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GENERALIZED YANGIANS AND THEIR POISSON COUNTERPARTS

D. I. Gurevich∗ and P. A. Saponov†

By generalized Yangians, we mean Yangian-like algebras of two different classes. One class comprises the

previously introduced so-called braided Yangians. Braided Yangians have properties similar to those of

the reflection equation algebra. Generalized Yangians of the second class, RTT -type Yangians, are defined

by the same formulas as the usual Yangians but with other quantum R-matrices. If such an R-matrix

is the simplest trigonometric R-matrix, then the corresponding RTT -type Yangian is called a q-Yangian.

We claim that each generalized Yangian is a deformation of the commutative algebra Sym(gl(m)[t−1])

if the corresponding R-matrix is a deformation of the flip operator. We give the explicit form of the

corresponding Poisson brackets.
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1. Introduction

In [1], we introduced the notion of a braided Yangian associated with a wide class of rational and

trigonometric R-matrices. This notion is a new generalization of the Yangian Y(gl(m)) introduced by

Drinfeld [2]. According to one definition, Y(gl(m)) is the algebra generated by the coefficients of the

matrix-valued function

L(u) =
∑

k≥0

L[k]u−k. (1.1)

The Laurent coefficients L[k] are finite m×m matrices, and L[0] = I, where I is the identity matrix. The

elements of the matrix L(u) satisfy the system of flip relations

R(u, v)L1(u)L2(v)− L1(v)L2(u)R(u, v) = 0, (1.2)

where R(u, v) = P − aI/(u − v) is Yang’s famous R-matrix,1 I is the identity matrix, and P is the usual

flip operator or its matrix. The matrix L(u) (and similar matrices considered below) are called generating

matrices.
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The Yang R-matrix is the simplest example of a current R-matrix (i.e., depending on a spectral

parameter), which is one solution of the quantum Yang–Baxter equation

R12(u, v)R23(u,w)R12(v, w) = R23(v, w)R12(u,w)R23(u, v). (1.3)

If the Yang R-matrix is replaced with another currentR-matrix R(u, v) in relation (1.2), then we obtain

a class of Yangian-like algebras. The best-known example is the so-called q-Yangian, which corresponds to

the simplest trigonometric R-matrix related to the quantum group Uq(ŝl(m)). Below, all objects related to

Uq(ŝl(m)) or Uq(sl(m)) are said to be standard.

In addition to standard R-matrices, there exists a large family of rational and trigonometric current

R-matrices, which are constructed from constant involutive and Hecke R-matrices using the Baxterization

procedure (the exact definition is given in Sec. 2). We call the corresponding algebras with relations (1.2)

RTT -type Yangians, denoted by YRTT (R). Moreover, in contrast to the usual Yangian, we do not impose

the condition L[0] = I.

Another class of algebras, braided Yangians, was introduced in [1]. The generating matrix of each such

algebra satisfies the relation

R(u, v)L1(u)RL1(v)− L1(v)RL1(u)R(u, v) = 0, (1.4)

where R(u, v) is the abovementioned current R-matrix resulting from the Baxterization of a constant

involutive or Hecke R-matrix. The generating matrix L(u) is also a formal series given by formula (1.1)

with the additional condition L[0] = I. A braided Yangian is denoted by Y(R).

The Yangian-like algebras defined above are called generalized Yangians.

We note that the properties of the generalized Yangians YRTT (R) and Y(R) differ substantially.

In particular, they have different bialgebra structures. The relation between the comultiplication and

multiplication operations in the tensor square is usual in the RTT -type Yangian, while it is more complicated

in the braided Yangian and is similar to the situation in superalgebras, only the role of the superflip is played

by a more complicated operator constructed from the defining R-matrix. Moreover, in the two classes of

generalized Yangians, the evaluation maps2 are completely different, which leads to a large difference in the

theory of representations of these algebras.

Evaluation maps for braided Yangians are analogous to similar maps in the classical case. The image

of this map is contained in the reflection equation (RE) algebra determined by the original R-matrix R.

The modified RE algebra (which differs from the usual one by a linear shift of some generators by the

unit element) can be interpreted as a twisted analogue of U(gl(m)). In particular, the categories of finitely

generated representations of U(gl(m)) and the modified RE algebra are similar in many respects [3]. The

evaluation map hence allows constructing a large set of representations of braided Yangians.

In the case of RTT -type Yangians, the evaluation map is less interesting because is image is in algebras

whose representation theories are unknown in the general case. An example of the RTT -type q-Yangian

related to the standard trigonometric R-matrix was presented in [4].

