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ABSTRACT
We introduce Smale–Vietoris diffeomorphisms that include the clas-
sical DE mappings with Smale solenoids. We describe the corre-
spondence between basic sets of axiom A Smale–Vietoris diffeo-
morphisms and basic sets of non-singular axiom A-endomorphisms.
For Smale–Vietoris diffeomorphisms of 3-manifolds, we prove the
uniqueness of non-trivial solenoidal basic set. We construct a bifur-
cation between different types of solenoidal basic sets which can be
considered as a destruction (or birth) of Smale solenoid.

1. Introduction

Stephen Smale, in his celebrated paper [1], introduced the so-called DE maps which arise
from expanding maps (the abbreviation DE is formed by first letters of Derived from
Expanding map). Let T be a closed manifold of dimension at least 1, and N an n-disk of
dimension n � 2. Omitting details, one can say that a DE map is the skew map:

f : T × N → T × N, (x, y) �→ (
g1(x), g2(x, y)

)
, (1)

where g1: T → T is an expanding map of degree d � 2, and

g2|{x}×N : {x} × N → {g1(x)} × N,

an uniformly attracting map of n-disk {x} × N into n-disk {g1(x)} × N for every x � T. In
addition, fmust be a diffeomorphism onto its image T × N → f(T × N). In the particular
case, when T = S1 is a circle and N = D2 is a 2-disk with the uniformly attracting g2, one
gets a classical Smale solenoid ∩l≥0 f (T × D2) = S (see Figure 1), which is a topological
solenoid.

Recall that a topological solenoid was introduced by Vietoris [2] in 1927 (indepen-
dently, a solenoid was introduced by van Danzig [3] in 1930, see review in [4]). Smale [1]
proved thatS( f ) is a hyperbolic expanding attractor. This construction was generalized by
Williams [5,6] who defined g1 to be expansion mappings of branch manifolds (this allows
to Williams to classify interior dynamics of expanding attractors) and by Block [7] who
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f

Figure . DE map by S. Smale.

defined g1 to be anAxiomA-endomorphism. The last paper concerns to the�-stability and
the proving of decomposition of non-wandering set into the so-called basic sets (Spectral
Decomposition Theorem for A-endomorphisms). Ideologically, our paper is a continua-
tion of Block,[7] where it was proved the following result (Theorem A). Let f: Mn → Mn

be a Smale–Vietoris diffeomorphism of closed n-manifoldMn andB ⊂ Mn the support of
Smale skew-mapping f |B (see the notations below). Then f |B satisfies axiom A on B if
and only if g does on T.

Let us mention that in the frame of Smale–Williams construction, the interesting exam-
ples of expanding attractors was obtained in [8–12]. Bothe [13] classified the purely Smale
solenoids on 3-manifolds. He was the first who also proved that a DEmap S1 ×D2 → S1 ×
D2 can be extended to a diffeomorphism of some closed 3-manifoldM3�S1 × D2 (see also
[14–16]). Ya. Zeldovich and others (see [17]) conjectured that Smale-type mappings could
be responsible for the so-called fast dynamos. Therefore, it is natural to consider various
generalizations of classical Smale mapping.

In a spirit of Smale construction of DEmaps, we here introduce diffeomorphisms called
Smale–Vietoris that are derived from non-singular endomorphisms. A non-wandering set
of Smale–Vietoris diffeomorphisms belongs to an attractive invariant set of solenoidal type.
In the classical case, the invariant set coincides with the non-wandering set consisting of
a unique basic set. In general, the non-wandering set does not coincide with the invari-
ant set, and divides into basic sets provided the non-singular endomorphism is an A-
endomorphism.

Let N be (n − k)-dimensional compact Riemannian manifold with a non-empty
boundary where n − k � 1. For a subset N1�N, we define the diameter diamN1 =
maxa,b∈N1{ρN (a, b)} of N1 where ρN is the metric on N. Denote by T

k = S1 × · · · × S1︸ ︷︷ ︸
k

the

k-dimensional torus, k ∈ N. A surjective mapping g : T
k → T

k is called a d-cover if g is a
preserving orientation local homeomorphism of degree d. A good example is the preserv-
ing orientation linear expandingmapping Ed : T

k → T
k defined by an integer k× kmatrix

with the determinant equals d. Certainly, Ed is a d-cover.
A skew-mapping

F : T
k × N → T

k × N, (t, z) �−→ (
(g(t ), ω(t, z)

)
(2)

is called a Smale skew-mapping, if the following conditions hold:
� F : T

k × N → F
(
T

k × N
)
is a diffeomorphism on its image;

� g : T
k → T

k is a d-cover, d � 2;
� Given any t ∈ T

k, the restrictionw|{t}×N : {t} × N → T
k × N is the uniformly attract-

ing embedding,

{t} × N → int
({g(t )} × N

)
, (3)



DYNAMICAL SYSTEMS 223

i.e. there are 0 < λ < 1, C > 0, such that

diam (Fn({t} × N)) ≤ Cλndiam ({t} × N), ∀ n ∈ N. (4)

When g = Ed, Smale skew-mapping is a DE mapping (1) introduced by Smale [1].
A-diffeomorphism f: Mn → Mn is called a Smale–Vietoris diffeomorphism if there is

the n-submanifold T
k × N ⊂ Mn such that the restriction f |

Tk×N
def= F is a Smale skew-

mapping. The sub-manifold T
k × N ⊂ Mn is called a support of Smale skew-mapping.

