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Abstract

We present a heuristic control theory model that describes smoking under restricted and 

unrestricted access to cigarettes. The model is based on the allostasis theory and uses a formal 

representation of a multiscale opponent process. The model simulates smoking behavior of an 

individual and produces both short-term (“loading up” after not smoking for a while) and long-

term smoking patterns (e.g., gradual transition from a few cigarettes to one pack a day). By 

introducing a formal representation of withdrawal- and craving-like processes, the model produces 

gradual increases over time in withdrawal- and craving-like signals associated with abstinence and 

shows that after 3 months of abstinence, craving disappears. The model was programmed as a 

computer application allowing users to select simulation scenarios. The application links images 

of brain regions that are activated during the binge/intoxication, withdrawal, or craving with 

corresponding simulated states. The model was calibrated to represent smoking patterns described 

in peer-reviewed literature; however, it is generic enough to be adapted to other drugs, including 

cocaine and opioids. Although the model does not mechanistically describe specific 

neurobiological processes, it can be useful in prevention and treatment practices as an illustration 

of drug-using behaviors and expected dynamics of withdrawal and craving during abstinence.

Introduction

This paper presents a working prototype of a control-theoretic model that simulates realistic 

daily smoking patterns governed by a multiscale opponent process representing 

neurobiology of addictive behaviors. Until recently, many people considered drug addiction 

to be a moral failure, a lack of willpower. Only in the last few decades have scientific 

developments in neurobiology, especially functional magnetic resonance imaging (MRI), 

convincingly proven that addiction is a brain disease (Koob & Volkow, 2010). Prolonged use 

of certain drugs like nicotine or heroin can change brain functioning and, consequently, 
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decision-making processes. How much of addictive behavior is the result of mechanistic 

brain function and how much is it influenced by the environment? Modern science’s attempt 

to explain and reproduce the complexity of human behavior is challenged by bridging 

human behavioral science with laboratory-based neurobiology, areas that traditionally were 

disconnected from each other. Computational models facilitate such bridging. For some 

chronic diseases (cardiovascular, cancer, diabetes, and obesity) models connecting behavior 

and physiology have already been developed, e.g., a proprietary Archimedes model 

simulates a virtual patient in the context of daily routine activities (Eddy et al., 2013). No 

analog of such a model yet exists for substance use. In this paper, we present a first step 

toward creating such a model where processes in the brain drive behavior and the 

environment impacts brain processes.

We start with a simpler model that serves the educational purpose of illustrating pathways 

from occasional smoking to dependence and examining how different periods of abstinence 

impact withdrawal and craving. General public and drug-treatment counselors can use this 

model to provide a science-based explanation of daily smoking behavior. As more validated 

models of neurobiological processes become available, they can be incorporated into our 

model to expand the variety of explained behaviors.

Control-Theoretic Models of Substance Use Are Complementary to Biological Models

A large body of knowledge has been collected in neurobiology, genetics, behavior, 

treatment, and epidemiology of substance use (Ahmed et al., 2007; Bobashev et al., 2007; 

Gutkin et al., 2006; Koob & Volkow, 2010; Redish, 2004). A recent book on computational 

neurobiology (Gutkin & Ahmed, 2012) covered the spectrum of models in each area. At 

least two models combine positive drug-induced learning and neural meta-plasticity 

mechanisms for the onset of drug-seeking and the opponent process as the origin of the 

transition to addictive behavior (Gutkin et al., 2006; Graupner, M., & Gutkin, 2012; 

Keramati & Gutkin, 2014). For example, according to Gutkin et al. (2006), nicotine seeking 

is initiated by drug-induced dopamine-dependent plasticity and upregulation in nicotinic 

receptor function; on the other hand, the addictive state depends on an opponent down-

regulation of nicotinic receptor function and a subsequent disconnect between the motivation 

brain circuits and cortico-striatal action selection loops. Comprehending a cascade of 

feedback loops between a variety of biologic, neurocognitive, behavioral, social, and 

environmental factors is one of the main challenges in substance use research. A few models 

exist that describe various feedback loops (Lamy et al., 2011; Levy et al., 2013; O’Reilly & 

Munakata, 2000). However, most of these models are quite complex, and their practical 

utility for prevention and treatment is low.