Our main purpose in this paper is to study the deformation properties of the generalized Yangians of

both classes.3 We say that an associative algebra Ah depending on some parameter h has the deformation

property if it becomes a commutative algebra A = A0 for h = 0 and a new product ⋆h can be defined in

this commutative algebra, induced from the algebra Ah and depending smoothly on h. This in turn means

2An evaluation map is a map to a finitely generated algebra as one step in constructing representations of a Yangian.
3All the algebras we consider are defined via generators and relations. The parameters in the relations are not formal and

can be specialized.
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that for a generic h, there exist isomorphisms αh : A → Ah of linear spaces that depend smoothly on h and

such that α0 = Id. Then the induced product in the algebra A is given by the rule

f ⋆h g = α−1
h (αh(f) ◦ αh(g)),

where ◦ denotes the product in Ah. The map αh is usually constructed using a special basis (sometimes

called a Poincaré–Birkhoff–Witt basis) in Ah. In what follows, we show that each generalized Yangian

is a deformation of the commutative algebra Sym(gl(m)[t−1]) under the additional condition that R is a

deformation of the flip operator.

If an algebra Ah has the deformation property, then the ⋆h product can be expanded in a series in the

parameter:

f ⋆h g = f · g + hc1(f, g) + h2c2(f, g) + . . . ,

where · denotes the commutative product in A. In this case, there exists a Poisson bracket on A defined

by the antisymmetrization of the term c1:

A⊗2 ∋ f ⊗ g 7→ {f, g} =
1

2
(c1(f, g)− c1(g, f)) ∈ A.

Our second purpose is to calculate the explicit Poisson structures corresponding to the Yangians of

both classes. We write the quadratic Poisson brackets and their linearization for both classes.

This paper is organized as follows. In Sec. 2, we recall the definitions of RTT and RE algebras and

Yangians of both classes and describe some of their properties. First, we consider the so-called Baxterization,

which allows constructing current R-matrices from involutive and Hecke R-matrices. We then describe the

target algebras for the evaluation maps of the corresponding braided Yangians and construct quantum

analogues of some symmetric polynomials. Finally, we present a form of the Cayley–Hamilton–Newton

matrix identity for the generating matrix of braided Yangians.

Section 3 is devoted to the question of the deformation properties of generalized Yangians. We

present arguments supporting the assertion that generalized Yangians are deformations of the algebra

Sym(gl(m)[t−1]) if the initial matrix R is a deformation of the flip operator. We then calculate the quadratic

Poisson brackets corresponding to this deformation.

Section 4 is devoted to linearization of the quadratic Poisson brackets. We present two explicit examples

of such brackets in the case of low dimensions.

The ground number field K is assumed to be the field of complex (C) or real (R) numbers.

In conclusion, we once more stress that the properties of braided Yangians (and, in particular, their

Poisson structure) are quite similar to these of the usual Yangians. Using this similarity, we can generalize

the method for quantizing the rational Gaudin model, proposed by Talalaev [5], to the trigonometric case.

We plan to elucidate these questions in our subsequent publications.

2. Quantum matrix algebras and generalized Yangians

We begin with consideration of quantum matrix (QM) algebras similar to the Yangians of both classes

but associated with constant R-matrices. We recall that an operator R : V ⊗2 → V ⊗2, where V is a finite-

dimensional vector space (dimV = m) is called a twist if it satisfies quantum Yang-Baxter equation (1.3)

with the parameter dependence omitted. A twist R is called a Hecke or involutive symmetry if it additionally

satisfies the relation

(qI −R)(q−1I +R) = 0, (2.1)

where the numerical nonzero parameter q satisfies the respective condition q2 6= 1 or q2 = 1. Below, we

assume that if q 6= 1, then the value of q is is chosen to be generic, i.e., qn 6= 1 for any integer n.
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An associative algebra generated by elements of a matrix L = ‖lji ‖1≤i, j≤m satisfying the matrix relation

RL1RL1 − L1RL1R = h(RL1 − L1R) (2.2)

is called a modified RE algebra if h 6= 0. If h = 0, then we omit “modified.” Algebra (2.2) is denoted by

L(R, h) for nonzero values of the parameter and by L(R) if h = 0. As usual, subscripts on matrices and

operators (e.g., Li, Ri j , etc.) indicate the position of the factor (or factors) in V ⊗n where the operator

acts. Moreover, for the operator Ri i+1, we use the brief notation Ri.

We also consider the RTT algebra associated with a twist R and defined by the system of relations for

the elements of the generating matrix,

RT1T2 − T1T2R = 0, T = ‖tji‖1≤i, j≤m. (2.3)

This algebra is denoted by T (R).

The algebras L(R) and T (R) are examples of QM algebras defined in the general case by a pair of

compatible twists [6].

A twist R is said to be skew-invertible if there exits an operator Ψ: V ⊗2 → V ⊗2 such that

Tr2 R12Ψ23 = P13 ⇔ Rkl
ijΨ

jq
lp = δqi δ

k
p . (2.4)

All the twists R we consider in this paper are assumed to be skew-invertible involutive or Hecke symmetries.