Put by definition,

∩l≥0Fl(Tk × N)
def= S( f ).

One can easy to see that the set S( f ) = S is attractive, invariant and closed, so that the
restriction

f |S : S → S

is a homeomorphism.
The following theorem shows that there is an intimate correspondence between basic

sets of f |B and basic sets of the A-endomorphism g.

Theorem 1.1: Let f: Mn → Mn be a Smale–Vietoris A-diffeomorphism of closed n-manifold
Mn and T

k × N = B ⊂ Mn be a support of the Smale skew-mapping f |B = F (see (2)). Let
� be a basic set of g : T

k → T
k and S = ∩l≥0Fl(Tk × N). Then S ∩ p−1

1 (�) contains a
unique basic set�S of f. Here, p1 : T

k × N → T
k is the natural projection on the first factor.

Moreover,
(1) if� is a trivial basic set (isolated periodic orbit) of g, then�S also is a trivial basic set;
(2) if � is a non-trivial basic set of g, then �S also is a non-trivial basic set;
(3) if � is a backward g-invariant basic set of g, � = g−1(�), (hence, � is non-trivial),

then �S = S ∩ p−1
1 (�).

For k = 1, when T
1 = S1 is a circle, the following result says that NW(F) contains a

unique non-trivial basic set that is either Smale (one-dimensional) solenoid or a non-trivial
zero-dimensional basic set.
Theorem 1.2: Let f: Mn → Mn be a Smale–Vietoris A-diffeomorphism of closed n-manifold
Mn and T

1 × N = B ⊂ Mn the support of Smale skew-mapping f |B = F. Then, the non-
wandering set NW(F) of F belongs to S = ∩l≥0Fl(T1 × N), and NW(F) contains a unique
non-trivial basic set �(f) that is either

� a one-dimensional expanding attractor, and �( f ) = S, or
� a zero-dimensional basic set, and NW(F) consists of �(f) and finitely many (non-zero)
isolated attracting periodic points plus finitely many (possibly, zero) saddle-type isolated
periodic points of co-dimension one stable Morse index.

The both possibilities hold.

It is natural to consider bifurcations from one type of dynamics to another which can
be thought of as a destruction (or, a birth) of Smale solenoid. For simplicity, we represent
two such bifurcations for n = 3 and M3 = S3 a 3-sphere. Recall that a diffeomorphism f:
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M→M is�-stable if there is a neighbourhoodU(f) of f in the space ofC1 diffeomorphisms
Diff1(M) such that f|NW(f) conjugate to every g|NW(g) provided g � U(f).

Theorem 1.3: There is the family of �-stable Smale– Vietoris diffeomorphisms fμ: S3 → S3,
0 � μ � 1, continuously depending on the parameter μ such that the non-wandering set
NW(fμ) of fμ is the following:

� NW(f0) consists of a one-dimensional expanding attractor (Smale solenoid attractor)
and one-dimensional contracting repeller (Smale solenoid repeller);

� For μ > 0, NW(fμ) consists of two non-trivial zero-dimensional basic sets and finitely
many isolated periodic orbits.

Remark 1.1: Theorem 1.3 is also true for every lens space (see the proof of Theorem 1.3).

2. Definitions

Amapping F:M×N→M×N of the type F(x, y)= (g(x), h(x, y)) is called a skew-mapping.
One says also a skew product transformation over g or simply, a skew product. Denote by End
(M) the space ofC1 endomorphismsM→M, i.e. theC1 maps ofM onto itself. An endomor-
phism g is non-singular if the Jacobian |Dg|� 0. Thismeans that g is a local diffeomorphism.
In particular, g is a d-cover mapping. In this paper, we consider non-singular g � End (M),
so that Dg � 0 and g is not a diffeomorphism.

Fix g� End (M). A point x�M is said to be non-wandering if given any neighbourhood
U(x) = U of x, there is m ∈ N such that gm(U)�U � ∅. Denote by NW(g) the set of non-
wandering points. Clearly, NW(g) is a closed set and g(NW(g))�NW(g), i.e. NW(g) is a
forward g-invariant set. The set {xi}∞

−∞ denoted by O(x0) is called a g-orbit of x0 if g(xi) =
xi + 1 for every integer i. A subset {xj, xj + 1,… , xj + r}�O(x0) consisting of a finitely many
points of O(x0) is called a compact part of O(x0). A g-orbit {xi}∞

−∞ is periodic if there is an
integer p � 0 such that gp(xi)= xi + p for each i ∈ Z. Certainly,NW(g) contains all periodic
g-orbits.