In our study, we considered a different approach. Rather than combining many complex 

biological components, we started with a simple model based on control theory principles. 

The model describes multiscale behavior of an individual in its entirety and aims to achieve 

qualitative behavioral rather than biological accuracy. In control theory, “understanding” of 

substance-using behavior brings a utilitarian perspective where the scientific narrative is 

translated into mathematical models (Newlin et al., 2012; Bobashev, 2014). For example, 

when an individual is walking, several complex processes happen simultaneously in the 
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brain, but from the control theory perspective, maintaining balance is just a coordination of 

feedback loops that can be formally modeled and realized in self-stabilizing devices such as 

a walking robot. Although the real stabilizing mechanisms in a human brain and a robot are 

different, the stabilizing feedback principles remain the same. The model presented in this 

paper can be considered as a drug-using robot whose behavior mimics smoking patterns of a 

human under certain conditions. The feedback mechanisms modeled in this robot are based 

on the regulating principal of opponent process described below. Unlike a biological model 

that aims to uniquely describe “the truth,” a number of control process models can lead to 

the same phenomenological description. In this sense, we present a model rather than the 
model. A proposed control theoretic model has a module structure allowing one to replace 

individual components with specific neurobiological models.

Homeostasis, Opponent Process, and Allostasis

Scientists and researchers historically conceptualized the brain as designed to maintain a 

steady emotional state (homeostasis). Specifically, there exists a certain homeostatic set 

point, and when deviations from it occur (e.g., because of an external stimulus), the 

neurobiological processes bring the system back to the set point, thus maintaining a steady 

state. Homeostasis in the reward circuits means that when a strong reward creates a lasting 

effect, it must be countered by the opposite counter effect (i.e., “opponent process”), thus 

limiting the reward and returning brain neurocircuitry to the steady state. Similar to a 

thermostat in cold weather that responds to a door left open, the response is not immediate 

and cannot immediately change the state, but it works its way to establish the steady state. 

Solomon and Corbit (1973, 1974) formally introduced the concept of the opponent process 

with respect to emotional states in 1973 and further developed it in 1974; however, anecdotal 

mentions of an opponent process can be spotted in Plato (Fowler, 1966, p. 209):

What a strange thing, my friends, that seems to be which men call pleasure! How 

wonderfully it is related to that which seems to be its opposite, pain, in that they 

will not both come to a man at the same time, and yet if he pursues the one and 

captures it he is generally obliged to take the other also, as if the two were joined 

together in one head.

Solomon (1980) described drug addiction as the result of an emotional pairing of pleasure 

and the delayed emotional symptoms associated with withdrawal. According to this theory, 

during recreational drug use pleasure levels are high and withdrawal levels are low. After 

long use, levels of pleasure from using the drug decrease and withdrawal increases. Thus, 

eventually a switch in motivation occurs: rather than using the drug for pleasure, the subject 

is using to alleviate withdrawal. Such a long-term shift cannot be explained by the 

homeostasis theory because the optimization objective changes from optimizing pleasure to 

minimizing withdrawal (Ahmed & Koob, 2005). Interestingly, the hedonic theory of 

addiction, as Solomon phrased it, was modified in recent years to focus more on motivation 

rather than emotional impact. Ample evidence has shown that liking a drug and wanting a 

drug are dissociable and that the latter actually drives the addiction process. In this way, the 

initial drive to seek a drug is based on its motivation-reinforcing properties, whereas the 

opponent process is linked to motivational withdrawal states. In the negative reinforcement 

theory of addiction (Koob & LeMoal, 2006; Koob & Volkow, 2010), the drug addict finds 
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him- or herself in a motivationally suboptimal state when the drug is absent and is therefore 

motivated to seek and take the drug to redress the imbalance. Most clearly one can observe 

the dissociation between the motivation and hedonic impact for nicotine. It is a highly 

addictive substance, yet it has virtually no euphorogenic properties and produces rather mild 

hedonic withdrawal symptoms.