For any skew-invertible twist R, we can define the so-called R-trace TrR A, where A is an arbitrary

m×m matrix. This operation has many useful properties and applications. For example, the R-trace ap-

pears in the construction of quantum symmetric polynomials in the algebras T (R) and L(R) and also in the

generalized Yangians of both classes. The explicit form of this operation is written below for the generalized

Yangians. We note that these quantum symmetric polynomials generate the so-called characteristic subal-

gebras Ch(T (R)) and Ch(L(R)) of T (R) and L(R). The properties of Ch(T (R)) and Ch(L(R)) strongly

differ from each other: the latter subalgebra is central in the RE algebra, while Ch(T (R)) is commutative

but not central. A more detailed exposition can be found in [6], [7].

We now turn to the generalized Yangians. For this, we must first indicate the explicit form of the

current R-matrices in formulas (1.2) and (1.4). The following statement was proved in [1].

Proposition 1. We consider the sum

R(u, v) = R+ g(u, v)I, (2.5)

where R is a twist, g(u, v) = f(u−v), and f(z) is a nonconstant meromorphic function. If R is an involutive

symmetry, then R(u, v) is a current R-matrix iff

g(u, v) =
a

u− v
. (2.6)

If R = Rq is a Hecke symmetry, then R(u, v) is a current R-matrix iff

g(u, v) =
q − q−1

bu−v − 1
. (2.7)

Here, a and b 6= 1 are arbitrary nonzero complex numbers.
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In particular, setting b = q−2/a, we obtain

R(u, v) = Rq −
q(u−v)/a

((u − v)/a)q
I. (2.8)

In the limit q → 1, this R-matrix tends to

R1 −
a

u− v
I (2.9)

under the condition that the Hecke symmetry Rq tends to an involutive matrix R1.

Changing the variables b−u → u and b−v → v in (2.7)), we obtain the trigonometric current R-matrix

in the form

R(u, v) = R−
u(q − q−1)

u− v
I. (2.10)

Obviously, it depends only on the ratio x = v/u.

In what follows, we consider RTT -type Yangians YRTT (R) and braided Yangians Y(R) respectively

defined by formulas (1.2) and (1.4), where R(u, v) are current R-matrices (2.9) or (2.10) and the middle

terms R in (1.4) are the initial symmetries.

As noted above, each of the Yangians of both classes has a bialgebra structure, but this structure is

braided in Y(R). The details can be found in [1].

We now consider the evaluation map for a braided Yangian. For a given braided Yangian Y(R), the

evaluation map is defined by the formula

L(u) 7→ I +
M

u
, (2.11)

where M is the generating matrix of the target algebra. The concrete form of this algebra depends on the

initial symmetry R. Namely, we have the following proposition.

Proposition 2 [1]. 1. If the twist R is an involutive symmetry, then map (2.11) defines a surjective

morphism Y(R) → L(R, 1). Moreover, the map M 7→ L[1] defines an injective morphism L(R, 1) → Y(R).

2. If the twist R is a Hecke symmetry, then map (2.11) defines a morphism Y(R) → L(R).

Therefore, the target algebra is L(R, 1) in the first case and L(R) in the second case.

Proposition 2 allows constructing a category of finite-dimensional representations of a braided Yangian

using the results in [3], where such a category was constructed for the algebra L(R, 1). Hence, if R is

an involutive symmetry, then the evaluation map converts any L(R, 1)-module into a Y(R)-module. If

R is a Hecke symmetry, then we first convert any L(R, 1)-module into L(R)-module and then realize a

representation of the Yangian Y(R) in it. This is always possible because the algebras L(R) and L(R, 1)

are isomorphic. Their isomorphism is given by the map

L(R) → L(R, 1), L 7→ L−
1

q − q−1
I, q2 6= 1.

The evaluation map for RTT -type Yangians has the form

L(u) 7→ T0 +
T1

u
. (2.12)

If R is a Hecke symmetry, then map (2.12) leads to a Yangian in a target algebra similar to the quantum

algebra Uq(gl(m)). The explicit form of this algebra is given, for instance, in [4], [8]. If R is an involutive

symmetry, then the target algebra is new, and its properties have not been studied. We note that if the
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condition T0 = I is imposed, then a contradiction appears in the permutation relations of the target algebra.

This is why the condition T [0] = I is not imposed on the Laurent coefficients of the generating matrix in

RTT-type Yangians.

We now turn to the construction of quantum symmetric polynomials in braided Yangians. Moreover,

we write the family of Cayley–Hamilton–Newton matrix identities analogous to the identities found in [6]

for the QM algebras. With this goal, we first define quantum analogues of matrix powers of the generating

matrix. We work with trigonometric R-matrices (2.8) where we set a = 1. The formulas for rational

R-matrices (2.9) can be obtained by the limit transition q → 1 to form (2.8) of the R-matrix.