The orbit O(x0) is said to be hyperbolic if there is a continuous splitting of the tangent
bundle

TO(x0)M =
∞⋃

i=−∞
TxiM = E

s
⊕

E
u =

∞⋃
i=−∞

E
s
xi

⊕
E

u
xi

which is preserved by the derivative Dg such that

||Dgm(v )|| ≤ cμm||v||, ||Dgm(w)|| ≥ c−1μ−m||w|| for v ∈ E
s, w ∈ E

u, ∀m ∈ N

for some constants c > 0, 0 < μ < 1 and a Riemannian metric on TM. Note that E
u(x0)

depends on the negative semi-orbit {xi}0i=−∞. It may happen that E
u(x0) �= E

u(y0) though
x0 = y0 but O(x0) � O(y0). Such a phenomenon is impossible for E

s(x0), it depends only
on x0 [18].

We say that a non-singular g � End (M) satisfies axiom A, in short, f is an A-
endomorphism if

� the periodic g-orbits are dense in NW(g) (it follows that g(NW(g)) = NW(g));
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� all g-orbits of NW(g) are hyperbolic, and the corresponding splitting of the tangent
bundle TNW (g) depends continuously on the compact parts of the g-orbits.

Recall that Smale’s Spectral Decomposition Theorem says that for every Axiom A-
diffeomorphisms the non-wandering set partitions into finitely many non-empty-closed
invariant sets each ofwhich is transitive. Similar theorem forA-endomorphismswas proved
in [7, TheoremC] and [18, Theorem3.11 andProposition 3.13]). Thus, if g is a non-singular
A-endomorphism, then the non-wandering set NW(g) is the disjoint union �1	


	�k

such that each�i is closed and invariant, g(�i)= �i, and�i contains a point whose g-orbit
is dense in �i. Each �i is called a basic sets.

Following Williams [5,6], we introduce an inverse limit for g: T → T as follows. Put
by definition,

∏
g = { (t0, t1, . . . , ti, . . .) ∈ TN : g(ti+1) = ti, i ≥ 0 }. This set is endowed

by the product topology of countable factors. This topology has a basis generating by (ε,
r)-neighbourhoods

U =
⎧⎨
⎩ {xi}∞

0 ∈
∏
g

: xi ∈ Uε(ti), 0 ≤ i ≤ r for some ε > 0, r ∈ N

⎫⎬
⎭ , (5)

where {t0, t1,… , ti, …} � �g. Define the shift map

ĝ :
∏
g

→
∏
g

, ĝ(t0, t1, . . . , ti, . . .) = (
g(t0), t0, t1, . . . , ti, . . .

)
, (t0, t1, . . . , ti, . . .) ∈

∏
g

.

Thismap ĝ :
∏

g → ∏
g is called the inverse limit of g. Indeed, g is a homeomorphism.[6,19]

3. Proofs of main results

We denote by p1 : T
k × N → T

k, p2 : T
k × N → N the natural projections p1(t, z)= t and

p2(t, z) = z. A fibre{t} × N def= Nt of the trivial fibre bundle p1 is called a t-leaf. It follows
from (2) that F = f |B takes a t-leaf into g(t)-leaf.

Let t ∈ T
k and ε > 0.We denote byUε(t) the ε-neighbourhood of the point t, i.e.Uε(t ) =

{x ∈ T
k : �(x, t ) < ε} where ϱ is a metric on T

k.
The following technical lemma describes the symbolicmodel of the restriction f |S. This

lemma is a generalization of the similar classical result by Williams [5,6].
Lemma 3.1: Let f: Mn → Mn be a Smale–Vietoris diffeomorphism of closed n-manifold Mn

and T
k × N = B ⊂ Mn the support of Smale skew-mapping f |B = F. Then the restriction

f |S is conjugate to the inverse limit of the mapping g : T
k → T

k, where S = ∩l≥0Fl(Tk ×
N).

Proof: Recall that given any point t0 ∈ T
k, g−1(t0) consists of d points, one says t10 , t20 ,… ,

td0 ∈ T
k. Since F is a diffeomorphism on its image, the sets F(Nt10

),… , F(Ntd0
) are pairwise

disjoint,

F(Nti0
) ∩ F(Nt j0

) = ∅, i �= j, 1 ≤ i, j ≤ d, (6)

Now, for the sake of simplicity, we divide the proof into several steps. The end of each
step of the proof will be denoted by �
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Step 1: Given any point p ∈ S, there is a unique sequence of points {ti}∞
i=0, ti ∈ T

k, and the
corresponding sequence of the leaves {Nti}∞

i=0, such that
� p ∈ · · · ⊂ Fi(Nti ) ⊂ Fi−1(Nti−1 ) · · · ⊂ F(Nt1 ) ⊂ Nt0 , p = ∩i≥0Fi(Nti );
� ti = g(ti + 1), i � 0.

