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Game equilibria and unification dynamics
in networks with heterogeneous agents

Vladimir Matveenko, Alexei Korolev, and Maria Zhdanova

Abstract
We study game equilibria in a model of production and externalities in network with two types of agents who possess
different productivities. Each agent may invest a part of her endowment (it may be, for instance, time or money) in the first
of two time periods; consumption in the second period depends on her own investment and productivity as well as on the
investments of her neighbors in the network. Three ways of agent’s behavior are possible: passive (no investment), active
(a part of endowment is invested), and hyperactive (the whole endowment is invested). For star network with different
productivities of agents in the center and in the periphery, we obtain conditions for existence of inner equilibrium (with all
active agents) and study comparative statics. We introduce adjustment dynamics and study consequences of junction of
two complete networks with different productivities of agents. In particular, we study how the behavior of nonadopters
(passive agents) changes when they connect to adopters (active or hyperactive) agents.
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Introduction

Social network analysis became an important research

field, both as a subject area and as a methodological

approach applicable to analysis of interrelations in various

complex network structures, not only social but also polit-

ical, economic, and urban. There is also a permanent

exchange of ideas among researchers doing network anal-

ysis in social sciences, biology, physics, computer science,

engineering, and many other fields.1 A special place in this

multidisciplinary research activity is played by methods of

network economics and network games.2–7 Economic mod-

els assume that agents/actors in network act as rational

decision makers whose actions are results of solving opti-

mization problems, and the profile of actions of all agents

in the network is a game equilibrium. Decision of each

agent is supposed to be influenced by behavior (or by

knowledge) of her neighbors in the network. Such

approach, despite being, in some sense, one sided, is found

to be very productive analytically and allows finding new

perspectives which can be further elaborated by use

of other approaches in the multidisciplinary framework.

In majority of research on game equilibria in

networks,2,8–10 the agents are assumed to be homogeneous

(except their positions in the network), and the problem is

to study the relation between the agents’ positions in the

network and their behavior in the game equilibrium. The

models demonstrate that the agents’ behavior and well-

being depend on their position in the network which is

characterized by one or another measure of centrality.

Thus, research on equilibria is in a close connection with

research focusing on the network structure. For instance,

Cinelli et al.,11 Ferraro and Iovanella,12 and Ferraro et al.13

consider two types of nodes in a network. Different

approaches to describe interrelations in networks are used,
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for example, intensiveness of interplay between nodes in

the study by Ferraro et al.13 is given exogenously, while in

the study by Matveenko and Korolev,9 it depends endogen-

ously on the agent’s behavior in network, since in the latter

work agents’ interplay depends on the externalities created

by investments of neighbors in the network.

Diversity and heterogeneity have become an important

aspect of contemporary social and economic life (interna-

tional working teams is a typical example; many other

examples are described by researchers of inclusiveness

and social cohesion14). Correspondingly, along with

accounting for position of agents in the network, an

important task is to account for heterogeneity of agents

as a factor defining differences in their behavior and well-

being. This direction of research is forming in the litera-

ture. For example, in the study by Bramoullé et al.,15

agents possess different marginal costs.

In the present article, we add heterogeneity of agents

into the Romer’s16 two-period consumption-investment

model (where a special case of complete network is con-

sidered) and the more general model by Matveenko and

Korolev.9 These models consider situations in which in

time period 1, each agent in network, at the expense of

diminishing current consumption, makes investment of

some resource (such as money or time) with the goal to

increase her consumption in period 2. The latter depends

not only on her own investment and productivity but also

on investments by her neighbors in the network. Total util-

ity of each agent depends on her consumption in the two

time periods. Such situations are typical for families, com-

munities, international organizations, innovative industries,

and so on. In the framework of the model, questions con-

cerning interrelations between the network structure, incen-

tives, and behavior are studied.

We use the concept of “Nash equilibrium with

externalities” similar to the one used by Romer16 and

Lucas.17 As in the common Nash equilibrium, agents max-

imize their payoffs (utilities), and in equilibrium, no one

agent finds gainful to change her behavior if others do not

change their behaviors. However, the agent’s maximization

problem under the present concept is such that the agent is

not able to change her behavior so “free” as it is allowed by

the common Nash equilibrium concept. In some degree, the

agent is attached to the equilibrium of the game. Namely, it

is assumed that the agent makes her decision being in a

definite environment formed by herself and by her neighbors

in the network. Though she participates herself in formation

of the environment, the agent in the moment of decision-

making considers the environment as exogenously given.

Romer’s16 and Matveenko and Korolev9 consider only

the case of homogeneous (in their preferences and produc-

tivities) agents. In the present article, we assume that there

are two types of agents with different productivities.

We find conditions under which agent behaves in equi-

librium in some definite way, being “passive” (does not

invest), “active” (invests a part of the available

endowment), or “hyperactive” (invests the whole endow-

ment). We prove that the agent’s utility depends monoto-

nously on her environment and study dependence of the

investment on the externality received by the agent. For

complete networks, we prove the uniqueness of the inner

equilibrium (in which all agents are active).

We study the influence of the nonhomogeneity on the

game equilibria. For instance, we show that if in star net-

work the central node (type 1) has a different productivity

than the peripheral agents (type 2), an increase of produc-

tivity of any of these types always leads to decrease of

investment by another type in equilibrium. However, influ-

ence of changes in productivity on own investment is

ambiguous and depends on the counterpart’s productivity.

If productivity of type i is sufficiently low (less than a

threshold value), then an increase in productivity of type

j ðj 6¼ iÞ leads to decrease of type j’s investment in equili-

brium. But if productivity of type i is higher than the thresh-

old, then increase in productivity of type j leads to increase

of investment of j. The abovementioned threshold for the

productivity of peripheral node decreases with respect to

the number of the nodes. Thus, if initially the center’s

investment increases with respect to the center’s produc-

tivity, but then the number of peripheral nodes rises (in

different contexts, it can be because of appearance of new

members of a collective, new divisions of a firm, new dis-

tricts of an agglomeration, etc.), then the rise of the center’s

productivity may lead already to decrease in its investment.

Another question studied in the article is consequences

of unification of networks with different types of agents.

We study junction of complete networks and find condi-

tions under which the initial equilibrium holds after unifi-

cation, as well as conditions under which the equilibrium

changes. In particular, we study how the behavior of non-

adopters (passive agents) changes when they connect to

adopters (active or hyperactive) agents.

We introduce adjustment dynamics into the model and

study dynamics of transition to the new equilibrium. The

dynamics pattern and the nature of the resulting equili-

brium depend on the parameters characterizing the hetero-

geneous agents.

For instance, if complete network 1 with initially active

agents of type 1 unifies with complete network 2 with

initially passive agents of type 2, and the type 1 productiv-

ity is higher than the type 2 productivity by at least a certain

threshold value (which we show to be inversely propor-

tional to the number of the first type agents), then there is

no transition process: The network stays in the (dynami-

cally unstable) equilibrium in which the first type agents

are active and the second type agents are passive. In the

opposite case, a transition process starts in the unified net-

work. If productivity of type 2 is higher than the above-

mentioned threshold but still rather low, then the transition

process leads to the stable equilibrium in which the first

type agents are hyperactive and the second type agents are

active, that is, all agents increase their investment levels.
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Under a higher productivity of type 2, the transition process

leads to a stable equilibrium in which agents of both types

are hyperactive.

We show that all these results are in power not only for

complete networks but also for a wider class of “cognate”

regular (equidegree) networks.

Such kind of results can be useful in analysis of func-

tioning of real social, organizational, economic, and polit-

ical structures.