The concept of allostasis (Sterling & Eyer, 1988) expands the homeostasis theory by 

allowing adaptation through slow long-term changes in the set point. It suggests that long-

term (chronic) adaptive change occurs to the reward set point. For example, after prolonged 

use of a drug, achieving the satiated state requires increasingly larger drug doses, which in 

turn can lead to loss of control over the drug taking, eventually leading to dependence (Koob 

& LeMoal, 2006).

We developed and applied the model to describe self-administration of cocaine among rats; 

we then showed that the control-theoretic model fitted to the data from one experiment 

would accurately predict multiscale patterns in another experiment with a different group of 

rats and different setting (Bobashev et al., 2015). Encouraged by these results, we attempted 

to develop a similar model for a cigarette smoker, because smoking remains a major public 

health problem. Additionally, there is large public health interest in understanding the use of 

electronic cigarettes because the rates of use are rising among middle and high school youth 

(CDC, 2016). Cigarettes are legal (at least for adults), and before the wide adoption of public 

health policy banning smoking in public places, an individual could smoke a cigarette 

almost whenever he or she wanted. Many studies have addressed smoking habits, quitting 

attempts, and the development of tolerance, which provides data and parameterization for 

control theory models. Our approach is to start with a simpler model (a smoking robot) and 

eventually increase model complexity to incorporate more complex behavior that the simple 

model does not describe. Our initial model focuses on the period when an individual has 

been introduced to smoking and is transitioning toward dependence.

Control process models that describe the phenomenology of allostasis implemented in a 

practical software application/tool can be used in both prevention and treatment of drug 

dependence. As summarized in Koob and Volkow (2010) the drug-dependent brain moves 

through three states (binge/intoxication, withdrawal, and craving) that are distinctly 

characterized by activations in specific parts of the brain. Interactive visualization of brain 

regions activated when a drug user moves through these stages can illustrate the biological 

addiction for patients.

The rest of the paper describes the working prototype of a control-theoretic model that 

simulates daily smoking patterns governed by the opponent process; presents the results of 

several experiments producing realistic patterns of smoking; and links the processes with 

visualizations of the brain areas that are activated during each of the drug use phases: binge, 

withdrawal, and craving. Potential extensions and future work are described in the 

discussion.
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The Model

We considered a mathematical model of cascading feedback loops aimed to represent the 

following scientific narrative of allostasis and opponent process. Following Koob and 

LeMoal (2006) we considered a set point corresponding to a satiated state. If the actual state 

is lower than the set point, a signal is sent to use the drug (i.e., smoke a cigarette). If the drug 

is available, it is immediately consumed producing a hedonistic stimulus in the brain, which 

in turn excites a cascade of stabilizing processes. Each next process in a sequence is slower 

than the predecessor, producing a delay between the peak values of these processes. The set 

point is a function of the combined effect of the slower processes reflecting the 

accumulation of the deviation from the satiated state because of prolonged use. Thus, the set 

point slowly moves toward increased consumption (when consumption is intense) and 

toward less consumption (when consumption is slower). Intermediate time scale processes 

that could be interpreted as accumulated toxicity affect the infinite drift of the set point to 

guard against unlimited drug consumption. Relapse after long abstinence is controlled by a 

very slow process that can be vaguely interpreted as long-term memory. This process 

quickly resets use to the preabstinence level.

Main Model

Many biological processes are related to a concentration of some substance. We thus chose a 

family of continuous functions to represent cascading processes. We considered linear 

accumulation (i.e., increase in concentration) and first-order extraction. The mathematical 

model of such a process is sometimes called a running weighted mean or “leaky” integration 

in analogy with a leaky bucket in which water pours in with constant speed and leaks out 

with speed depending on the amount of water in the bucket (Newlin et al., 2012). Each 

process is characterized by a temporal scale associated with the accumulation and extraction 

rates. Because the next process is constructed as a weighted integration of the previous 

process, the characteristic scale of the next one is longer than the scale of the previous 

process. Although the equations are not designed to represent any real biological process, 

they are developed with a phenomenological interpretation in mind. The first process, Y1, 

corresponds to the effect of the drug, which is modeled with a pharmacokinetic equation. We 

assume that hedonistic effect depends on drug concentration and for smoking is defined on 

the scale of hours. The second process, Y2, vaguely corresponds to toxicity and describes the 

accumulation of the drug and the body’s processing of it. This process is modeled as a 

running weighted mean of Y1. The third process, Y3, characterizes how much drug an 

individual consumes over a long period, and is sensitive to the consumption mode (e.g., 

constant vs. binge) even if the amount consumed is the same. This process can thus resemble 

a “habit” and is defined on the scale of days. It was modeled as a running weighted mean of 

