M;

OR
O = IltOGI‘Tm |:ntd + a0, th] Nid = Z ndwp(t|d, 'LU), teT, deD.

weW J

The EM-algorithm is obtained by applying the fixed point iteration method to the system.
Matrices ® and © are initialized randomly.

Machine Learning and Data Analysis, 2016. Volume 2. Issue 2.



Additive regularization for hierarchical multimodal topic modeling 191

Sparsing regularizers. Frequently used sparsing regularizer [10] causes distributions p(w|t)
and p(t|d) to be sparse meaning the majority of distribution domain elements have zero probabil-
ity. To do this, Kullback—Leibler divergence between specified distribution a, usually uniform,
and target distribution is maximized. For instance, ©-sparsing regularizer:

ZKL(aHOd) - max & R(©) = — ZZat In 6y — max,
deD deD teT

0, denotes © column and for uniform distribution, a; = 1/|T"|. Similarly, for ™ sparsing with
uniform specified distribution,

Z Z lIl (pwt - %%LX

teT wEWm

Modified M-step formulas for parameters update:

Bl 9 T2 (4)
wt = NOrm [n,, X = norm (nyg — — | .
Pwt norm t— |Wm| td s td |T\

Hyperparameters of flat topic model are number of topics |T'|, weights {2, }men, and
regularization coefficients {7;};. While learning topic hierarchy, flat topic model is trained for
each level of hierarchy, every time with new hyperparameters settings.

4.2 hARTM: Top-down hierarchy learning

Since topic hierarchy is a multilevel graph, let us consider each level as a flat topic model. The
authors propose top-down, level by level hierarchy learning algorithm. Zero level is associated
with the whole collection. The first level contains small number of major topics. Starting from
the second level, it is necessary not only to model the topics, but also to establish parent—child
topic relations. To do this, the authors introduce two additional matrix factorization problems
and propose two new interchangeable regularizers based on them.

Assume one has already learned ¢ > 1 hierarchy levels. Now, let us learn (¢ 4 1)th level
that is a child level for the ¢th ancestor level. Not to confuse levels, let us denote parent level
topics a € A and parameters ¢ and O instead of t € T, ®, and © used for child level. Note
that ¢ and ©° are already modeled.
® interlevel regularizer. Let us model parent topic distribution over words and other modal-
ities as a mixture of child topics distributions:

=> p(w|t)p(tla), weW™ ac A
teT

This means an approximation
Pl ~ OT (5)

with new parameters matrix ¥ = {4, }rxa, 1, = p(t|a) containing interlevel distributions of
children topics t in parent topics a. This gives the following regularizaion criteria:

> ng KL(@™ || 9™ 4p,) ~ min
a€A

Ry(®™,0) =" Y nualn Y Purthra — max,

a€A weWwm teT

or, equivalently,
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@o™ and 1, denote columns of @“™ and U, respectively. Weights n, = > wewm Mwa are imposed
to balance parent opics proportionally to their size and to scale regularization criteria up to
the log-likelihood, n,, being the parent topic counters from the EM-algorithm. Regularizer
criterias are weighted by the modality weights:

Ry(®,T) = > 36,R3(®™, T).

meM

This regularizer is equivalent to adding |A| pseudodocuments represented by {7.q}wxa
columns. Then, the matrix ¥ forms |A| additional columns to the matrix © corresponding
to pseudodocuments. Note than child level could not be trained only on pseudodocuments
because internal dimension in approximation (5) is higher than the minimum dimension of ®*
and ® will just copy columns of ®°.
© interlevel regularizer. The same idea can be applied for regularizing © instead of ®.
Then, for each document, distribution over parent topics is modeled by the mixture of topic

distributions:
plald) = plalt)p(t|d).

teT

Additional matrix approximation looks like

Of ~ vO

with interlevel distributions ¥ = {@at} AxT Var = p(alt). This means that parent topic’s
documents set is a union of children’s documents sets. Regularizer criteria is

R4(O, ‘?I}) = Z Z 6',In Z Vatbra — max .
a€A deD teT 7,6

To train child model with the regularizer, let us add a new modality m corresponding to parent
topics and consider document counters for this modality 6¢;. The ©-regularizer coefficient

becomes the modality weight and v corresponds to the matrix ®™.