The article is organized in the following way. The model

is formulated in “The model” section. Agent’s behavior in

equilibrium is studied in “Indication of agent’s ways of

behavior” section. “Equilibria in complete network with

two types of agents” section studies equilibria in complete

network with heterogeneous agents. “Adjustment dynamics

and dynamic stability of equilibria” section introduces and

studies the adjustment dynamics which may start after a

small disturbance of initial inner equilibrium or after a

junction of networks. “Junction of two complete networks”

section studies consequences of junction of two complete

networks with different types of agents. “Equilibria in star

network with heterogeneous agents” section considers

equilibria in star network with heterogeneous agents. The

final section is conclusion.

The model

There is a network (undirected graph) with n nodes,

i ¼ 1; 2; . . . ; n; each node represents an agent. In period

1, each agent i possesses initial endowment of good, e, (it

may be, for instance, time or money) and uses it partially

for consumption in the first period, ci
1, and partially for

investment into knowledge, ki:

ci
1 þ ki ¼ e; i ¼ 1; 2; . . . ; n

Investment immediately transforms one to one into

knowledge which is used in production of good for con-

sumption in the second period, ci
2.

Preferences of agent i are described by quadratic utility

function

Uiðci
1; c

i
2Þ ¼ ci

1ðe� aci
1Þ þ dic

i
2

where di > 0 and a is a satiation coefficient. It is assumed

that ci
1 2 ½0; e�, the utility increases in ci

1, and is concave

(the marginal utility decreases) with respect to ci
1. A suf-

ficient condition leading to the assumed property of the

utility is 0 < a < 1=2. We assume that this inequality is

satisfied.

Production in node i is described by production function

Fðki;KiÞ ¼ gikiKi; gi > 0

which depends on the state of knowledge in ith node, ki, and

on environment, Ki. The environment is the sum of invest-

ments by the agent himself and her neighbors

Ki ¼ ki þ ~Ki; ~Ki ¼
X

j2NðiÞkj

where NðiÞ is the set of neighboring nodes of node i. The

sum of investments of neighbors, ~Ki, will be referred as

pure externality.

We will denote the product digi by bi and assume that

a < bi. Since increase of any of parameters di; gi promotes

increase of the second period consumption, we will call bi

“productivity.” We will assume that bi 6¼ 2a; i ¼ 1;
2; . . . ; n. If bi > 2a, we will say that ith agent is productive,

and if bi < 2a, we will say that ith agent is unproductive.

Three ways of behavior are possible: agent i is called

passive if she makes zero investment, ki ¼ 0 (i.e. consumes

the whole endowment in period 1); active if 0 < ki < e;

hyperactive if she makes maximally possible investment

e (i.e. consumes nothing in period 1).

Let us consider the following game. Players are the

agents i ¼ 1; 2; . . . ; n. Possible actions (strategies) of

player i are values of investment ki from the segment

[0, e]. Nash equilibrium with externalities (for shortness,

equilibrium) is a profile of knowledge levels (investments;

k�1; k
�
2; . . . ; k�n), such that each k�i is a solution of the fol-

lowing problem PðKiÞ of maximization of ith player’s util-

ity given environment Ki:

Uiðci
1; c

i
2Þ!

ci
1
;ci

2
;ki

max

ci
1 ¼ e� ki;

ci
2 ¼ Fðki;KiÞ;

ci
1 � 0; ci

2 � 0; ki � 0;

8<
:

where the environment Ki is defined by the profile

ðk�1; k�2; :::; k�nÞ

Ki ¼ k�i þ
X

j2NðiÞk
�
j :

Substituting the constrains equalities into the objective

function, we obtain a new function (payoff function)

Viðki;KiÞ ¼ Ui

�
e� ki;Fiðki;KiÞ

�
¼ ðe� kiÞ

�
e� aðe� KiÞ

�

þ bikiKi ¼ e2ð1� aÞ � kieð1� 2aÞ � ak2
i þ bikiKi

(1)

If all players’ solutions are internal

ð0 < k�i < e; i ¼ 1; 2; . . . ; nÞ, that is, all players are active,

the equilibrium will be referred to as inner equilibrium.

Clearly, the inner equilibrium (if it exists for given values

of parameters) is defined by the system

D1Viðki;KiÞ ¼ 0 i ¼ 1; 2; . . . ; n: (2)

Here

D1Viðki;KiÞ ¼ eð2a� 1Þ � 2aki þ biKi (3)

We will use the following notation: I is the unit n� n

matrix; ~b is the diagonal matrix with b1, b2; . . . ; bn on the

Matveenko et al. 3



main diagonal; M is the adjacency matrix of the network (in

the adjacency matrix, Mij ¼ Mji ¼ 1, if in the network there

is a link between nodes i and j, and Mij ¼ Mji ¼ 0

otherwise; Mii ¼ 0 for all i ¼ 1, 2, . . . , n).

Remark 1.1. System of equation (2) takes the form

Sk ¼ �e (4)

where

S ¼ ~b� 2aI þ ~bM

k ¼ ðk1; k2; . . . ; knÞT

�e ¼ eð1� 2aÞ1

Here, I is the identity matrix such that 1 ¼
ð1; 1; . . . ; 1ÞT :

Remark 1.2. Since the matrix ~b� 2aI is nonsingular, we can
multiply both parts of equation (4) by diagonal matrix
ð~b� 2aIÞ�1.

½I þ ð~b� 2aIÞ�1 ~bM �k ¼ ð1� 2aÞeð~b� 2aIÞ�1
1

Let us introduce a diagonal matrix

� ¼ ð~b� 2aIÞ�1 ~b

and a vector

~e ¼ ð1� 2aÞeð~b� 2aIÞ�1
1

If matrix S is nonsingular, then the unique solution of

the system (4) takes the form

k� ¼ ðI þ �MÞ�1~e

Thus, the equilibrium investments by the agents are

defined by their generalized �-centralities in the network.

Instead of one �-parameter (as in the common definition of

�-centrality), we have here a diagonal matrix �, that is, the

heterogeneous agents are characterized by parameters �i

depending on their productivities, bi. Notice that two com-

ponents of centrality (the agent’s position in the network

and her exogenous “importance”) influence the equilibrium

investment level in the opposite directions.

Theorem 1.1. For complete network, the inner equilibrium exists
and unique.

Proof. We shall proof that complete network system

of equation (4) has a unique solution. It is suffi-

cient to check the nonsingularity of the matrix

~S ¼ ~b
�1

S ¼ I � 2a ~b
�1 þM ¼

�1 1 . . . 1

1 �2 . . . 1

. . . . . . . . . . . .
1 1 . . . �n

0
BB@

1
CCA

Here, �i ¼ 1� 2ab�1
i ¼ b�1

i ðbi � 2aÞ. Since bi > a; i ¼
1; 2; . . . ; n, the diagonal elements satisfy condition

0 < j�ij < 1; i ¼ 1; 2; . . . ; n.

We will prove by induction that for complete network of

order n, the determinant of matrix ~S is negative when n is

even and positive when n is odd. For n ¼ 2, the determinant

of matrix ~S is negative

D2 ¼
�1 1

1 �2

����
���� ¼ �1�2 � 1 < 0

For n ¼ 3, the determinant is positive

D3 ¼
�1 1 1

1 �2 1

1 1 �3

������
������ ¼ ð1� �1Þð1� �2Þ þ ð�3 � 1ÞD2 > 0

Suppose that we have proven the statement for all com-

plete networks of order not higher than n. Let us prove it for

the complete network of order nþ 1. We have Dn < 0

when n is even and Dn > 0 when n is odd. The determinant

of order nþ 1 is

Dnþ1 ¼

�1 1 1 1 . . . 1

1 �2 1 1 . . . 1

1 1 �3 1 . . . 1

1 1 1 �4 . . . 1

� � � . . . . . . . . . . . . . . .
1 1 1 1 . . . �nþ1

������������

������������
Subtracting the first column from the second column,

the second column from the third column, . . . , the n th

column from the ðnþ 1Þ th column, we obtain

Dnþ1 ¼

�1 1� �1 0 ::: 0 0

1 �2 � 1 1� �2 ::: 0 0

1 0 �3 � 1 ::: 0 0

::: ::: ::: ::: ::: :::

1 0 0 ::: �n � 1 1� �n

1 0 0 ::: 0 �nþ1 � 1

��������������

��������������
¼ ð�1Þnþ2ð1� �1Þð1� �2Þ � � � ð1� �nÞ þ ð�nþ1 � 1ÞDn

(5)

When n is even, then both additives in equation (5) are

positive, and when n is odd, they are both negative.