Proof of Step 1: Put t0 = p1(p) ∈ T
k. Let g−1(t0) = {t10 , t20 , . . . , td0 }. By (6), there is a unique

t j0 such that p ∈ F(Nt j0
). Put by definition t j0 = t1. Note that F(Nt1 ) ⊂ Nt0 . Similarly, g−1(t1)

consists of d points t11 , t21 ,… , td1 . By (6), the sets F(Nt11
),… , F(Ntd1

) are pairwise disjoint.
Since p ∈ F2(Tk × N), there is a unique t i1 such that p ∈ F2(Nti1

). Put by definition t i1 =
t2. Note that p ∈ F2(Nt2 ) ⊂ F(Nt1 ) ⊂ Nt0 . Continuing by this way, one gets the sequences
{ti}∞

i=0, {Nti}∞
i=0 desired. It follows from (4) that diam Fi(Nti ) = diam (Fi({ti} × N)) → 0 as

i → �. Hence, p = ∩i≥0Fi(Nti ).
Let ĝ :

∏
g → ∏

g be the inverse limit of g : T
k → T

k where
∏

g = { (t0, t1, . . . , ti, . . .) ∈
T

N : g(ti+1) = ti, i ≥ 0 }. For a point p ∈ S, denote by P(t0, t1,… , ti, …), ti ∈ T
k, the

sequence due to Step 1. Define the mapping

θ : S →
∏
g

, p �−→ P(t0, t1, . . . , ti, . . .), p ∈ S.

Step 2: The mapping θ is a homeomorphism.
Proof of Step 2: It follows from (4) that θ is injective. Since the intersection of nested
sequence of closed subsets is non-empty, θ is surjective. One remains to prove that θ and
θ−1 are continuous. Take a neighbourhood U of θ(p), p ∈ S. We can assume that U is an
(ε, r)-neighbourhood (5), where θ(p)= {t0, t1,… , ti, …}� �g. Moreover, one can assume
that g−1(Uε(ti)) consists of d pairwise disjoint domains for every 0 � i � r. Recall that ti =
g(ti + 1), i � 0. Therefore, tr − j = gj(tr) for all 1 � j � r. Similarly, xr − j = gj(xr), 1 � j �
r. Since g is continuous, there exists 0 < δ � ε such that the inclusion xr � Uδ(tr) implies
xi � Uε(ti) for all i = 0,… , r. The restriction F |S : S → S is a diffeomorphism. There-
fore, there is a (relative) neighbourhood U(p) of p in S such that p1(F−i(U(p)))�Uδ(ti)
forall 0 � i � r. Taking in mind that g−1(Uε(ti)) consists of d pairwise disjoint domains,
0 � i � r, we see that θ(U(p))�U. Thus, θ is continuous. Since �g is compact, θ−1 is also
continuous.
Step 3: One holds θ ◦ F|S = ĝ ◦ θ |S.
Proof of Step 3 : Take p ∈ S and θ(p) = {t0, t1,… , ti, …} where ti = g(ti + 1), i � 0.
By definition of ĝ :

∏
g → ∏

g, one holds ĝ ◦ θ (p) = ĝ
(
θ (p)

) = ĝ ({t0, t1, . . . , ti, . . .}) =
{g(t0), t0, t1, . . . , ti . . .}. It follows from (3) that F(p) ∈ F({t0} × N) ⊂ Ng(t0). Hence, by
Step 1, the sequence of points {g(t0), t0, t1,… , ti …} corresponds to θ(F(p)), since

F(p) = F
(∩i≥0Fi({ti} × N)

) = ∩i≥0Fi+1({ti} × N) = ∩i≥0Fi+1({ti} × N) ∩ Ng(t0)

= Ng(t0) ∩ F(Nt0 ) ∩ F2(Nt1 ) ∩ · · · ∩ Fi+1(Nti ) ∩ · · · .

It follows from Steps 2 and 3 that the mapping θ is a conjugacy between F|S and ĝ.
Lemma 3.1 is proved. �

To prove Theorem 1.1, we need some previous results.
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Lemma 3.2: Let t = {t0, t1, . . . , ti, . . . , } ∈ ∏
g, g(ti + 1)= ti, i � 0. Suppose that ti � NW(g)

for all i � 0. Then,t ∈ NW (ĝ) and θ−1(t ) ∈ NW (F ).

Proof: Since t = {t0, t1, . . . , ti, . . . , } = {gr(tr), gr−1(tr), . . . , tr, . . .}, we can take the (ε, r)-
neighbourhood V t as follows:

V = { {gr(xr), gr−1(xr), . . . , xr, . . .} : gi(xr) ∈ Uε

(
gi(tr)

)
, 0 ≤ i ≤ r }.

Since g, g2,…, gr are uniformly continuous, there is 0 < δ � ε such that x � Uδ(y) implies
that gi(x)�Uε(gi(y)) for all 0� i� r. By condition, tr �NW(g). Hence, there exists n0 ∈ N

such that gn0 (Vδ(tr)) ∩Vδ(tr) �= ∅. It follows that there is a point x0 � Vδ(tr) such that
gn0 (x0) ∈ Vδ(tr).