Y2. Process Y4 is again a running weighted mean of Y3. We did not interpret this process, 

which represents an even longer period. We keep process Y4 primarily for mathematical 

consistency to identify process Y5 as a long-term hedonistic memory defined on the scale of 

years. After a long period of abstinence, when processes Y1 through Y3 are quite low or 

virtually zero, Y5 process holds its slow-changing values. A diagram of the model is 

presented in Figure 1.
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The corresponding system of equations becomes the following:

(1)

where a, b, and α are the scaling coefficients, and the initial conditions of all Yi are equal to 

zero.

To sustain recurrent drug-using behavior, we introduced a trigger that prompts self-

administration. If the drug is available at that point, it is immediately used. We thus defined 

a dynamic threshold T such that when the effect Y1 drops below T, drug self-administration 

is prompted. The higher the threshold, the faster the drug effect drops below it and, 

therefore, the shorter the time intervals are between self-administrations. If the decision to 

use a drug after reaching a threshold is not deterministic but probabilistic, the intervals 

between the consequent uses vary (i.e., the drug could be occasionally used either before or 

after the effect crosses the threshold).

We modeled the threshold after the following narrative: Process Y3 reflects the level of use 

over a long period (e.g., habit); thus, the threshold should be positively correlated with this 

process. A long-term memory process, Y5, allows resumption of use after long abstinence 

when process Y3 is close to zero; thus, the threshold should be positively associated with Y5. 

Process Y2 reflects toxicity and should prevent unlimited loading with the drug (e.g., 

smoking 100 cigarettes in a row) so the threshold should be negatively balanced by toxicity 

Y2. We modeled such relationships as multiplicative effects.

(2)

where parameters β2, β3, and β5 are calibrating coefficients. Because process Y2 can be 

zero, we added a stabilizing unit “1” in the denominator.

External pressures and stressors can prompt use even when a person is in a satiated state. 

This is modeled through lifting the threshold by adding a “stressor” factor:

(3)

These stressors could be internal (mood, stress) or external (environmental) cues such as 

peer pressure, places that are associated with smoking, smell of tobacco smoke, etc. (Weirs 

et al. 2007, 2013).

Finally, the availability of cigarettes was modeled as a binary (0,1) indicator at each time 

point. If use is prompted but the availability indicator is zero, then no smoking occurs. Such 
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formulation of the threshold concludes the model, which is then calibrated to specific 

patterns of smoking. The model was implemented in Java as a virtual smoker tool and in R 

as a developer tool.

Representations of Withdrawal and Craving States

As a person continues regular use of the drug and moves into addiction, he or she can 

experience emotional states of withdrawal and craving. The mechanisms of withdrawal and 

craving have been intensely discussed in scientific and popular literature (Goldstein & 

Volkow, 2002; Koob & Volkow, 2010; Nicotine and tobacco, 2015). Although we do not 

model the biology of these states, we do use existing narrative to define withdrawal- and 

craving-like states as functions of prolonged use without access to cigarettes. We 

conceptualize that these states are continuous functions of the underlying control processes; 

the manifestation of withdrawal or craving occurs when a certain threshold is crossed. Under 

this conceptualization, the withdrawal- and craving-like processes start immediately with 

use, but their manifestation is negligible. As the person uses more, these processes evolve 

and, after crossing their respective thresholds, define withdrawal- and craving-like states. 

Several studies and reviews (Benowitz, 2010; Shadel et al., 2000) show that the signs and 

symptoms of nicotine withdrawal syndrome can appear within 2 hours of the last use of 

tobacco, usually peak between 24 and 48 hours after cessation, and last from a few days to a 

week. This timing is supported by discussions in smoking cessation online forums. In our 

control-theoretic model we introduced a W-process aimed to represent withdrawal as a 

function of how far the current drug effect Y1 is from the satiation threshold T. This 

difference is modified by representative use level Y3, and attenuated by the drug effect:

(3)

Similarly, we defined a craving-like process Cr as a function of the difference between the 

threshold and the effect but modified by the long-term processes Y5.