We have proven that for any n, the determinant of matrix
~S and, hence, the determinant of matrix S are nonzero.

In the inner equilibrium, k�i ¼ ks
i ; i ¼ 1; 2; . . . ; n.

Remark 1.3. Notice that in general case (for incomplete
networks), the theorem 1.1 is not true. As a counterexample,
let us consider the chain of three nodes with matrix ~S of
the form

~S ¼
�1 0 1

0 �2 1

1 1 �3

0
@

1
A

4 International Journal of Engineering Business Management



The determinant of this matrix

�1�2�3 � �1 � �2

becomes 0 under

�3 ¼
�1 þ �2

�1�2

which is possible under 0 < j�ij < 1; i ¼ 1; 2; 3, for exam-

ple, if �1 ¼ 0:5, �2 ¼ �0:8, and �3 ¼ 0:75. In this case,

system (4) cannot have unique solution. Generally, in case

of incomplete network, the solution of system (4) does not

exist in all the cases when the vector ~b
�1

�e is not a linear

combination of columns of matrix ~S.

The following theorem will serve as a tool for compar-

ison of utilities.

Theorem 1.2. Let W*, W** be networks with the same char-

acteristic endowment e; i; j be, correspondingly, two of

their nodes; bi; bj be productivities of the agents in these

nodes; k�j ;K
�
j ;U

�
j and k��j ;K

��
j ;U

��
j be equilibrium values

of knowledge, environment, and utilities in these two

nodes; and k�i 2 ð0; e�; k��j 2 ð0; e�. In such case

1) If biK
�
i < bjK

��
j , then U�i < U��j .

2) If biK
�
i � bjK

��
j , then U�i � U��j .

3) If biK
�
i ¼ bjK

��
j , then U�i ¼ U��j .

4) If k�i ¼ 0; k��j > 0, then U �i ¼ Uðe; 0Þ < U ��j .

Proof. Let biK
�
i < bjK

��
j ðbiK

�
i � bjK

��
j Þ. Since func-

tion Vjðkj;K
��
j Þ achieves maximum at point k��j , we

have Vjðk�i ;K��j Þ � Vjðk��j ;K
��
j Þ. Since D2Vðk;

bKÞ > 0 for any k 6¼ 0 and K, we obtain

Viðk�i ;K�i Þ < Vjðk�i ;K��j Þ (correspondingly, Viðk�i ;
K�i Þ � Vjðk�i ;K��j Þ). It follows that Viðk�i ;K�i Þ <
Vjðk�i ;K��j Þ � Vjðk��j ;K

��
j Þ (correspondingly,

Viðk�i ;K�i Þ � Vjðk�i ;K��j Þ � Vjðk��j ;K
��
j Þ). Hence,

U �i < U ��j (correspondingly, U�i � U��j ). Combin-

ing previous results, we see that if biK
�
i ¼ bjK

��
j ,

then U �i ¼ U ��j .

The last statement of the theorem is evident

U ��j ¼ Vjðk��j ;K
��
j Þ > Vjð0;K��j Þ ¼ Við0;K�i Þ ¼ U�i

because for k ¼ 0, function Vð0;KÞ does not depend on

bK. c

Indication of agent’s ways of behavior

The following statement plays the central role in analysis

of equilibria.

Lemma 2.1. For unproductive agent, necessary and sufficient
conditions of different ways of behavior in equilibrium are as
follows:

1) Agent is passive iff

~Ki �
eð1� 2aÞ

bi

(6)

2) Agent is active iff

eð1� 2aÞ
bi

< ~Ki <
eð1� biÞ

bi

(7)

3) Agent is hyperactive iff

~Ki �
eð1� biÞ

bi

(8)

For productive agent, necessary conditions of different

ways of behavior in equilibrium are as follows:

1) Agent may be passive only if

~Ki �
eð1� 2aÞ

bi

(9)

2) Agent may be active only if

eð1� biÞ
bi

< ~Ki <
eð1� 2aÞ

bi

(10)

3) Agent may be hyperactive only if

~Ki �
eð1� biÞ

bi

(11)

Proof. Equilibrium condition for passive agent is

D1Vðki; biKiÞ � 0 at point k ¼ 0; hence, equation

(3) implies

eð2a� 1Þ � 2aki þ biKijki¼0 ¼ biKi
� eð1� 2aÞ � 0

which is equivalent to equations (6) and (9).

The agent is active iff

0 <
eð2a� 1Þ þ bi

~Ki

2a� bi

< e

Writing this relation in detail, we obtain equation (7) if

agent is unproductive or equation (10) if agent is productive.

Equilibrium condition for hyperactive agent is

D1Viðki;KiÞ � 0 at point k ¼ e; hence, equation (3) implies

eð2a� 1Þ � 2aki þ biKijki¼e ¼ bi
~K

i
þ bie� e � 0

which is equivalent to equations (8) and (11). c

Remark 2.1. Pure externality can be interpreted as social
influence. Lemma 2.1 shows the values of social thresholds for
agent i; achievement of a threshold is needed for a change in

Matveenko et al. 5



behavior. The lemma implies that to turn from passive into
active (or from active into hyperactive), an agent with a lower
productivity needs a bigger social influence externality than an
agent with a higher productivity. We will denote by ~k

s

i the root

of the equation

D1Viðki;KiÞ ¼ ðbi � 2aÞki þ bi
~Ki � eð1� 2aÞ ¼ 0

Thus

~k
s

i ¼
eð2a� 1Þ þ bi

~Ki

2a� bi

where ~Ki is the pure externality received by the agent.

Evidently, if in equilibrium the agent is active, her invest-

ment is equal to ~k
s

i . In other cases, this value has only

“informative” role. It is seen from the following corollary

which describes the agents’ ways of behavior in terms of ~k
s

i .

Corollary 2.1. For unproductive agent, necessary and sufficient
conditions of different ways of behavior are as follows:

1) Agent is passive iff

~k
s

i � 0 (12)

2) Agent is active iff

0 < ~k
s

i < e (13)

3) Agent is hyperactive iff

~k
s

i � e (14)

For productive agent, necessary conditions of different

ways of agent’s behavior are as follows:

4) Agent may be passive if
~k

s

i � 0 (15)

5) Agent may be active if

0 < ~k
s

i < e (16)

6) Agent may be hyperactive if

~k
s

i � e (17)

Corollary 2.2. (Matveenko and Korolev,9 corollary 3.4). Agents in
a complete network of order pðp > 1Þ.

1) are passive if bi <
1
p
; i ¼ 1; 2; . . . ; n;

2) are passive or hyperactive if bi ¼ 1
p
; i ¼ 1;

2; . . . ; n; and

3) are passive, activ,e or hyperactive if bi >
1
p
; i ¼ 1;

2; . . . ; n:

Remark 2.2. Evidently, ~k
s

i can be presented as

~k
s

i ¼
biKi � eð1� 2aÞ

2a
(18)

Notice that formula (18), by itself, does not provide the

equilibrium investment of ith agent, because ~k
s

i enters Ki;

however, this formula is very convenient for analysis.

Formula (18) implies that in equilibrium in complete

network (where the environment is the same for all), any

agent with a higher productivity invests more (and con-

sumes in the first period less) than any agent with a lower

productivity. Formula (18) and the expression for the pay-

off function, Viðki;KiÞ, also imply that the higher produc-

tivity of an agent is, the higher her utility is.