We define the quantum skew-powers of the matrix L(u) as

L∧k(x) = TrR(2...k)(P
(k)
12...kL1(x)L2(x− 1) · · ·Lk(x− k + 1)), k ≥ 2, (2.13)

where

P
(k+1)
12...k+1 =

(−1)k

(k + 1)q
R1(1)R2(2) · · ·Rk(k)P

(k)
12...k (2.14)

is the q-antisymmetrizer in the space V ⊗(k+1) constructed in accordance with the Hecke symmetry R. We

assume that L∧1(x) = L(x) by definition. We note that if the Hecke symmetry R is a deformation of the

usual flip P , then L∧k(x) ≡ 0 for all k > m.

We also define the quantum matrix powers of the generating matrix:

Lk(x) = TrR(2...k)(R1R2 · · ·Rk−1L1(x)L2(x − 1) · · ·Lk(x− k + 1)), k ≥ 1. (2.15)

The quantum elementary symmetric polynomials and quantum power sums are now respectively defined by

ek(x) = TrR(L
∧k(x)), sk(x) = TrR(L

k(x)). (2.16)

Proposition 3. The quantum skew-symmetric powers and matrix powers of L(u) are related by the

Cayley–Hamilton–Newton identities

(−1)k+1kqL
∧k(x) =

k∑

p=1

(−q)k−pLp(x)ek−p(x− p), k ≥ 1. (2.17)

If R is a deformation of a flip P , then the last nontrivial Cayley–Hamilton–Newton identity becomes a

quantum analogue of the classical Cayley–Hamilton identity. In this case, the highest nontrivial symmetric

polynomial em(x) is called the quantum determinant.

Calculating the R-trace of relation (2.17), we obtain a relation between quantum power sums and

quantum elementary symmetric polynomials.

All these objects (quantum matrix powers, skew-powers, power sums, and elementary symmetric poly-

nomials) are also well defined in RTT -type Yangians. We note that the quantum elementary symmetric

polynomials and power sums in Yangians of both classes generate commutative subalgebras. Neverthe-

less, in contrast to the RE algebras, these commutative subalgebras are not central. The only nontrivial

quantum symmetric polynomial that is central in the braided Yangian Y(R) is the quantum determinant.

More precisely, all coefficients of the expansion of the quantum determinant in a series in the spectral

parameter are central. In the Yangian YRTT (R), the quantum determinant is central iff it is central in the

corresponding RTT algebra. Hence, the centrality of the quantum determinant is completely determined

by the properties of the initial twist R.

In Sec. 4, we give an example of an RTT algebra and consequently a Yangian YRTT (R) with a

noncentral quantum determinant.
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3. Yangian deformation properties and corresponding Poisson

structures

All Yangians that we consider in this paper are introduced in terms of generators and relations between

them. We must therefore verify the deformation properties of the obtained algebras assuming that the

involutive or Hecke twist R is a deformation of the flip operator. Below, we present arguments supporting

good deformation properties of generalized Yangians. Moreover, we write explicit formulas for their Poisson

structure.

But we first compare the deformation properties of the QM algebras T (R) and L(R). For this, we

introduce the notation

L1 = L1, Lk = Rk−1Lk−1R
−1
k−1 ∀k ≥ 2.

For h = 0, relations (2.2) can be written in a form similar to the relations in an RTT algebra:

RL1L2 = L1L2R.

This notation is also useful for establishing some isomorphisms between the linear spaces T (R) and L(R).

We let

T = span
K
(tji ), L = span

K
(lji )

denote the vector spaces spanned by the respective generators tji of the RTT algebra T (R) and lji of the

RE algebra L(R) associated with the twist R. For any positive integer k, we consider the linear map

πk : T
⊗k → L⊗k of the tensor powers of the spaces, defined on the basis elements by the rule

πk(T1 ⊗ T2 ⊗ . . .⊗ Tk) = L1 ⊗ L2 ⊗ . . .⊗ Lk, k ≥ 1.

Below, we omit the tensor product sign ⊗ to simplify the formulas.

Proposition 4. The relations

πk(T1 . . . Ti−1(RiTiTi+1 − TiTi+1Ri)Ti+1 . . . Tk) =

= L1 · · ·Li−1(RiLiLi+1 − LiLi+1Ri)Li+1 · · ·Lk (3.1)

hold for all k ≥ 2, 1 ≤ i ≤ k − 1. The size of all matrices in these relations is mk ×mk.

The homogeneous component L(R)(k) ⊂ L(R) of degree k ≥ 2 is the quotient of the space L⊗k over

the ideal generated by the right-hand side of (3.1) for all 1 ≤ i ≤ k − 1.

Because the maps πk are invertible, this proposition allows us to state that any basis of the homogeneous

component T (R)(k) ⊂ T (R) translates into a basis of the component L(R)(k) ⊂ L(R). This in turn allows

deducing the deformation properties of the algebra L(R) from the properties of T (R).

This construction is close to the transmutation map introduced in [9] and also to the formulas in [6]

used to define QM algebras associated with pairs of compatible twists.