(4)

where d5 and Y0c are the calibrating coefficients. Two thresholds Tw and Tc are defined to 

indicate when each of the states manifests itself. Once again, we emphasize that these 

formulations are mathematical representations of narratives, not necessarily biological 

processes.

Although binge/intoxication is not common for many regular smokers even with unrestricted 

access to cigarettes, sometimes external stimuli such as extreme stress, social environment 

associated with heavy drinking, and chain smoking create situations for nicotine binge/

intoxication. In our model, such events are possible when external factors artificially lift the 

trigger threshold T. A smaller amount of binging can be also observed after a period of 

abstinence when an individual is “loading up.” We thus introduce a notion of binge/

intoxication, which is quantified in terms of effect Y1 exceeding a binge threshold Tb. We 
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define the threshold as the multiple of the maximum effect during regular smoking. The 

value of the multiplier is somewhat arbitrary (e.g., 10 cigarettes in a row). The problem with 

a practical definition of intoxication for cigarettes is that the dose for nicotine poisoning 

might be higher than the dose usually received when the user reports intoxication because of 

the role of numerous additives to tobacco. This topic, however, becomes of increased 

importance with electronic cigarettes when users can manipulate the dose they self-

administer.

Simulation Scenarios

The model was calibrated to the following typical scenario: A subject started smoking with 

seven cigarettes a day and in 9 months progressed to smoking a pack a day. Such scenarios 

were described, for example, in http://www.smokingfeelsgood.com, Benowitz (2010), and 

Stolerman and Jarvis (1995). The subject had unrestricted access to cigarettes during the day 

except for 8 hours at night for sleep.

Model parameters were then fixed and used to simulate the following scenarios where 

cigarettes were not available for short and long periods. Such scenarios can occur, for 

example, when an individual attempts to quit and restricts smoking. In this simple model, we 

do not describe tobacco-seeking behavior leading to relapse but rather restrict or not restrict 

access to cigarettes without modeling the reasons. Both an R model and the JAVA-based 

application allow one to select any restriction schedule. Here we present two scenarios that 

illustrate the consequences of short- and long-term abstinence.

• Short-term restrictions. We restricted access to cigarettes for two 5-day periods 

mimicking an individual who attempts to quit but relapses after 5 days.

• Long-term restrictions. Following results in peer-reviewed literature (Cosgrove 

et al., 2009; Ward et al., 2001) that abstaining from smoking for a period longer 

than a month (90 days is recommended) is critical for long-term abstinence, we 

restricted access to cigarettes for more than 30 days but allowed for relapse.

Results

The actual simulation model is available upon request from the lead author. In this section, 

we present the results of the simulated scenarios and show a few model screenshots.

Model Calibration by Describing Regular Daily Use

We calibrated model parameters to produce a long-term steady state of smoking about a 

pack of cigarettes a day.

The model shows a gradual increase in the number of cigarettes per day, low levels of 

withdrawal- or craving-like functions (both under the respective thresholds), and a low level 

of the long-term process Y5. After repeated use of the drug, W gradually increases in value; 

this, combined with an increase in the number of cigarettes per day, leads to crossing the Tw 

threshold and manifestation of withdrawal. Craving function Cr slowly increases, too, but 

does not reach the threshold point. These effects signal the pathway to dependence when 

both W and Cr cross their respective thresholds. The times when increase in use by one 
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cigarette per day occurs is noticeable by a slight dip in withdrawal (e.g., on day 29). Starting 

with 10 cigarettes per day, the individual in month 6 stabilizes consumption at around 24 

cigarettes per day, the rate identified by the American Cancer Society as heavy smoking. 

This rate of increase in consumption corresponds to the average rate (11 months for women 

and 16 months for men) at which individuals who start smoking reach the level of a pack a 

day (Thorner et al., 2007). In our model, such stabilization is achieved because of the 

inherent slow-changing negative feedback loops that eventually restrict unlimited use.