In lemma 2.1 and corollary 2.1, we provide description

of agent’s ways of behavior in terms of pure externality, ~Ki,

and in terms of solution of equation (2), ~k
s

i . The following

lemma gives a description of the ways of behavior in terms

of environment, Ki.

Lemma 2.2. In equilibrium, i-th agent is passive iff

Ki �
eð1� 2aÞ

bi

(19)

i-th agent is active iff

eð1� 2aÞ
bi

< Ki <
e

bi

(20)

i-th agent is hyperactive iff

Ki �
e

bi

(21)

Proof. Since

D1Viðki;KiÞ ¼ �2aki þ biKi � eð1� 2aÞ

the first-order conditions for the ith agent imply that

D1Viðki;KiÞjki¼0 ¼ biKi � eð1� 2aÞ � 0 (22)

D1Viðki;KiÞjki2ð0;eÞ ¼ 0 (23)

D1Viðki;KiÞjki¼e ¼ biKi � e � 0 (24)

But equation (22) is equivalent to equation (19), and

equation (24) is equivalent to equation (21). It follows from

equation (23) that

0 < ~k
s

i < e

which is equivalent to equation (20). c

In any complete network, the environment is the same

for all agents. This implies the following corollary.

Remark 2.3. In complete network in equilibrium, agents

with the same productivity make the same investments. If

all agents have the same productivity, then a homophily

takes place: Everyone behaves in the same way.

Remark 2.4. In complete network, there cannot be equili-

brium in which an agent with a higher productivity is
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active while an agent with a lower productivity is hyper-

active or when an agent with a higher productivity is

passive while an agent with a lower productivity is

active or hyperactive.

Speaking about complete network, we will omit index i

in notation for the i th agent’s environment, because the

environment in complete network is the same for all agents.

In other words, K will denote the sum of investments of all

agents of complete network.

Corollary 2.3. In complete network, equilibrium with all

hyperactive agents exists iff

min
i

bi �
1

n

In this case

K � e

mini bi

Equilibrium with all active agents exists iff

eð1� 2aÞ
mini bi

< K <
e

maxi bi

Equilibrium with all passive agents always exists. In this

case, K ¼ 0.

Proof. Assume that in a complete network, all agents

are hyperactive. According to equation (24), it is

possible iff

K ¼ nbie � e

that is iff

bi �
1

n

Other statements of the corollary follow directly from

lemma 2.2. c

Equilibria in complete network with two
types of agents

Let a complete network consist of p agents with productiv-

ity b1 (these agents will be referred as type 1) and q agents

with productivity b2 (type 2); b1 > b2. The following state-

ment lists all possible equilibria and conditions of their

existence. According to remark 2.4, only these six equili-

bria are possible.

Proposition 3.1. In complete network with two types of

agents, the following equilibria exist.

1) Equilibrium with all hyperactive agents exists if

b1 > b2 �
1

pþ q
(25)

2) Equilibrium in which first type agents are hyperac-

tive and second type agents are active exists if

0 <
ð1� 2a� pb2Þ

qb2 � 2a
< 1 (26)

pþ qð1� 2a� pb2Þ
qb2 � 2a

� 1

b1

(27)

3) Equilibrium in which first type agents are hyperac-

tive and second type agents are passive exists if

b1 �
1

p
; b2 �

1� 2a

p
(28)

4) Equilibrium in which first type agents are active

and second type agents are passive exists if

b1 >
1

p
; b2 �

pb1 � 2a

p
(29)

5) Equilibrium with all passive agents always exists.

6) Equilibrium in which agents of both types are active

exists if

pðb1 � b2Þ < 2a; 2ab1ðpþ qÞ > 2aþ qðb1 � b2Þ

Proof.

1) Follows from lemma 2.2.

2) This equilibrium is possible iff inequality (26) is

checked. According to equation (20), the equili-

brium exists under equation (27).

3) Since in this case the environment is K ¼ pe,

according to equations (19) and (21), the equili-

brium exists iff equation (28) is checked.

4) According to equations (19) and (20), the equili-

brium exists iff

b1 >
1

p
; pk1 �

eð1� 2aÞ
b2

where

k1 ¼
eð1� 2aÞ
pb1 � 2a

5) Follows from lemma 2.1.

6) The system of equation (2) turns into

ðpb1 � 2aÞk1 þ qb1k2 ¼ eð1� 2aÞ
pb2k1 þ ðqb2 � 2aÞk2 ¼ eð1� 2aÞ

�

The solution is

ks
1 ¼

eð1� 2aÞðqb2 � qb1 � 2aÞ
2að2a� pb1 � qb2Þ

ks
2 ¼

eð1� 2aÞðpb1 � pb2 � 2aÞ
2að2a� pb1 � qb2Þ
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It is clear that ks
1 > ks

2; hence, the necessary and suffi-

cient conditions of existence of the inner equilibrium are

ks
2 > 0; ks

1 < e

that is

pðb1 � b2Þ < 2a (30)

2ab1ðpþ qÞ > 2aþ qðb1 � b2Þ (31)

Under inequalities (30) and (31), the inner equilibrium is

k1 ¼ ks
1; k2 ¼ ks

2:c

Remark 3.1. The signs of the following derivatives show how a
change in the types’ productivities b1; b2 influences volumes of
investments k1; k2:

ðk1Þ
0

b1
¼ C1ðqb2 � 2aÞ ðwhere C1 > 0Þ

ðk1Þ
0
b2
¼ C2ð�pqb1 � q2b1Þ < 0 ðwhere C2 > 0Þ

ðk2Þ
0
b1
¼ C3ð�pqb2 � p2b2Þ < 0 ðwhere C3 > 0Þ

ðk2Þ
0

b2
¼ C4ðpb1 � 2aÞ > 0 ðwhere C4 > 0Þ

Thus, with an increase in productivity of first type

agents, their equilibrium investments increase if the second

type consists of more than one agent (q > 1) or if q ¼ 1 but

this agent is productive and decrease if q¼ 1 and this agent

is unproductive. The equilibrium investments of the second

type agents always decrease.

With an increase in productivity of the second type

agents, their equilibrium investments always increase, and

the equilibrium investments of the first type agents always

decrease.

Adjustment dynamics and dynamic
stability of equilibria

Now, we introduce adjustment dynamics which may

start after a small deviation from equilibrium or after

junction of networks each of which was initially in equi-

librium. We model the adjustment dynamics in the fol-

lowing way.

Definition 4.1. In the adjustment process, each agent max-

imizes her utility by choosing a level of investment; at the

moment of decision-making, she considers her environment

as exogenously given. Correspondingly, if kn
i ¼ 0 and

D1Viðki;KiÞjki¼0 � 0, then knþ1
i ¼ 0, and if kn

i ¼ e and

D1Viðki;KiÞjki¼e � 0, then knþ1
i ¼ e; in all other cases,

knþ1
i solves the difference equation

�2aknþ1
i þ biK

n
i � eð1� 2aÞ ¼ 0

Definition 4.2. The equilibrium is called dynamically stable

if, after a small deviation of one of the agents from the

equilibrium, dynamics starts which returns the equilibrium

back to the initial state. In the opposite case, the equili-

brium is called dynamically unstable.

As before, let us consider complete network with p

agents with productivity b1 (type 1) and q agents with

productivity b2 (type 2). In initial time period, each first

type agent invests k01 and each second type agent invests

k02. Correspondingly, the environment (common for all

agents) in the initial period is K ¼ pk01 þ qk02.