Remark 1. If the initial symmetry R is involutive, then this property is also preserved for twists

acting in the spaces T⊗2 and L⊗2:

T1 ⊗ T2 7→ R−1T1 ⊗ T2R, L1 ⊗ L2 7→ R−1L1 ⊗ L2R. (3.2)

Based on this fact, we can easily construct some symmetrizers (projectors of symmetrization) in the spaces

T(k) and L(k) for any k ≥ 2. We note that the maps πk are involved in this construction. It hence
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follows that the dimensions of the homogenous components T (R)(k) and L(R)(k) for k ≥ 2 are equal to

the dimensions of the corresponding components Sym(gl(m))(k) of the commutative algebra Sym(gl(m)).

Correspondingly, the algebras T (R) and L(R) have the deformation property.

If the twist R is a Hecke symmetry, then braidings (3.2) acting in the spaces T⊗2 and L⊗2 have three

eigenvalues and are not symmetries at all. Consequently, the method for proving the deformation property

must be modified. In [3], symmetrizers in the components T(k) and L(k) were constructed for k = 2, 3.

Using these symmetrizers, we can show that the dimensions of the homogeneous components T (R)(k) and

L(R)(k) for k = 2, 3 are equal to the dimensions of the corresponding components of the algebra Sym(gl(m))

if q − 1 is sufficiently small. Although the analogous symmetrizers in the higher components of these QM

algebras are still not constructed, using the results in [10] (also see [11]) allows concluding that for a generic

q, the dimensions of the higher components T (R)(k) and L(R)(k), k ≥ 4, are equal to these in the algebra

Sym(gl(m)). This ensures the deformation property of the QM algebras related to Hecke symmetries.

We now turn to the Poisson structures corresponding to QM algebras. We use the notation {L1, L2}

for the m2×m2 matrix L1L2, where each element lji ⊗ llk is replaced with {lji , l
l
k}.

Let the twist R be a deformation of the flip P . Then the matrix R = PR is a deformation of the

identity matrix:

R = I − hr +O(h2), (3.3)

where h is the deformation parameter and r is the corresponding classical r-matrix, a solution of the classical

Yang–Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0.

If R is a Hecke symmetry, then we additionally set q = e−h.

If R is an involutive or a Hecke symmetry, then r satisfies the respective relation

r21 = −r12 or r12 + r21 = 2P. (3.4)

In the latter case, we represent r as a sum r = r− + r+, where

r− =
r12 − r21

2
, r+ =

r12 + r21
2

are the respective skew-symmetric and symmetric components of r. Then the second relation in (3.4) means

that r+ = P . This relation is well known for the standard Hecke symmetries, but it also holds for all other

Hecke twists.

The Poisson structure corresponding to the RTT algebra is given by the Poisson bracket of the gener-

ators

{T1, T2} = rT1T2 − T2T1r = rT1T2 − T1T2r. (3.5)

We note that we assume T1T2 = T2T1 in this relation (and similarly for L) because the Poisson bracket is

defined in the commutative algebra Sym(gl(m)).

If r arises from an involutive symmetry, then the right-hand side of (3.5) is obviously skew-symmetric.

If r arises from a Hecke symmetry, then we have the same property taking r+ = P into account. Moreover,

we can replace r in bracket (3.5) with r−.

Representing a classical r-matrix r as an element of gl(m)⊗2, we can write bracket (3.5) as

{f, g} = · (ρl(r)
⊗2(f ⊗ g)− ρr(r)

⊗2(g ⊗ f)). (3.6)
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Here, ρl and ρr are the respective representations of g by the left and right vector fields acting on the

algebra Sym(gl(m)). The symbol · denotes the commutative product in this algebra.

We now consider the Poisson bracket arising in the semiclassical limit of the RE algebra L(R) associated

with an involutive or a Hecke symmetry R.

We first rewrite the defining relations of the RE algebra L(R) in a somewhat different form (we recall

that R = PR):

R12L1R21L2 − L2R12L1R21 = 0.

Applying expansion (3.3) to the left-hand side of this relation, we obtain the Poisson bracket

{L1, L2} = r12L1L2 − L1L2r21 + L1r21L2 − L2r12L1. (3.7)

If r arises from an involutive symmetry, then this bracket can be written as

{f, g} = · ρad(r)
⊗2(f ⊗ g), f, g ∈ Sym(gl(m)). (3.8)

Here, ρad is the adjoint action of gl(m) extended to the entire symmetric algebra Sym(gl(m)) using the

Leibniz rule. Hence, ρ⊗2
ad (r) is a skew-symmetric bivector field.

If r arises from a Hecke symmetry, then the analogous formula for the bracket requires additional

terms:

{f, g} = · (ρ⊗2
ad (r−) + (ρr ⊗ ρl − ρl ⊗ ρr)(r+))(f ⊗ g). (3.9)

The right-hand side of bracket (3.9) is obviously skew-symmetric. But a direct verification of the Jacobi

identity for it is rather tedious. Nevertheless, the Jacobi identity follows from the deformation property of

the RE algebra.