PLSA ARTM hARTM with @ reg. hARTM with O reg.
F o' 'Fl o o' ‘ F! o'

F ~ o o ~ 0 ~ ' olvl F ~ o o
FZ (I)Z 'FZ (I)I,Z (I)Z ®l l’i‘j

Figure 2 An illustration of child level regularization

An illustration of manipulating with pseudodocuments and new modality while the regu-
larization of child level is given in Fig. 2.
Hierarchy sparsing regularizers. When the topics are allowed to inherit from a number of
parents, it is assumed that this number will not be large, i. e., 1-3, rarely greater parents. Such
hierarchy is called the sparse one. In other words, we want distributions p(alt) to be sparse.
The regularization allows us to achieve this requirement.

Since in © interlevel regularization approach V¥ is a child ®™ and its columns represent
distributions p(alt), one can use ®-sparsing regularizer described above to make the hierarchy
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sparse. Let us rewrite (4) replacing ¢ — 1&, w — a, and W™ — A to show how U updates on
each iteration:
- T
Yot = norm {nat - W] :
In case of ® interlevel regularization, ¥ columns represent p(t|a) distributions that can be
converted to p(alt) using Bayes formula. Following the idea of other parsing regularizers, let
us maximize KL-divergence between uniform distribution v = {1/|A|},ca and the arget one

Q;t = {p(alt) }sea: )
S KL (yllh) > mgs

teT

or, equivalently,

7vbta .
ZZ lnpa|t VHZZI S wip >—>m\l}n

teT aEA

Probabilities p(a) are counted from ©F,
To show how ¥ updates, let us rewrite M-step formula in (??) replacing § — ¢ and d — a
and taking derivatives of R5(W) with respect to 1)y,:

Vi = norm [nm —Ts (ﬁ - p(a|t))] :

For each topic ¢, parent topics a with high p(alt) get higher and parents with low p(alt) get
lower. Note that R5 cannot zeroize all components of ¥ column whereas R; can do this with ¥
column.

Hierarchy learning scenario. Thus, hyperparameters of topic hierarchy are the number of
levels, the number of topics on each level, modalities weights, and regularization coefficients.
One can learn hierarchy level by level, on each level finding parents for topics from previous level
using ® or O interlevel regularizer. If sparse hierarchy is desired, hierarchy sparsing regularizer
should also be used. The process of training levels is stopped when the topics on the last level
are highly specialized.

Regularization coefficients may be tuned for each level individually or used the same for
all levels. Note that when learning the (¢ + 1)th level, only ¢th level’s topics are used for
regularization, not all previous levels’ topics.

When hierarchy is learned, the topics on each level are represented by their distributions over
words and other modalities. The documents on each level are assigned to several topics with
proportions specified in this level’s © matrix. The hierarchy structure is defined by interlevel
distributions. To draw the topic graph, one may impose a threshold on p(a|t) or p(t|a).

5 Implementation in BigARTM

BigARTM is an open-source topic modeling library with C++ kernel [20]. BigARTM provides
command line, C++ and python interfaces, and rich built-in library with regularizers and
scores. BigARTM takes multimodal input data in a range of formats and transforms it into
a series of batches, internal format. All batches store about the same number of documents,
each batch is assigned a float weight (default 1.0).
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BigARTM provides offline and online multithread learning algorithms. Offline algorithm
performs a number of scans over the entire collection. During one scan, each thread processes
one batch at a time, calculating n;y and 6,4 (applying ©-regularizers) and contributing local,
batch-specific n,,; multiplied by batch weight to global n,; counters. After that, the scan
algorithm applies ®-regularizers to global n,; and normalizes them to calculate ®. Online
algorithm improves the convergence rate by recalculating ® after every portion of batches.

The hierarchy learning is implemented as a wrapper over library interface without changing
the kernel. To use ® interlevel regularizer, an additional batch is created from parent ® matrix,
the weight of this batch equals to regularization coefficient. This parent batch is appended to
the collection batches during the learning of child level, it does not affect algorithm efficiency.

To use O interlevel regularizer during child level learning, each batch should be appended
the new modality corresponding to current batch parent ©. This is time consuming operation.
In experiments, it will be shown that two proposed interlevel regularizers are interchangeable;
so, there is no need to use ineffective algorithm.

The W sparsing regularizer is implemented as usual © regularizer since W is the parent
batch ©.

6 Experiments

In this section, two proposed interlevel regularizers will be compared and the properties of the
present hierarchy construction method will be studied.
Datasets. Let us run the experiments on two text datasets:

1) English Wikipedia dump (08.12.2014): |D| = 3665223 and |W| = 100000 after lemmatiza-
tion and filtering words by frequency; and

2) dump of http://postnauka.ru site (scientific lectures in Russian): |D| = 1728 and |W|
= 38467 after lemmatization.