Assume that either k01 ¼ 0 and D1V1ðk1;KÞjk1¼0 > 0,

or k01 ¼ e and D1V1ðk1;KÞjk1¼e < 0, or k01 2 ð0; eÞ and

either k02 ¼ 0 and D1V2ðk2;KÞjk2¼0 > 0, or k02 ¼ e and

D1V2ðk2;KÞjk2¼e < 0, or k02 2 ð0; eÞ. Then, definition 4.1

implies that the dynamics is described by the system of

difference equations

knþ1
1 ¼ pb1

2a
kn

1 þ
qb1

2a
kn

2 þ
eð2a� 1Þ

2a

knþ1
2 ¼ pb2

2a
kn

1 þ
qb2

2a
kn

2 þ
eð2a� 1Þ

2a

8>>><
>>>:

(32)

with initial conditions

k0
1 ¼ k01

k0
2 ¼ k02

�
(33)

Proposition 4.1. The general solution of the system of difference
equation (32) has the form

kn ¼ C
pb1 þ qb2

2a

� �n
1

b1 þ b2

b1

b2

� �
þ D1

D2

� �
; n ¼ 1; 2; . . .

(34)

where ðD1;D2ÞT is the steady state of equation (32)

D1 ¼
eð1� 2aÞðqb2 � qb1 � 2aÞ

2að2a� pb1 � qb2Þ
(35)

D2 ¼
eð1� 2aÞðpb1 � pb2 � 2aÞ

2að2a� pb1 � qb2Þ
(36)

The solution of the Cauchy difference problems (32) and

(33) has the form

kn ¼ ðpk0
1 þ qk0

2 � ~DÞ pb1 þ qb2

2a

� �n�1
1

2a

b1

b2

� �

þ
D1

D2

� �
; n ¼ 1; 2; . . .

(37)

where

~D ¼ eð1� 2aÞðpþ qÞ
pb1 þ qb2 � 2a

(38)

Proof. The characteristic equation of system (32) is
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pb1

2a
� l

qb1

2a

pb2

2a

qb2

2a
� l

���������

���������
¼ �l pb1

2a
þ qb2

2a

� �
þ l2 ¼ 0

Thus, the eigenvalues are

l1 ¼ 0; l2 ¼
pb1 þ qb2

2a

An eigenvector corresponding l1 is

e1 ¼
�q

p

� �

while an eigenvector corresponding l2 can be found as a

solution of the system of equations

�qb2

2a
x1 þ

qb1

2a
x2 ¼ 0

pb2

2a
x1 �

pb1

2a
x2 ¼ 0

8>>><
>>>:

We find

e2 ¼

b1

b1 þ b2

b2

b1 þ b2

0
BBB@

1
CCCA

The general solution of the homogeneous system of dif-

ference equations corresponding (32) has the form

ðknÞg ¼ C
pb1 þ qb2

2a

� �n

b1

b1 þ b2

b2

b1 þ b2

0
BBB@

1
CCCA; n ¼ 1; 2; . . . :

As a partial solution of the system (32), we take its

steady state, that is, the solution of the linear system

D1 ¼
pb1

2a
D1 þ

qb1

2a
D2 þ

eð2a� 1Þ
2a

D2 ¼
pb2

2a
D1 þ

qb2

2a
D2 þ

eð2a� 1Þ
2a

8>>><
>>>:

The solution is (35) and (36); hence, the general solution

of the system (32) has the form (34). In solution of the

Cauchy problems (32) and (33), constants of integration

are defined from the initial conditions

k0
1

k0
2

� �
¼ C1

�q

p

� �
þ C

1

b1 þ b2

b1

b2

� �
þ D1

D2

� �
(39)

However, since one of the eigenvalues is 0, we need

only constant C to write the solution under n > 0. Multi-

plying by ðp; qÞ, we obtain

pk0
1 þ qk0

2 ¼ C
pb1 þ qb2

b1 þ b2

þ pD1 þ qD2

We denote ~D ¼ pD1 þ qD2 and derive expression (38).

Thus

C ¼ pk0
1 þ qk0

2 � ~D
� 	 b1 þ b2

pb1 þ qb2

Substituting for C into equation (34), we obtain equation

(37). c

Let us find conditions of dynamic stability/instability for

the equilibria in complete network with two types of agents

which are listed in proposition 3.1.

Proposition 4.2. The conditions of dynamic stability/instability of
the equilibria listed in proposition 3.1 (in case of their existence)
are as follows.

1. The equilibrium in which both types of agents are

hyperactive is stable iff

b1 >
1

pþq
; b2 >

1
pþq

(40)

2. The equilibrium in which agents of first type are

hyperactive and agents of second type are active

is stable iff

pþ qð1� 2a� pb2Þ
qb2 � 2a

>
1

b1

qb2

2a
< 1

(41)

3. The equilibrium in which agents of first type are

hyperactive and agents of second type are passive

is stable iff

b1 >
1

p
; b2 <

1� 2a

p

4. The equilibrium in which agents of first type are

active and agents of second type are passive is

always unstable.

5. The equilibrium with all passive agents is always

stable.

6. The equilibrium with all active agents is always

unstable.

Proof.

1. According to definition 4.1 and equation (3)

D1V1ðk1;KÞjk1¼e ¼ b1ðpþ qÞe� e; D1V2ðk2;KÞjk2¼e

¼ b2ðpþ qÞe� e

Both derivatives are positive iff equation (40) is checked.

2. According to definition 4.1 and equations (3) and

(27)
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D1V1ðk1;KÞjk1¼e ¼ b1 peþ qeð1� 2a� pb2Þ
qb2 � 2a

� �
e� e � 0

However, for dynamic stability, the strict inequality is

needed. Let equation (41) be checked and k1 ¼ e. The dif-

ference equation describing dynamics of each of the second

group agents is

knþ1
2 ¼ qb2

2a
kn

2 þ
peb2

2a
þ eð2a� 1Þ

2a
(42)

For stability, it is necessary and sufficient that

ðqb2=2aÞ < 1.

3. According to definition 4.1 and equations (3) and (28)

D1V1ðk1;KÞjk1¼e ¼ b1e� e � 0

D1V2ðk2;KÞjk2¼0 ¼ eð2a� 1Þ þ b2pe � 0

For stability, the strict inequalities are needed.

4. According to definition 4.1 and equations (3) and (20)

D1V2ðk2;KÞjk2¼0 ¼ eð2a� 1Þ þ b2

peð1� 2aÞ
pb1 � 2a

¼ eð1� 2aÞðpb2 � pb1 þ 2aÞ
pb1 � 2a

� 0

For stability, the strict inequalities are needed. Let the

second inequality in equation (29) be satisfied strictly. The

difference equation for any of the first group agents is

knþ1
1 ¼ pb1

2a
kn

1 þ
eð2a� 1Þ

2a

According to the first inequality in equation (29)

pb1 > 1 > 2a

Hence, the equilibrium is unstable.

5. According to definition 4.1 and equation (3)

D1V1ðk1;KÞjk1¼0 ¼ eð2a� 1Þ < 0

D1V2ðk2;KÞjk2¼0 ¼ eð2a� 1Þ < 0

6. One of the eigenvalues of the system (32) is

l2 ¼
pb1 þ qb2

2a
> 1

Hence, the equilibrium is unstable. c

Junction of two complete networks

Let complete network 1 consists of p agents, each with

productivity b1, and let complete network 2 has q agents,

each with productivity b2. According to corollary 2.3, in

initial equilibrium, each of the complete networks is in a

homophily state: All (homogeneous) agents in the network

make the same investments. Let these networks unify to

create a common complete network with pþ q heteroge-

neous agents. Will the agents hold their initial behavior?

Proposition 5.1. After the junction, all agents hold their ini-

tial behavior (make the same investments as before the

junction) in the following four cases.

1) If b1 � 1
p
; b2 � 1

q
; and initially agents in both

networks are hyperactive.

2) If

b2 �
1� 2a

p

and initially agents in the first network are hyperactive and

agents in the second network are passive.

3) If

b1 >
1

p
; b2 � b1 �

2a

p

and initially agents in the first network are active and

agents in the second network are passive.