Bracket (3.7) is compatible with the linear gl(m) Poisson bracket. In other words, these two brackets

form a Poisson pencil. This can be easily verified by the procedure for linearizing bracket (3.9) (see Sec. 4).

We emphasize that the modified RE algebra L(R, h) is a quantum counterpart of this pencil.

Remark 2. Let g be a simple Lie algebra belonging to one of the classical series Bm, Cm, or Dm, and

let R be a twist associated with the corresponding quantum universal enveloping algebra Uq(g). In this

case, the corresponding RTT and RE algebras are not deformations of the commutative algebra Sym(g).

Both (3.5) and (3.7) are Poisson brackets on the corresponding Lie group G and are respectively called

Sklyanin and Semenov-Tian-Shansky brackets. In addition, they are also Poisson on certain varieties in g
∗.

Details and descriptions of these varieties can be found in [12], [13].

We now turn to the case of Yangians. Similarly to the construction considered above, we introduce

the vector spaces

T = span
K
(tji [k]) and L = span

K
(lji [k])

containing all finite linear combinations of the generators tji [k] of an RTT -type Yangian or lji [k] of a braided

Yangian respectively associated with a given R-matrix (2.9) or (2.10). We let T⊗k and L⊗k denote the

subspaces containing all degree-k homogenous tensor polynomials in the corresponding generators.

We also define maps similar to maps (3.1):

πk(T1(u1)⊗ T2(u2)⊗ . . .⊗ Tk(uk)) = L1(u1)⊗ L2(u2)⊗ . . .⊗ Lk(uk), (3.10)

where, just as above, we set

L1(u) = L1(u), Lk(u) = Rk−1Lk−1(u)R
−1
k−1, k ≥ 2.
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Here, the maps πk are written in terms of the current matrices T (u) and L(u). Their expression in terms

of the coefficients T [s] and L[s] has the same form.

A statement similar to Proposition 4 holds, i.e., maps (3.10) establish vector space isomorphisms

between homogeneous components of the algebras YRTT (R) and Y(R). As a consequence, we have the

following proposition.

Proposition 5. If an RTT -type Yangian has the deformation property, then the corresponding braid-

ed Yangian has the same property.

The method in [3] mentioned in Remark 1 allows proving the following proposition.

Proposition 6. Any generalized Yangian is a deformation of the algebra Sym(gl(m)[t−1]) under the

condition that the initial twist R is a deformation of the flip operator.

We will present a detailed proof of this proposition in subsequent publications. Here, we restrict ourself

to some supporting arguments. By virtue of Proposition 5, we can consider only RTT -type Yangians.

We first note that the map

ρ : T1(u)⊗ T2(v) 7→ R(u, v)−1T1(v)⊗ T2(u)R(u, v) (3.11)

is involutive. Indeed, R(u, v)R(v, u) = ϕ(u, v)I, where ϕ(u, v) is a rational function depending on the initial

involutive or Hecke symmetry R.

Applying the map ρ twice, we obtain the identity map. Therefore, the map ρ has two eigenvalues: 1

or −1. The two-sided ideal in the definition of the Yangian YRTT (R) is generated by the subspace I− =

Im(I − ρ). We consider the complementary subspace I+ = Im(I + ρ). We can write the defining relations

of this subspace in the form

R(u, v)T1(u)⊗ T2(v) = −T1(u)⊗ T2(v)R(u, v).

Expanding the generating matrix T (u) in a series in inverse powers of u and using the relation

1

u− v
=
∑

k≥0

vku−k−1,

we obtain an explicit expression for the space I+ in terms of the elements of the matrices T [k]. We note

that this subspace is infinite-dimensional and is generated by all possible finite quadratic polynomials in a

countable set of variables tji [r].

We consider the subspaces I±(h) as a function of the deformation parameter h. At h = 0, the subspaces

I±(0) ⊂ T⊗2 are generated by the elements

tcj [r]t
d
i [s]± tdi [s]t

c
j [r]. (3.12)

The generating function of these elements has the matrix form

T1(u)T2(v)± T2(v)T1(u).

The subspace I+(h) is generated by the elements Ecd
ij [k, l], which are coefficients of u−kv−l in the

generating series

Ecd
ij (u, v) = Rab

ij (u, v)T
c
a(u)T

d
b (v) + T a

i (v)T
b
j (u)R

cd
ab(u, v). (3.13)
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We note that at h = 0, the elements Ecd
ij [k, l] coincide with symmetric combinations of generators (3.12).

The subset of the elements Ecd
ij [k, l] such that the triple (k, i, c) precedes (l, j, d) in lexicographic order

forms a basis of the space I+(0). Moreover, the linear span of the elements Ecd
ij [k, l] such that k + l ≤ p is

finite-dimensional.