When an individual stops smoking for a short time, there is little effect on craving, which is 

illustrated in the example of a smoking break during sleep. When cigarettes are available any 

time, both W and Cr functions are virtually zero and the pattern of self-administration 

repeats almost perfectly. Some scientists view this process as a biological clock resulting in 

regular self-administration (Al-Delaimy et al., 2007, Tsibulsky & Norman, 2012). After a 

period of forced abstinence (8 hours of sleep), the levels of both Cr and W functions 

increase, but the increase in W is much faster. Because both function W and the trigger 

threshold T are influenced by the growing function Y3, the increase in W is associated with 

a slight rise in the second nicotine dose and shortening of the interval between the first and 

the second dose compared to the rest of the doses (Figure 2).

After we calibrated the model to represent this pathway, we used the model without 

modifying its parameters to represent scenarios that reflect life events.

Scenario 1. Stop Smoking for a Short Time (5 Days), Relapse, and Then Stop Again

We turned off cigarette availability for 5 days, turned it back on for a week, and turned it off 

again for 5 days. The resulting plot with overlaid drug effect, Cr, and W functions is 

presented in Figure 3.

This plot illustrates the difficulty in quitting and the high likelihood of relapse after a few 

days. W grows quickly and peaks around a day or two after quitting. Then, while W declines 

over the a few days, the Cr process builds up slowly. Figure 4 presents the same simulation 

as Figure 3 without overlaying the drug effect to emphasize the increased dynamics of Cr 
and W functions.

Scenario 2. Stop Using for a Long Time

We restricted drug availability for a long time to illustrate how long-term effects of 

abstinence impact withdrawal- and craving-like processes. Although process W can be 

strong at the beginning of the abstinence period, it wanes over the next few days. The Cr 
process continuously builds up over a longer time and peaks sometimes over a month after 

stopping use (Figure 5). Although the Cr process stays high for quite a while, it eventually 

declines to low levels. This observation reveals an important message: the feeling of craving 

will eventually subside if the subject stays abstinent for a long enough time.

Discussion

We developed a multiscale simulation model and a visualization tool to illustrate how 

theoretical narratives can be modeled through a control process model. The model 
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incorporates an opponent process theory and reproduces allostatic behavior. In addition, the 

model illustrates how drug self-administration is governed by a dynamically changing 

threshold with a number of processes governing slow and fast changes. Our model illustrates 

smoking behaviors of a heavy smoker and introduces withdrawal- and craving-like functions 

to link controlled processes. The model was calibrated to mimic an increase in smoking 

consumption from 10 to 24 cigarettes a day. When use is disturbed by a lack of drug 

availability, the model illustrates why most individuals relapse within a day or two because 

of withdrawal and why repeated quitting and relapsing leads to the buildup of withdrawal. In 

terms of long-term effects, the model illustrates how craving builds up over a long period, 

but after a longer time, generally 2 to 3 months, craving mostly disappears. Finally, our 

model shows that even after a long period of abstinence, a small priming of use (e.g., 

smoking a single cigarette) can lead to a return to the use pattern before abrupt quitting.

By manipulating model parameters in Equations (1) and (2), one can control the rate at 

which an individual increases the daily rate of consumption, reaches the steady 

consumption, and responds to abstinence. Parameters in Equations (3) and (4) allow one to 

manipulate the time period when withdrawal and craving reach their peaks and how fast they 

disappear. Thus, the model provides the means to describe heterogeneity of behaviors.

For prevention, the visualization of possible behaviors and underlying mechanisms provides 

a powerful message to teenagers and young adults about the short- and long-term effects of 

smoking. For treatment, the tool provides a potential explanation of the recovery process and 

the short- and long-term emotional effects of drug use reduction and abstinence. As 

discussed in Weirs et al. (2013), cognitive biases among drug users could be at least partially 

attenuated by self-awareness and understanding of neurobiological processes. Tools are 

needed to bring underlying, implicit, dynamics of craving to the explicit attention of 

substance abusers. After calibrating the model to typical behaviors, the users can further 

explore “what if” scenarios through simulations and develop additional awareness of 

potential outcomes.