4) If initially agents in both networks are passive.

In all other cases, the equilibrium changes.

Proof.

1) According to corollary 2.4

b1 �
1

p
; b2 �

1

q

Substituting k1 ¼ e and k2 ¼ e into equation (3), we

obtain, correspondingly

D1V1ðk1;KÞjk1¼e ¼ b1ðpþ qÞe� e � 0

D1V2ðk2;KÞjk2¼e ¼ b2ðpþ qÞe� e � 0

1) According to corollary 2.4

b1 �
1

p

Substituting k2 ¼ 0 and k1 ¼ e into equation (3), we

obtain

D1V1ðk1;KÞjk1¼e ¼ b1pe� e � 0

D1V2ðk2;KÞjk2¼0 ¼ b2pe� eð1� 2aÞ � 0

2) Substituting k1 ¼ eð1� 2aÞ=ðpb1 � 2aÞ and

k2 ¼ 0 into equation (3), we obtain

D1V1ðk1;KÞ ¼
eð1� 2aÞð2a� pb1 � 2aþ pb1Þ

pb1 � 2a
¼ 0

D2V2ðk2;KÞ ¼
eð1� 2aÞðpb1 � 2a� pb2Þ

pb1 � 2a
� 0

10 International Journal of Engineering Business Management



Substituting k1 ¼ 0 and k2 ¼ 0 into equation (3), we

obtain

D1V1ðk1;KÞjk1¼0 ¼ D1V2ðk2;KÞjk2¼0 ¼ eð2a� 1Þ � 0

In all other cases, the initial values of investments of

agents will not be equilibrium in the unified network, and

the network will move to a different equilibrium. c

Proposition 5.1 shows, in particular, that passive

agents (nonadopters), when connected with adopters,

can remain nonadopters only if their productivity, b2,

is relatively low.

A pattern of transition process after the junction depends

on initial conditions and parameters values. If adjustment

dynamics of the unified complete network starts, it is

described by the system of difference equation (32) with

initial condition (33).

Proposition 5.2. Let the agents in the first network before
junction be hyperactive (hence, b1 � ð1=pÞ by corollary 2.2)
and agents in the second network be passive. Then, the
following cases are possible.

1) If b2 �
�
ð1� 2aÞ=p

�
, then after junction all agents

hold their initial behavior, and there is no transition

process in the unified network. The unified network

is in equilibrium fk1 ¼ e; k2 ¼ 0g.
2) If b2 >

�
ð1� 2aÞ=p

�
and b2 � ð2a=qÞ, then the

first group agents stay hyperactive; investments of

the second group agents increase until they also

become hyperactive. The unified network comes

to equilibrium fk1 ¼ e; k2 ¼ eg (notice that condi-

tions b2 >
�
ð1� 2aÞ=p

�
and b2 � ð2a=qÞ imply

b2 >
�

1=ðpþ qÞ
�

, that is, condition of existence

of equilibrium fk1 ¼ e; k2 ¼ eg).

If ð2a=pÞ > b2 >
�
ð1� 2aÞ=p

�
, then the first group

agents stay hyperactive; investments of the second group

agents increase. The unified network comes to state

fk1 ¼ e; k2 ¼
�

eðpb2 þ 2a� 1Þ=ð2a� qb2Þ
�
g if

b2 <
�

1=ðpþ qÞ
�

and to state fk1 ¼ e; k2 ¼ eg if

b2 �
�

1=ðpþ qÞ
�

.

In cases 2 and 3, utilities of all agents in the unified

network increase. In case 1, the utilities do not change.

Proof.

1. Follows from proposition 5.1, point 2.

2. If for agents of the second group

D1V2ðk2;KÞjk
2
¼0 ¼ b2 pe� eð1� 2aÞ > 0

they change their investments according to the difference

equation (42). The general solution of equation (42) is

kn
2 ¼ C

qb2

2a

� �n

þ D; n ¼ 0; 1; 2; . . . : (43)

where

D ¼ eðpb2 þ 2a� 1Þ
2a� qb2

(44)

and pb2 > 1� 2a. The initial conditions imply

C ¼ k0
2 � D ¼ �D

The partial solution satisfying initial conditions is

kn
2 ¼ D 1� qb2

2a

� �n� �
; n ¼ 1; 2; . . . :

If b2 > ð2a=qÞ, then ðqb2=2aÞ > 1, D < 0, and kn
2 con-

verges to e. After the value e is achieved, kn
2 ¼ e, since

D1V2ðk2;KÞjk2¼e ¼ b2ðpþ qÞe� e � ð1� 2aþ 2aÞe� e ¼ 0

If b2 < ð2a=qÞ, then ðqb2=2aÞ < 1, D > 0, and kn
2 con-

verges to D if D < e, that is, if b2 < ð1=ðpþ qÞÞ. In the

opposite case, if b2 � ð1=ðpþ qÞÞ, kn
2 converges to e.

It is clear that both the equilibria

fk1 ¼ e; k2 ¼ eg and k1 ¼ e; k2 ¼
eðpb2 þ 2a� 1Þ

2a� qb2

� 


possible in result of junction are stable.

In the “resonance” case

b2 ¼
2a

q

We are looking for the partial solution of difference

equation (42) not in form D, but in form nD. From equation

(42), we have

ðnþ 1ÞD ¼ nDþ peb2

2a
þ eð2a� 1Þ

2a

which implies

D ¼ eðpb2 þ 2a� 1Þ
2a

Thus, the general solution of equation (42) has the form

kn
2 ¼ C þ n

eðpb2 þ 2a� 1Þ
2a

; n ¼ 0; 1; 2; . . . :

It follows from initial conditions that C ¼ 0, so the par-

tial solution of equation (42) satisfying the initial condi-

tions is

kn
2 ¼ n

eðpb2 þ 2a� 1Þ
2a

; n ¼ 1; 2; . . . :

Since pb2 > 1� 2a, the value of investment kn
2 con-

verges to e and, since this value is achieved, stays equal

to e, because
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D1V2ðk2;KÞjk2¼e ¼ b2ðpþ qÞe� e � ð1� 2aþ 2aÞe� e ¼ 0

The last statement (concerning utilities) follows directly

from theorem 1.2. c

Proposition 5.3. Let agents of the first network before junc-

tion be hyperactive (which implies b1 � ð1=pÞ by corollary

2.2) and agents of the second network be active (which

implies b2 > ð1=qÞ). The unified network moves to the

equilibrium with all hyperactive agents. The utilities of all

agents increase.

Proof. The first group agents stay hyperactive,

because, by equation (3),

D1V ðk1; b1KÞjk1¼e ¼ eð2a� 1Þ � 2aeþ b1peþ b2qk2 � 0

For the second group agents, we have equation (42). Its

general solution is equation (43), where D is defined by

equation (44). From the initial conditions, we find

C ¼ k0
2 � D ¼ eð1� 2aÞ

qb2 � 2a
� eð1� 2a� pb2Þ

qb2 � 2a
¼ pb2

qb2 � 2a
> 0

Hence, kn
2 achieves the value e.

The statement concerning utilities follows directly from

theorem 1.2. c

Proposition 5.4. If before junction agents of both networks

are hyperactive (this implies b1 � ð1=pÞ and b2 � ð1=qÞ
by corollary 2.2), they stay hyperactive after junction:

There is no transition dynamics, and utilities of all agents

do increase.

Proof. It follows from proposition 5.1, point 1.

The increase of utilities follows from theorem

1.2. c

Proposition 5.5. If before junction agents of both networks

are passive, they stay passive after junction: There is

no transition dynamics, and agents’ utilities do not

change.

Proof. It follows from proposition 5.1, point 4. Util-

ities do not change according to theorem 1.2. c

The following two propositions show how, depending on

the relation between the heterogeneous productivities,

passive agents (nonadopters) may change their behavior

(become adopters).