Consequently, the elements Ecd
ij [k, l] such that k + l ≤ p are independent in the Yangian YRTT (R) if

h is sufficiently small. Therefore, mapping the elements Ecd
ij [k, l] ∈ I+(0) to their analogues in I+(h), we

construct the map αh (see Sec. 1) at the quadratic level. By an analogous method, we can construct the

maps αh for higher homogenous components of the Yangian YRTT (R) and thus show that this Yangian has

the deformation property in the case where the twist R is a deformation of the flip P .

We turn to the Poisson structures corresponding to the generalized Yangians. We begin with the

expansion R(u, v) = PR(u, v) = I − hr(u, v) + O(h2) in a series in h, where h = −a in formula (2.9) and

h = − log q in formula (2.10). This yields the expressions for the classical current r-matrices

r(u, v) = r −
1

u− v
P, r(u, v) = r −

2u

u− v
P. (3.14)

Here, the constant matrix r in the first formula corresponds to an involutive symmetry R and is skew-

symmetric: r+ = 0. The matrix r in the second formula arises from a Hecke symmetry R and consequently

r+ = P .

We emphasize that both current matrices r(u, v) are skew-symmetric. We verify this for the second

matrix in (3.14):

r12(u, v) + r21(v, u) = r12 + r21 −
2u

u− v
P −

2v

v − u
P = 2r+ − 2P = 0.

Hereafter, the symbol r21(u, v) means that we interchange the elements from gl(m)⊗2 without interchanging

u and v.

The brackets corresponding to the Yangians Y(R) and YRTT (R) are respectively similar to (3.5)

and (3.7):

{T1(u), T2(v)} = r(u, v)T1(u)T2(v)− T1(u)T2(v)r(u, v), (3.15)

{L1(u), L2(v)} = r12(u, v)L1(u)L2(v) + L1(u)r21L2(v)−

− L2(v)r12L1(u)− L1(u)L2(v)r21(u, v). (3.16)

We note that the r-matrices between the generating matrices L1(u) and L2(v) in (3.16) are constant,

while the external matrices are defined by one of formulas (3.14). And, finally, it is taken into account in

formulas (3.15) and (3.16) that the Poisson structures are defined in the commutative algebra where the

relations

T1(u)T2(v) = T2(v)T1(u), L1(u)L2(v) = L2(v)L1(u)

are satisfied.

Remark 3. We emphasize that the analogous brackets associated with Lie algebras of the series Bm,

Cm, and Dm are Poisson only on the corresponding groups.

All the brackets we consider in this paper are local, i.e., they have no singularity in the limit as

u − v → 0. In other words, if we set u − v = ν and expand L(u) = L(v + ν) in a series in ν, then we

can replace the Poisson brackets presented above with a countable set of brackets involving the generating

matrices and their derivatives taken with one value of the parameter (i.e., at the point u = v). The quantum

variant of this procedure was presented in [1].
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4. Linear Poisson brackets: Examples

The linear Poisson brackets arising from the brackets presented in the preceding section by the lin-

earization procedure are of interest. Linearizing, we obtain the linear counterpart of bracket (3.15) in the

trigonometric case:

{T1(u), T2(v)} = r(u, v)(T1(u) + T2(v))− (T2(v) + T1(u))r(u, v) =

=

[
r −

2u

u− v
P, T1(u) + T2(v)

]
. (4.1)

In the rational case, we have

{T1(u), T2(v)} =

[
r −

1

u− v
P, T1(u) + T2(v)

]
. (4.2)

Linearizing bracket (3.16) in the trigonometric case leads to the bracket

{L1(u), L2(v)} = −

[
2P,

uL1(u)− vL1(v)

u− v

]
. (4.3)

And, finally, in the rational case, we obtain the expression

{L1(u), L2(v)} = −

[
P,

L1(u)− L1(v)

u− v

]
. (4.4)

Bracket (4.3) does not contain the component r− because the first term in bracket (3.9) vanishes under

the linearization procedure. For the same reason, the constant matrix r does not appear in expression (4.4).

Hence, these formulas are independent of r in contrast to brackets (4.1) and (4.2).

We note that brackets (4.2) and (4.4) coincide if we set r = 0 in (4.2), while brackets (4.1) and (4.3)

differ substantially.

The method for constructing the above linear brackets directly implies that they are compatible with

the corresponding quadratic brackets, i.e., this pair (linear and quadratic brackets) generates a Poisson

pencil. The quantum algebra corresponding to this pencil can be obtained by linearizing the corresponding

Yangian.

We now consider two examples. We first introduce the symmetries:

R̂ =




1 a −a ab

0 0 1 −b

0 1 0 b

0 0 0 1




, R =




q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q




. (4.5)

The first symmetry is involutive for any values of the numerical parameters a, b ∈ K. We note that it was

constructed in [14].

The second symmetry is a Hecke symmetry and arises from the quantum group Uq(sl(2)). Higher-

dimensional analogues of this Hecke symmetry arise from the quantum groups Uq(sl(m)), m > 2. For all

these Hecke symmetries, the quantum determinants in the corresponding RTT algebras are central.