Let us use only the text modality.

Regularizers comparison. Since both proposed regularizers impose additional matrix fac-
torization task, compare the quality of this approximation varying |W|/|D| proportion. Let us
measure Hellinger distance between two stochastic matrices A,,x,, and Bjxm,:

n

Ha )= 30 53 (v V)

2

Two-level hierarchy was learned with 50 and 250 topics in each level on Wikipedia subset
D’ C D several times. For |D'| =1, 10, 50, 100, and 200, second level was learned twice: with
® and O interlevel regularizer, respectively. For each run, H(®‘, ®¥) and H(O°, Ef@), (=1,
were measured. Coefficients of interlevel regularizers are set so that ©° is approximated at the
same rate with both regularizers, there is no hierarchy sparsing. The results are given in Fig. 3.

The graphic shows that with described coefficients, setup strategy ®* is also approximated
at the same rate for any |W|/|D| proportion. In other words, both regularizers approximate
both matrices ® and ©f. Moreover, ®-regularizer approximates both matrices a bit better
than its counterpart. Also, remember ®-regularizer allows more efficient realization. Hence,
the authors recommend to use it instead of O-regularizer. Let us run the following experiments
with & interlevel regularizer.
Children number study. One can trust children topics number estimated by the proposed
method if these estimates are robust. In this experiment, one can see how the number of
children topics and its deviation depend on hierarchy sparsing regularizer coefficient 5.
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Figure 3 Interlevel regularizers comparison

Postnauka hierarchy was learned with two levels 77 and 75, |T7| = 10 and |75| = 30. The
first level was modeled once and fixed. Then, for each 7 = 75 = 0.1,1, ..., 10% second level with
10 restarts was learned from different random initializations. The mean m; and the standard
deviation v of children number were counted for each topic ¢ € 17 and they were averaged over

children topics:
D DL

t6T1 teT?!
We set a threshold on 1y, as maximum so that the hierarchy is still a connected graph.
Figure 4 shows that the number of children topics and its variance falls with certain hierarchy
sparsing regularizer coefficient 7. For some topics, there is global minimum of m] and v] in
. = 10* or 10°. For 7 < T, regularizer affects ¥ weakly; for 7 > 7,, it zeroizes some )y,

N

randomly selected
topics
—e— mean over topics

o
o

o

45

o
®

Mean over restarts
o
E

Standard deviation over restarts

log,y T log;y 7

(a) (b)

Figure 4 Children number study. Dependences m] vs. 7 (a) and v] vs. 7 (b) for 4 randomly selected
topics are in gray, black line displays m”™ vs. 7 and v™ vs. T
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immediately after initialization and hides real parent—child relations. The variance of children
number is small (0.55-1), it proves that this estimate is robust. Mean parents number that
equals (|T1|/|Ts|)m™ = 1.16 for 7 = 10* is also small showing that the topic graph is close to
a tree.

Parent—child relations study. In this experiment, see how well probabilities p(alt) reflect
the existence of parent—child relations. We constructed three-level Postnauka hierarchy with 10,
30, and 90 topics in each level and chose 100 random pairs a—t. We asked an expert to mark
each pair as interpretable (relation exists) or uninterpretable. Figure 5 shows the scatter of
expert mark vs. p(alt).

accessor's mark
accessor's mark

00 corme o smmm s some @08 @ se @ . . 0.0 000 ® momse @oomm owwe se0m 0 oo

04 06 08 10 00 02 04 06
plalt) plalt)

(a) (b)

Figure 5 The difference in p(alt) between pairs a—t with 0 and 1 expert marks: (a) no sparsing and
(b) with hierarchy sparsing

The bias between 0 and 1-marked pairs is greater for the sparse hierarchy. Although there
is no explicit gap, one can impose a threshold on p(alt) so that the majority of 0- and 1-marked
pairs are determined right.

Few randomly selected braches of a topic hierarchy learned from Wikipedia are shown in
Fig 6.

7 Discussion

In this paper, a method of constructing topic hierarchy via regularization of the flat topic model
is proposed. An experiment showed that both described regularizers do the same work; so, the
more efficient one has been chosen. An idea of this regularizer is based on the assumption that
a parent topic is a mixture of children topics. Some other works [16] make this assumption as
well.