Proposition 5.6. Let agents of first network before junction

be active (which implies b1 > ð1=pÞ by corollary 2.2),

k0
1 ¼

�
eð1� 2aÞ=ðpb1 � 2aÞ

�
, and agents of the second

network be passive. Then, the following cases are

possible.

1. Under pb1 � pb2 þ 2a, all agents hold their initial

behavior, and there is no transition process.

Let pb1 < pb2 þ 2a. If b2 � ð2a=qÞ and�
ðe� D1 � k0

1Þ=b1

�
<
�
ðe� D2Þ=b2

�
, then the network

moves to the equilibrium with all hyperactive agents. If

b2 < ð2a=qÞ and
�
ðe� D1 � k0

1Þ=b1

�
<
�
ðe� D2Þ=b2

�
,

then the network moves to the equilibrium in which the

first group agents are hyperactive and the second group

agents are active

k2 ¼
eð1� 2a� pb2Þ

qb2 � 2a

2. If
�
ðe� D1 � k0

1Þ=b1

�
�
�
ðe� D2Þ=b2

�
, then the

network moves to the equilibrium with all hyperac-

tive agents.

In case 1, utilities of all agents do not change; in case 2,

utilities of all agents increase.

Proof. For the second group agents initially

D1Vðk2; b2KÞ ¼ eð2a� 1Þ þ b2

peð1� 2aÞ
pb1 � 2a

¼ eð1� 2aÞðpb2 � pb1 þ 2aÞ
pb1 � 2a

Thus, D1V ðk2; b2KÞ � 0 if pb1 � pb2 þ 2a. In this

case, the second group agents stay passive. The first group

agents also hold their behavior unchanged, because their

environment does not change.

Now, let pb1 < pb2 þ 2a. The second group agents

increase their investments, and so do agents of the first

group, because their environment increases. Conditions

pb1 < pb2 þ 2a and b1 > ð1=pÞ imply b2 > ð1� 2a=pÞ.
Hence, by lemma 2.2, the equilibrium with hyperactive

agents of one of the groups and active agents of another

group is always possible, as well as the equilibrium with all

hyperactive agents.

Agents of one of the groups may achieve the

investment level e earlier than the agents of another group.

Let it be the first group, that is,
�
ðe� D1 � k0

1Þ=b1

�
<�

ðe� D2Þ=b2

�
. The investment level of the second group

agents in this moment is some ~k
0

2. After that investments of

the second group agents follow equation (42). The general

solution of equation (42) is equation (43), where D has the

form (44). From the initial conditions, we have

C ¼ ~k
0

2 � D. Thus, if b2 > ð2a=qÞ, then D < 0, which

implies C > 0; hence, investments of the second group

agents will achieve level e. If b2 < ð2a=qÞ, then invest-

ments of agents of the second group will become equal to

D > 0.

In the resonance case, b2 ¼ ð2a=qÞ, as previously, the

general solution of equation (42) has the form
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kn
2 ¼ C þ n

eðpb2 þ 2a� 1Þ
2a

; n ¼ 0; 1; 2; . . . :

It follows from initial conditions that C ¼ ~k
0

2, so the

partial solution of equation (42) satisfying the initial con-

ditions is

kn
2 ¼ ~k

0

2 þ n
eðpb2 þ 2a� 1Þ

2a
; n ¼ 1; 2; . . . :

Since pb2 > 1� 2a, the value of investments of the

second group agents in this case also achieves e.

Suppose now, that the second group agents have

received the investment level e first, that is,�
ðe� D1 � k0

1Þ=b1

�
>
�
ðe� D2Þ=b2

�
, while the invest-

ment level of the first group agents was equal to some ~k
0

1.

It is possible only if b2 > b1. From that moment, the invest-

ments of the first group agents follow equation

knþ1
1 ¼ pb1

2a
kn

1 þ
qeb1

2a
þ eð2a� 1Þ

2a
(45)

which general solution (45) is

kn
1 ¼ C

pb1

2a

� �n

þ D; n ¼ 0; 1; 2; . . .

where

D ¼ eð1� 2a� qb1Þ
pb1 � 2a

From the initial condition, we have C ¼ ~k
0

2 � D. More-

over, ~k
0

1 > k0
1 ¼

�
eð1� 2aÞ

�
=ðpb1 � 2aÞ, which implies

C ¼ ~k
0

1 � D >
eð1� 2aÞ
pb1 � 2a

� eð1� 2a� qb1Þ
pb1 � 2a

¼ qb1

pb1 � 2a
> 0

Hence, investments of the first group agents achieve e.

In case when agents of both groups achieve investment

level e simultaneously, that is,
�
ðe� D1 � k0

1Þ=b1

�
¼�

ðe� D2Þ=b2

�
, the network, evidently, turns to the equili-

brium with all hyperactive agents. c

Proposition 5.7. If before junction agents of both networks

are active (this implies b1 > ð1=pÞ and b2 > ð1=qÞ by cor-

ollary 2.2), then after junction all agents become hyperac-

tive; their utilities increase.

Proof. The initial conditions are

k0
1 ¼

��
eð1� 2aÞ

�
=ðpb1 � 2aÞ

�
; k0

2 ¼
��

eð1� 2aÞ
�
=

ðqb2 � 2aÞ
�

. According to equation (3)

D1Vðk1; b1KÞ ¼ eð2a� 1Þ � 2a
eð1� 2aÞ
pb1 � 2a

þ b1p
eð1� 2aÞ
pb1 � 2a

þ b1q
eð1� 2aÞ
qb2 � 2a

> 0

D1Vðk2; b2KÞ ¼ eð2a� 1Þ � 2a
eð1� 2aÞ
qb2 � 2a

þ b2p
eð1� 2aÞ
pb1 � 2a

þ b2q
eð1� 2aÞ
qb2 � 2a

> 0

Thus, agents of both groups will increase their invest-

ments following equation (43). Agents of one of the groups

will achieve investment level e first. Let it be the first group

and let investments of the second group agents in this

moment be ~k
0

2. Then, investments of the second group

agents follow difference equation (5.7), which general

solution is equation (5.8), where D has the form (5.9). The

initial conditions imply C ¼ ~k
0

2 � D, but

~k
0

2 > k0
2 ¼

eð1� 2aÞ
qb2 � 2a

> D

Hence, C > 0. Thus, investments of the second group

agents will also achieve level e. Absolutely similar argu-

ment is for the case when the second group achieves the

investment level e first. c

Remark 5.1. In all cases considered in propositions 5.1–5.7,

agents’ utilities in result of junction do increase or, at least

do not change. Thus, all the agents have an incentive to

unify, or at least have no incentive not to unify.

Remark 5.2. We have studied equilibria for complete net-

works formed in result of junction of two complete networks

with p and q nodes. These equilibria do correspond to

equilibria in some regular (equidegree) networks. For

example, let W1 be a regular network consisting of

20 nodes, each of which has 3 links, and let W2 be regular

network consisting of 15 nodes, each of which has 2 links.

Let each node of W1 establish three links with W2 and each

node of W2 establish four links with W1. A result of this

junction is the regular network with 35 nodes, each of

which has 6 links. This junction of the regular networks

is “cognate” to the junction of complete networks with four

and three nodes. It is rather evident that each statement

concerning equilibria in junked complete networks corre-

sponds to a similar statement concerning equilibria in

junked cognate regular networks. Presumably, the regular

networks may also have unsymmetrical equilibria

which have no relation to the equilibria in their cognate

complete networks.
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Equilibria in star network with
heterogeneous agents

Analysis of equilibria with heterogeneous agents in

incomplete networks is much more complex than in com-

plete networks, because there is no common for all agents

environment.