Take x0 = {gr(x0), gr−1(x0), . . . , x0, . . .} ∈ ∏
g. Since x0 � Vδ(tr), gi(x0) � Uε(gi(tr)) for

all 0 � i � r. Therefore, x0 ∈ V . Since gn0 (x0) ∈ Vδ(tr), gn0+i(x0) ∈ Uε

(
gi(tr)

)
for all 0 �

i � r. Therefore,

ĝn0 (x0) = { gn0+r(x0), gn0+r−1(x0), . . . , gn0 (x0), . . .} ∈ V.

As a consequence, ĝn0 (V ) ∩V �= ∅ and t ∈ NW (g). A conjugacy map takes a non-
wandering set onto a non-wandering set. By Lemma 3.1, θ−1(t ) ∈ NW (F ). �
Corollary 3.1: The following qualities hold p1

[
NW ( fB)

] = p1 [NW (F )] = NW (g).

Proof: Since the projection p1 is continuous, p1[NW(F)]�NW(g). Take a point t0 �NW(g).
Since g is an A-endomorphism, g[NW(g)] = NW(g).[7,18] Therefore, there is a sequence
{ti|i= 0, 1, ...}�NW(g) such that g(ti + 1)= ti for every i� 0. It follows from Lemma 3.2 that
t = {t0, t1, . . . , ti, . . . , } ∈ NW (ĝ) and θ−1(t ) ∈ NW (F ). By definition of the mapping θ ,
θ−1(t ) ∈ p−1

1 (t0). Hence, NW(g)�p1[NW(F)]. �
Lemma 3.3: Let (t0, z0) ∈ S be a non-wandering point of f, and θ(t0, z0) = {ti}i � 0. Then, ti
� NW(g) for all i � 0.

Proof: According to Corollary 3.1, p1
[
NW ( fB)

] = p1 [NW (F )] = NW (g). Therefore,
t0 � NW(g). Since FS : S → S is a diffeomorphism, F−1(NW(F)) = NW(F) and
F−1(t0, z0) = (t1, z1) ∈ NW (F ) = NW ( fB). Hence, t1 � NW(g) by Step 1. Continuing
this way, one gets that ti � NW(g) for all i � 0. �
Corollary 3.2: Let (t0, z0) ∈ S be a non-wandering point of f, and θ(t0, z0)= {ti}i � 0. Suppose
that t0 belongs to a basic set � of g. Then ti � � for all i � 0.

Proof: By Lemma 3.3, ti � NW(g) for all i � 0. Since � is forward g-invariant, ti � � for
all i � 0. �
Lemma 3.4: Let� be a non-trivial basic set of g, and t0 � �. Suppose that two points (t0, z1),
(t0, z2) ∈ S are non-wandering under f. Then, both (t0, z1) and (t0, z2) belong to the same
basic set of f.

Proof: Denote by�j the basic set of F containing the point (t0, zj), j= 1, 2. Clearly,� j ⊂ S.
We have to prove that �1 = �2. It is sufficient to show that there is a non-wandering
point q � NW(F) such that each point (t0, z1) and (t0, z2) belongs to the ω-limit set
of q.
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Let t j = θ (t0, z j) = {t0, t ( j)
1 , . . . , t ( j)

i , . . .}, j = 1, 2. By Corollary 3.2, t ( j)
i ∈ � for all i �

0, j = 1, 2. Since the basic set � is transitive, there is a point x0 � � such that its positive
semi-orbit O+

g (x0) is dense in �, clos (O+
g (x0)) = �.

It follows from Corollary 3.1 that there is a point x0 = {x0, x1, . . . , xi, . . .} ∈ ∏
g such

that xi � � for all i � 0. Take arbitrary (ε, r)-neighbourhoodU (t1) of t1. Since g, g2,… , gr

are uniformly continuous, there exists δ > 0 such that the inequality x�Uδ(y) implies gi(x)
�Uε(y) for all 0� i� r. Because of the semi-orbitO+

g (x0) is dense in�, there isn0 ∈ N such
that gn0 (x0) ∈ Uδ(t (1)). Hence, ĝn0 (x0) ∈ U (t1). Therefore, t1 = θ (t0, z1) belongs to the ω-
limit set of x0. Similarly, one can prove that t2 = θ (t0, z2) belongs to the ω-limit set of x0 as
well. Since θ is a conjugacy mapping, the points (t0, z1) = θ−1(t1) and (t0, z2) = θ−1(t2)
belongs to the ω-limit set of the point q = θ−1(x0) ∈ NW (F ). �

Proof of Theorem 1.1:We know that p1[NW(F)] = NW(g). Hence,S ∩ p−1
1 (�) contains

basic sets of f. Suppose that � is trivial, i.e. � is an isolated periodic orbit:

� = Orbg(q) = {q, g(q), . . . , gp−1(q), gp(q) = q}, where q ∈ T
k and

p ∈ N are a period of q.