The authors suggest to learn hierarchy top down, level by level, not the whole hierarchy at
once. Thus, the quality of topics is controled on the higher levels before splitting them into
subtopics and the hierarchy is preserved from having uninterpretable branches. While other
top-down approaches are recursive and split each topic node into subtopics, the suggested
algorithm determines parent—child relations during child level learning and allows topics to
have more than one parents. At the same time, it determines children number of each parent
topic. An experiment shows that these estimates are robust. To the best of our knowledge, it
is the first top-down approach with multiple inheritance support.

An open question is how to specify the number of topics on each level. To do this, one
can apply the clustering technique proposed in [19]. Another way is to use a topic selection
regularizer [21] that chooses as possible linearly independent topics from certainly excess topics
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Figure 6 A part of Wikipedia hierarchy

set. The regularizer coefficients and modalities weights are usually tuned to maximize particular
criteria or visual hierarchy interpretability.
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BeposiTHOCTHBIE TEMATHIECKIE MOJIE/IN BBIABJISIIOT CEMaHTHKY TEKCTOBBIX KOJIIEKIIU, OIr-
ChIBasl KaXKJblii TOKYMEHT JMCKDPETHBIM PacIpeesieHrneM BepPOSTHOCTEH HAa MHOMKECTBE TEM.
Hepapxumyeckue MOAEIN PEKYPCUBHO JEJISIT TEMbBI Ha IIOATEMbBI, YTO YIIPOIIAeT UH(MPOPMAIIMOH-
HBIil ITOMCK W HABUTAIMIO 110 OOJIBIITUM MYIBTHIACIUIINHAPHBIM KOJIIEKIIUIM. B GOJIbIIHHCTBE
paboT 110 HepapXuIecKOMY TEMATHICCKOMY MOJEINPOBAHUIO IIPUMEHAETCA 0aiieCOBCKMIT BBIBO/I,
9TO 3aTPYAHSIET BBEJCHHE TEMATHYECKUX HEPAPXUl B TEeMaTUIECKHE MOJIEIN JIPYTHX BHUIOB.
He-b6aitecoBckasi aganTuBHas Pery/sSpU3allis TEMATUIeCKUX Mojeseil, HaobopoT, MO3BOJIsIET
KOMOMHHPOBATD JIIOObIE TEMATUIECKIE MOIEIHN, €CIU UX clenuduaecKkue ocoOeHHOCTH (PopMa-
JIN3yeMBbl B BHJIe KPUTEPHUEB-pery asipu3aropos. OIHAKO JI0 CHUX IIOp HEPAPXUUIECKHE MOJIEIIH
He nMean Takoil dopmanmsanun. [Ipemjgaralorcs peryisipu3aTopbl TEMATHIECKUX HePapxXui,
aJlalTHpyeMble JJIs IIMPOKOro KJacca 3aJad, B 9aCTHOCTH JJIsl TEMATU3AIUKA MYJIBTHMOIAJb-
HBIX ¥ MYJIbTUSI3BIYHBIX JTaHHBIX HAayYHBIX 9JEKTPOHHBIX OUOJIMOTEK M CONMAIbHBIX ceTeil. Pac-
CMATPHUBAIOTCS NEPAPXUH, B KOTOPBIX KaxK Iasl IOATEMa MOYKET UMETh HECKOJIBKO POINTEBCKIX,
9TO OCOOEHHO AKTYyaJIbHO IJIsi MEXKIUCIUILINHAPHBIX KOJUIEKIINNA HaydHbIX crareii. IIpemiara-
eMBIil ITOJIXOJ MTO3BOJISIET KOHTPOJHUPOBATH PA3PE’KEHHOCTH OTHOIIEHUSI TeMa—IIoITeMa W aB-
TOMATHYECKH OIPEIEe/ITh YHUCJIO IOATEM KarkKIo0il Tembl. IIpw mocTpoeHHH MOIEIN 3a1aeTCst
TOJIBKO YHCJIO T€M Ha KayKJIOM YPOBHE MepapXuu. AIUTUBHAS PEryJspU3alys He YCI0XKHIET
porecc 06yIeHUsI TEMaTHIeCKON MOIeNH, ITO JeJaeT JAHHBINA IIOAX0I MaCIITabUPyeMbIM Ha
OOJIBIIINE TEKCTOBLIE KOJLICKITHIH.

KiroueBbie cioBa: memamuveckoe modeauposarue; APTM; memamuueckue uepapruu; pe-
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