For the RTT algebra constructed in accordance with the first symmetry in (4.5), the quantum determi-

nant turns out to be central iff a = b. Consequently, the necessary and sufficient condition for the quantum
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determinant in the corresponding RTT -type Yangian to be central is also given by the equality a = b.

The current R-matrices corresponding to constant matrices (4.5) have the forms

R̂(u, v) = R̂−
1

u− v
I =




1−
1

u− v
a −a ab

0 −
1

u− v
1 −b

0 1 −
1

u− v
b

0 0 0 1−
1

u− v




, (4.6)

R(u, v) = R−
(q − q−1)u

u− v
I =

=




−qv + q−1u

u− v
0 0 0

0
(−q + q−1)v

u− v
1 0

0 1
(−q + q−1)u

u− v
0

0 0 0
−qv + q−1u

u− v




. (4.7)

The RTT -type Yangian associated with symmetry (4.7) is an example of the abovementioned q-

Yangians. The structure of a basis of the Poincaré–Birkhoff–Witt type can be extracted from [8]. For

this, we must consider “halves” of the quantum algebra Uq(ĝl(m)) (see [8]).

We now obtain the corresponding classical r-matrices. For this, we set a = −hα and b = −hβ in the

matrix R̂ in (4.5) and correspondingly q = e−h in the matrix R. Expanding the R-matrices R = PR in a

series in h, we obtain the classical r-matrices in the first-order expansion:

r̂ = α(e11 ⊗ e12 − e12 ⊗ e11) + β(e12 ⊗ e22 − e22 ⊗ e12),

r = e11 ⊗ e11 + e22 ⊗ e22 + 2 e21 ⊗ e12,
(4.8)

where eij are the elements of the standard basis of the Lie algebra gl(2).

The r-matrix r̂ in (4.8) is skew-symmetric. If α = β (i.e., a = b in the matrix R̂ in (4.5)), then it is in the

exterior power sl(2)∧2. Otherwise, r̂ is an element of gl(2)∧2. The second r-matrix is not skew-symmetric;

its skew-symmetric component has the form r− = e21 ⊗ e12 − e12 ⊗ e21.

The classical r-matrices corresponding to symmetries (4.6) and (4.7) have the respective forms

r̂(u, v) = r̂ −
1

u− v
P, r(u, v) = r −

2u

u− v
P. (4.9)

Finally, we write explicit formulas for the linear Poisson brackets corresponding to RTT -type Yangians

associated with the involutive symmetry R̂ and to braided Yangians associated with the Hecke symmetry

R. We let

T (u) =

(
a(u) b(u)

c(u) d(u)

)
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denote the elements of the matrix T (u). From (4.2), we then obtain

{a(u), a(v)} = α(c(v) − c(u)), {a(u), b(v)} = α(d(v) − a(v)) +
b(u)− b(v)

u− v
,

{a(u), c(v)} =
c(v)− c(u)

u− v
, {a(u), d(v)} = βc(u)− αc(v),

{b(u), b(v)} = (α+ β)(b(u)− b(v)),

{b(u), c(v)} = (α + β)c(v) +
a(u)− a(v) + d(v) − d(u)

u− v
,

{b(u), d(v)} = β(d(u)− a(u)) +
b(u)− b(v)

u− v
,

{c(u), c(v)} = 0, {c(u), d(v)} =
c(v)− c(u)

u− v
,

{d(u), d(v)} = β(c(v) − c(u)).

Using the same notation for the elements of the generating matrix

L(u) =

(
a(u) b(u)

c(u) d(u)

)

of the braided Yangian Y(R), from (4.3), we obtain the expressions for the linear brackets

{a(u), a(v)} = 0, {a(u), b(v)} =
2

u− v
(ub(u)− vb(v)),

{a(u), c(v)} =
2

u− v
(vc(v)− uc(u)), {a(u), d(v)} = 0,

{b(u), b(v)} = 0, {b(u), c(v)} =
2

u− v
(ua(u)− va(v) + vd(v) − ud(u)),

{b(u), d(v)} =
2

u− v
(ub(u)− vb(v)),

{c(u), c(v)} = 0, {c(u), d(v)} =
2

u− v
(vc(v) − uc(u)),

{d(u), d(v)} = 0.

Poisson structure (4.4) in the case of the rational current R-matrix R̂(u, v) is easily obtained from the

above formulas for the brackets between the elements of T (u) by simply fixing the parameter values α = 0

and β = 0.

Remark 4. The construction of the affine quantum algebra Uq(ĝl(m)) presented in [8] is easily gen-

eralized to other current R-matrices. This construction is based on a choice of some permutation relations

between two Yangian-type algebras. A similar method can be used to construct a “braided version” of this

algebra taking two braided Yangians and writing the corresponding permutation relations for them. The

question of the structure of the center of such an algebra remains open.
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