By definition of Smale skew-mapping, the restriction of F = f |B on the second factorN is
the uniformly attracting embedding. Therefore,

Nq ⊃ f p(Nq) ⊃ · · · ⊃ f mp(Nq) ⊃ · · · and the intersection
⋂
m≥0

f mp(Nq)

is a unique point, say Q.

Similarly, ∩m≥0 f mp(Ngi(q)) is a unique point f i(Q) for every 0 � i � p − 1. It follows from
(2) that {Q, f(Q),… , f p − 1(Q), f p(Q) = Q} is an isolated periodic orbit Orbf(Q) such that
NW (F ) ∩ p−1

1 (�) = Orb f (Q). Therefore, Orb f (Q) = �S is a unique basic set of F that
belongs toS ∩ p−1

1 (�).
Let � be a non-trivial basic set. It follows from Lemma 3.4 that all basic sets of F that

is contained in S ∩ p−1
1 (�) are coincide. Hence, �S is a unique non-trivial basic set of f

contained inS ∩ p−1
1 (�).

Now let � be a backward g-invariant basic set of g. Note that the equality � = g−1(�)
implies that� cannot be a trivial basic set, since g is a d-cover, d� 2. It follows fromLemma
3.2 that every point of S ∩ p−1

1 (�) is a non-wandering point of f. By Lemma 3.4, S ∩
p−1
1 (�) is a unique basic set. Theorem 1.1 is proved. �

Example: Let us consider three endomorphisms gi : T
2 → T

2, i= 1, 2, 3, that are 2-covers.
g1 is defined by the matrix

(
3 1
1 1

)
. Clearly, g1 is an expanding A-endomorphism, and T

2 is
a unique basic set of g1. The corresponding diffeomorphism f has a unique basic set, say
�1, that is locally homeomorphic to the product of R

2 and Cantor set. Thus, �1 is two-
dimensional.

Now, let us consider the case whenT
1 = S1 is a circle, and d-cover g : T

1 → T
1 is a non-

singular endomorphism of S1. The crucial step of the proof of Theorem 1.2 is the following
result.
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Lemma 3.5: Let g : T
1 → T

1 be a non-singular A-endomorphism, and NW(g) a non-
wandering set of g. Then NW(g) is either T

1 or NW(g) is the union of the Cantor type
set � and finitely many (non-zero) isolated attracting periodic orbits plus finitely many
(possibly, zero) repelling isolated periodic orbits. Moreover, in the last case, � is backward
g-invariant.

Proof: Suppose that NW (g) �= T
1. By [20], g is semi-conjugate to the expanding linear

mapping Ed, Ed(t) = dt mod 1, i.e. there is a continuous map h : T
1 → T

1 such that g◦h =
h◦Ed. Moreover, h is monotone.[21] As a consequence, given any point t ∈ T

1, h−1(t) is
either a point or a closed segment. SinceNW (g) �= T

1, h is not a homeomorphism. Hence,
there are points t ∈ T

1 for which h−1(t) is a (non-trivial) closed segment. Denote the set
of such points by χ . The set χ is countable and invariant under Ed, Ed(χ ) = E−1

d (χ ) =
χ .[21,22] Therefore, h−1(χ) is also invariant under g.

Let as prove that � is totally discontinuous. Since h is a semi-conjugacy and χ

is invariant, � is an invariant set under g. Moreover, h is monotone and χ contains
every dense orbits. It follows that � is totally discontinuous. As a consequence, � =
T
1 \ clos (h−1(χ )) is the Cantor set consisting on non-wandering points of g. Moreover,

� is invariant under g (in particular, backward g-invariant). It follows from [23] that
the part of NW(g) that different from � consists of finitely many (non-zero) isolated
attracting periodic orbits and finitely many (possibly, zero) repelling isolated periodic
orbits. �

Now, Theorem 1.2 except the realisation part immediately follows from Theorem 1.1
and Lemma 3.5. It remains to construct a Smale–Vietoris A-diffeomorphism whose non-
wandering set consists of a non-trivial zero-dimensional basic set and a finitely many (non-
zero) isolated periodic orbits. It follows from [13,14] for n = 3 and [5,7] for n � 4 that
it is sufficient to construct Smale skew-mapping F: S1 × Dn − 1 → S1 × Dn − 1 with the
non-wandering set desired because of Smale skew-mapping can be extended to a diffeo-
morphism of some closed n-manifolds. Moreover, according to Robinson–Williams[12]
construction of classical Smale solenoid, we can suppose n = 3.