Visualizations of Brain Regions

Intoxication, withdrawal, and craving are characterized by the activation of certain brain 

regions that Koob and Volkow (2010) clearly defined. We developed an interactive 3D 

visualization tool that highlights each of the regions as described in Koob and Volkow 

(2010) (Figure 6).

We also created still 2D slice images of the 3D brain that correspond to each stage using 

three different angles. Our withdrawal- and craving-like functions offer a link between the 

use and manifestation of these states and visualizations of active areas in the brain. These 

images were incorporated in the simulation application such that when processes Cr or W 
reach their corresponding threshold, the brain images corresponding to craving and 

withdrawal appear on the screen. For example, in Figure 5, on day 40 process Cr is above 

the threshold Tc while process W is below its threshold, indicating that the person is at the 

craving stage. Figure 7 is a snapshot of the part of the screen that highlights regions 

activated during the craving stage.
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Limitations and Future Work

The results of the simulations are as good as the model assumptions, and there are plenty of 

them. Two key assumptions are that the drug is always available and that it is the only 

behavioral reinforcer. These assumptions are practical for laboratory experiments and allow 

translation of such experiments to real life. For smoking, these assumptions are somewhat 

justifiable: before restrictions on public smoking, cigarettes were broadly available and there 

were no adequate substitutions for the effects of having a cigarette. Other assumptions 

simplify parameter variation, an impact of environmental stressors, and ignore potential 

drug-seeking behaviors during withdrawal and craving. Although several complex models 

(Lamy, 2011; Levy, 2013) simultaneously include many aspects of measurable and 

unmeasurable human behavior, we started with a relatively simple model that was recently 

validated on data from animal experiments (Bobashev et al., 2015) and developed a 

representation of a specific substance use theory.

Future work on the model will expand it in two directions. One is the inclusion of factors 

that changed the dynamics of use, such as restrictions on smoking in public spaces, social 

acceptance of smoking, the availability of nicotine replacement therapies such as Nicorette, 

and environmental cues. Data collected from Ecological Momentary Assessment (EMA), 

wearable sensors and laboratory experiments (Shiffman et al., 2009, 2014; Stevenson et al., 

2017) could be used for calibration and validation of the enhanced behavioral model. 

Another direction is the replacement of specific individual components of the control theory 

model with corresponding neurobiological models as in Keramati & Gutkin, (2013). Many 

neurobiological theories are developed from animal experiments that are infeasible or 

unethical for use on humans. How applicable are these theories to realistic human life? 

Simulation modeling using virtual patients (in our case smokers) allows one to test the limits 

of theories developed from a controlled laboratory experiment, and thus to provide a 

translational link to behavioral science.
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Figure 1. 
A schematic diagram of the model
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Figure 2. A plot of the drug effect, with overlaid withdrawal-like (W) and craving-like (Cr) 
functions
Note: Each peak of the effect plot corresponds to smoking a cigarette when nicotine 

concentration quickly rises, and then drops. Withdrawal-like function builds up overnight 

but disappears after the first smoked cigarette. Craving-like function slowly builds up 

overnight but is quite weak to manifest craving.
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Figure 3. Plots of drug effect,Cr and W functions for multiple short-term abstinence
Note: After stopping use for a few days, withdrawal-like function W is high at the beginning 

but quickly diminishes. Craving-like function increases slowly and disappears immediately 

after smoking is resumed. At the second abstinence after a few days, both withdrawal-like 

and craving-like functions reach higher levels than during the first abstinence period.
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Figure 4. 
W and Cr processes reaching their thresholds after short-term break in smoking
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Figure 5. Illustration of the long-term dynamics ofW and Cr functions
Note: After abstinence for several months, both withdrawal- and craving-like functions drop 

below their respective threshold levels.
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Figure 6. Screenshot of the interactive 3D model visualizing affected brain areas
Source: Model developed at RTI International by Georgiy Bobashev and John Holloway. 

Special thanks to Nicole Seider.

Bobashev et al. Page 19

Methods Rep RTI Press. Author manuscript; available in PMC 2017 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Application screenshot illustrating activated brain components during craving stage after no 

smoking for 12 days
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