Let g: S1 → S1 be a C� non-singular A-endomorphism that is a d-cover (d� 2) with the
non-wandering set NW(g) consisting of a unique attracting fixed point x0 and a Cantor set
�. Moreover, one can assume thatDg|� = 2d− 1,Dg(x0)= λ < 1 where λwill be specified
below. Such endomorphism was constructed by Shub [20]. Hirsch [24] has noticed that
such endomorphism can be smoothed to be analytical. Now, the circle S1 is endowed with
the parameter inducing by the natural projection [0, 1] → [0, 1]/(0 ∼ 1) = S1. We can
assume that the restriction g|[0, 1

2 ] is a diffeomorphism [0, 1
2 ] → [0, 1

2 ] with the attracting
fixed point x0 = 1

4 and two repelling fixed points 0, 1
2 . Without loss of generality, one can

also assume that g|[ 12 ,1](x) = (2d − 1)xmod 1. By construction,∪n≥0g−n
d

(
0, 1

2

)
is the stable

manifoldWs(x0) of x0, and� = S1Ws(x0) is Cantor set belonging toNW(g). Clearly, given
any y � S1, mintk,t j{|tk − t j|} = 1

2d−1 where tk � tj and g(tk) = g(tj) = y. We take 0 < λ <
1
4 sin

π

2d−1 . After this specification, we denote g by gd. Put by definition,

F(t, z) =
(
gd(t ), λz + 1

2
exp 2π it

)
, F : B = S1 × D2 → B, (7)
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whereD2 ⊂ R
2 is the unit disk, and z= x+ iy, and B is a support of Smale skew-mapping.

Since λ < 1
4 , F(B) ⊂ int B. The Jacobian of F equals

DF(t, z) =
(

Dgd(t ) 0
π i exp 2π it λId2

)
, (8)

where Id2 is the identity matrix onC orR
2. SinceDgd > 0 and λ > 0, F is a local diffeomor-

phism. It follows from λ < 1
4 sin

π

2d−1 that F is a (global) diffeomorphism on its image.
Since gd is an A-endomorphism, the periodic points of gd are dense in NW(gd). By

Lemma 3.2, the periodic points of F are dense in NW(F). Thus, it remains to prove the
NW(F) has a hyperbolic structure. We follow [19, Proposition 8.7.5]. Clearly, the tangent
bundle T (B) = T (S1 × D2) is the sum T (B) = T (S1) ⊕ T (D2), and the fibre T(t,z)(B) at
each point (t, z) ∈ B is the sum of one-dimensional and two-dimensional tangent spaces
Tt (S1) = E

1 ∼= R, Tz(T 2) = E
2 ∼= R

2, respectively. It follows from (8) that E
2 is invariant

under DF:

DFp

(
�0
�v23

)
=

(
�0

λ�v23

)
, �v23 ∈ E

2.

Moreover, since |λ| < 1, E2 is the stable bundle, Es = E
2.

Take q = (t, z) � NW(F). Then p1(q) = t � NW(gd). If t = x0, then q is a hyperbolic
(attractive) fixed point of F. For t � �, we consider the cones

Cu
q =

{(
�v1

�v23

)
: �v1 ∈ Tt (S1), �v23 ∈ E

2
z, |�v1| ≥ 2d − 1

4
|�v23|

}
⊂ T (B) = E

1 ⊕ E
2.

For
(
�v1
�v23

) ∈ Cu, it follows from (8) that

DF
(
�v1

�v23

)
=

(
�v ′
1

�v ′
23

)
=

(
(2d − 1)�v1

π i�v1 exp 2π it + λ�v23

)
.

Hence, |�v23| ≤ |π i exp 2π it�v1| + λ|�v23| = π |�v1| + λ|�v23|. Taking in mind λ ≤ 1
4 , one gets

|�v ′
1| = (2d − 1)|�v1| = 2d − 1

4
(4|�v1|) ≥ 2d − 1

4

(
π |�v1| + 1

2
|�v1|

)

≥ 2d − 1
4

(
π |�v1| + 2d − 1

8
|�v23|

)
≥ 2d − 1

4
(π |�v1| + λ|�v23|) ≥ 2d − 1

4
|�v ′

23|,

since 2d−1
8 ≥ 1

4 . Therefore,
(�v ′

1
�v ′
23

) ∈ Cu
F(q) and DF(Cu

q ) ⊂ Cu
F(q). As a consequence,

DFk(Cu
F−k(q)) ⊂ DFk−1(Cu

F−k+1(q)) ⊂ · · · ⊂ DF(Cu
F−1(q)) ⊂ Cu

q for any k ∈ N.

To prove that the intersection of this nested cones is a line, take

(
�v1

�v23

)
,

(
�w1

�w23

)
∈ Cu

F−k(q),

(
�vk
1

�vk
23

)
= DFk

(
�v1

�v23

)
,

(
�wk

1

�wk
23

)
= DFk

(
�w1

�w23

)
.
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Put by definition, |�v j
1| = v

j
1, |�w j

1| = w
j
1, �v1 = (v1, 0), �w1 = (w1, 0), v1 > 0, w1 > 0. Then,

∣∣∣∣�v
1
23

v1
1

− �w1
23

w1
1

∣∣∣∣ =
∣∣∣∣π i�v1 exp 2π it + λ�v23

(2d − 1)v1
− π i�w1 exp 2π it + λ�w231

w1

∣∣∣∣
=

∣∣∣∣π i exp 2π it(w1�v1 − v1�w1)

(2d − 1)v1w1
+ λ

2d − 1

(
�v23

v1
− �w23

w1

)∣∣∣∣ = λ

2d − 1

∣∣∣∣�v23v1
− �w23

w1

∣∣∣∣ ,
since w1�v1 − v1�w1 = |�w1|�v1 − |�v1|�w1 = 0. Therefore,

∣∣∣∣�v
k
23

vk
1

− �wk
23

wk
1

∣∣∣∣ =
(

λ

2d − 1

)k ∣∣∣∣�v23v1
− �w23

w1

∣∣∣∣ ,
which goes to 0 as k goes to �. Since the difference of slopes goes to 0, the cones converge
to a line, say E

u. The calculation gives that the restriction of the derivative DF on E
u is an

expansion.
Taking in mind the realization part of the proof of Theorem 1.2, we see that it is suffi-

cient to construct the corresponding family of d-endomorphisms S1 → S1, d � 2. First, we
represent the two-parameter family of circle endomorphisms fε, δ continuously depending
on the parameters ε � (0, 1) and δ ∈ [0, 1

4 ).
Let Uδ(x) be the bump function such that
� Uδ(x) = 1 for x ∈ [− δ

2 , + δ

2

]
, 0 < δ ≤ 1

4 ;
� Uδ(x) = 0 for |x| � δ;
� U ′

δ (x) ≥ 0 for x ∈ [−δ, − δ

2

]
, and U ′

δ (x) ≤ 0 for x ∈ [
δ

2 , δ
]
.

Lemma 3.6: Let

fε,δ (x) =
{
dx + (−d + ε)xUδ (x) mod 1 for ε ∈ (0, 1), δ ∈ (0, 1

4 )

dx mod 1 for ε = 0, δ = 0

Then fε, δ is a structurally stable non-singular circle d-endomorphism such that the non-
wandering set NW(fε, δ) is the union of a unique hyperbolic attracting point x = 0 and a
Cantor set provided ε � 0 and δ � 0. Moreover, NW(f0, 0)= S1. In addition, fε, δ → Ed as ε �
0 is fixed and δ → 0 in the C0 topology.

Proof: For ε � 0 and δ � 0, we see

f ′
ε,δ (x) = d + (−d + ε)

[
xUδ(x)′ +Uδ(x)

] = d + (−d + ε)xUδ (x)′ + (−d + ε)Uδ (x).

Clearly, d+ (−d+ ε)Uδ(x)� ε. Since xUδ(x)′ � 0, f ′
ε,δ (x) ≥ ε. Because of outside of the δ-

neighbourhoodVδ(0) of x0 = 0, themapping fε, δ coincideswith the linear d-endomorphism
Ed(x) = dx mod 1, fε, δ is a non-singular d-endomorphism. Since f ′

ε,δ (0) = ε ∈ (0, 1), x =
0 is a hyperbolic attracting point. Solving the equation dx + (−d + ε)xUδ(x) = x, one gets
two fixed points ±x∗ � Vδ(0) such thatUδ(±x∗) = d−1

d−ε
, where δ

2 < x∗ < δ. Moreover, the
ω-limit set of any point from (−x∗, x∗) is x0 = 0. Hence, NW(fε, δ) equals

NW ( fε,δ ) = {x0}
⋃ (

S1 \ ∪k≥0 f −k
ε,δ (−x∗, x∗)

)
,
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whereC = S1 \ ∪k≥0 f −k
ε,δ (−x∗, x∗) is Cantor set. For any x � C, one can prove that

f ′
ε,δ (x) = d + (−d + ε)xU ′

δ (x) + (−d + ε)Uδ(x) ≥ d + (−d + ε)Uδ (x∗)

+ (−d + ε)xU ′
δ (x)

= 1 + (−d + ε)xU ′
δ (x) > 1.

It follows from [23] that fε, δ is structurally stable. At last, for x � Vδ(0), one gets

∣∣ fε,δ (x) − Ed(x)
∣∣ = |(−d + ε)xUδ (x)| ≤ δd → 0 as δ → 0.

As a consequence, fε, δ → Ed as δ → 0 in the C0 topology. �

Recall that original Smale solenoid map is built by a skew map f: S1 × D2 �→S1 × D2 by
f(x, y) = (g1(x), g2(y)) so that g1 is an expanding map on S1 and g2 is uniformly attracting.
In [13], it was prove that f: S1 × D2 �→S1 × D2 can be extended to a diffeomorphism of
some lens space Lp, q (including S3). In [14], it was proved that for any given Lp, q there is a
diffeomorphism of Lp, q with one Smale solenoid attractor and one Smale solenoid repeller.
The analysis of [13,14] shows that the constructions above can be applied to non-singular
endomorrphism g1 as well. Thus, taking in mind Lemma 3.6 and the technics developed in
[13,14] (see also [5,7,15]), one can prove Theorem 1.3.
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