Let us consider star network with n peripheral nodes

(rays). The agent in the center of the star has productivity

b0; each of the peripheral agents has productivity b. If the

peripheral agents are unproductive (b < 2a), then invest-

ments of all peripheral agents in equilibrium are the same,

because, according to lemma 2.1, the unproductive agent’s

investment is uniquely defined by her received externality.

However, if the peripheral agents are productive (b > 2a),

then their equilibrium investment levels can differ. In case

when the central agent is active or hyperactive, it is possi-

ble that a part of peripheral agents are passive, while

another part is active and the third part is hyperactive.

Example 6.1. In equilibrium under b > 2a, let the central

agent be active with investment k0, p peripheral agents be

hyperactive, q peripheral agents be active with investment

k, and r peripheral agents be passive. The values of invest-

ments of active agents satisfy the following system of

linear equations:

ðb0 � 2aÞk0 þ qb0k þ pb0e ¼ eð1� 2aÞ
bk0 þ ðb� 2aÞk ¼ eð1� 2aÞ

�

whose solution is

~k
s

0 ¼
ð1� 2aÞðqb0 � bþ 2aÞ þ pb0ðb� 2aÞ
ðq� 1Þb0bþ 2aðbþ b0Þ � 4a2

e

~k
s ¼ ð1� 2aÞðb� b0 þ 2aÞ � pb0b

ðq� 1Þb0bþ 2aðbþ b0Þ � 4a2
e

For the equilibrium to exist, the conditions

0 < ~k
s

0 < e;

0 < ~k
s
< e

have to be checked. The inequality ~k
s
> 0 is equivalent to

~k
s

0 ¼ ~K <
�

eð1� 2aÞ=b
�

, and ~k
s
< e is equivalent to

~k
s

0 ¼ ~K >
�

eð1� bÞ=b
�

.

For instance, let b0 ¼ 3a, b ¼ 6a, p ¼ 1, q ¼ 2, and

r ¼ 3. Then, condition ~k
s

0 > 0 reduces to 2aþ 8a2 > 0

which is always true. Condition ~k
s

0 < e is equivalent

to 2aþ 8a2 < 32a2 which, in turn, is equivalent to

a > 1=12. Condition ~k
s
> 0 is equivalent to

5a� 28a2 > 0, that is, a < 5=28. Condition ~k
s
< e

reduces to

5a� 28a2 < 32a2

that is, a > 1
12

.

Thus, in a star with six peripheral nodes, under

1

12
< a <

5

28
; b0 ¼ 3a; b ¼ 6a

there exists an equilibrium in which the central agent is

active and invests

k0 ¼
1þ 4a

16a
e

One of the peripheral agents is hyperactive; two periph-

eral agents are active and make investments

k ¼ 5� 28a

32a
e

and three peripheral agents are passive.

Let us consider inner equilibrium (in which all agents

are active) in star network. The investment, k, of each

peripheral agent is the same (because they receive the same

externality). Let us see, how the values of investments,

k0; k, depend on productivities, b0; b, and on the number

of periphery agents, n.

Theorem 6.1. For the star network, let the following inequalities
be checked (if the number of peripheral nodes, n, is sufficiently
big, these three inequalities reduce to 2a > maxfb0 � b;
1� b; b� 2b0g).

b0 � 2a < b < 2b0 þ 2a

nb0 þ 2a < bþ 2aðnþ 1Þb0 þ ðn� 1Þb0b

bþ 2a < b0 þ 4abþ ðn� 1Þb0b

(46)

Then, in the inner equilibrium

1) If

b < 2a

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

n� 1

r

then k0 decreases in b0.

2) If

b ¼ 2a

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

n� 1

r

then k0 does not depend on b0.

3) If

b > 2a

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

n� 1

r

then k0 increases in b0.

4) k0 decreases in b.
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5) k0 decreases in n if b < 2a, increases in n if b > 2a,

and converges to

eð1� 2aÞ
b

as n!1; the central agent’s utility increases with respect

to n.

6) k decreases in b0.

7) If b0 < 2a, then k decreases in b.

8) If b0 > 2a, then k increases in b.

9) k decreases in n and converges to 0 as n!1; the

peripheral agent’s utility decreases with respect to n
if b0 � b < 2a; it does not change if b0 � b ¼ 2a; it

increases if b0 � b > 2a.

Proof. Equilibrium investment values, k0 and k, solve

the system of equations

ðb0 � 2aÞk0 þ nb0k ¼ eð1� 2aÞ
bk0 þ ðb� 2aÞk ¼ eð1� 2aÞ

�
(47)

and satisfy inequalities

0 < k0 < e

0 < k < e

The solution of equation (47) is

k0 ¼
eð1� 2aÞðnb0 þ 2a� bÞ

ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

k ¼ eð1� 2aÞðbþ 2a� b0Þ
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

Conditions

k0 > 0; k > 0

are satisfied iff

nb0 þ 2a� b > 0

bþ 2a� b0 > 0

that is

b0 � 2a < b < nb0 þ 2a

Conditions

k0 < e; k < e

are satisfied iff

nb0 þ 2a < bþ 2aðnþ 1Þb0 þ ðn� 1Þb0b

bþ 2a < b0 þ 4abþ ðn� 1Þb0b

It is defined by the sign of

ðk0Þ
0
b0
¼

eð1� 2aÞ
�
ðn� 1Þb2 � 4a2ðnþ 1Þ

�
�
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

�2

that is, by the sign of

ðv� 1Þb2 � 4a2ðnþ 1Þ

1. We obtain

ðk0Þ
0
b ¼ �

eð1� 2aÞ
�

4anb0 þ nðn� 1Þb2
0

�
�
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

�2
< 0

Thus, k0 decreases in b.

2. Differentiating k0 with respect to n (taking n as

continuous variable), we obtain

ðk0Þ
0
n ¼

eð1� 2aÞb0ðb� 2aÞðbþ 2a� b0Þ�
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

�2

According to equation (46), bþ 2a� b0 > 0; hence,

ðk0Þ
0
n < 0 if b < 2a and ðk0Þ

0
n > 0 if b > 2a. The equili-

brium value k0 converges to

eð1� 2aÞ
b

as n!1.

The value

b0K0 ¼
b0eð1� 2aÞ½ð2aþ bÞnþ 2a� b�
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

increases in n

ðb0K0Þn
0 ¼ 2ab0eð1� 2aÞð2aþ bÞðb0 þ b� 2aÞ

½ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2�2
> 0

Hence, utility of the central agent increases if the num-

ber of peripheral agents rises.

3. We obtain

k
0
b0
¼ �

eð1� 2aÞ
�

2aðnþ 1Þbþ ðn� 1Þb2
�

�
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

�2
< 0

Thus, the equilibrium value k decreases in b0.

4. We obtain

k
0
b ¼

eð1� 2aÞ
�
ðn� 1Þb2

0 � 2aðn� 3Þb0 � 8a2
�

�
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

�2

Hence, the sign of derivative is defined by the sign of the

quadratic trinomial
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ðn� 1Þb2
0 � 2aðn� 3Þb0 � 8a2

The roots of the trinomial are

ðb0Þ1 ¼ �
2a

n� 1
< 0; ðb0Þ2 ¼ 2a

Thus, if b0 < 2a, then the equilibrium value k decreases

with respect to b.

1. If b0 > 2a, then the equilibrium value k increases

in b.

2. Differentiating k with respect to n (taking n as a

continuous variable), we obtain

k
0
n ¼ �

eð1� 2aÞðbþ 2a� b0Þb0b�
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

�2
< 0

by equation (46). Thus, the equilibrium value k decreases

in n. It is easily seen that it converges to 0 as n!1.

The derivative of

bK ¼ beð1� 2aÞðnb0 þ 4a� b0Þ
ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2

with respect to n is

ðbKÞn
0 ¼ 2ab0beð1� 2aÞðb0 � b� 2aÞ
½ðn� 1Þb0bþ 2aðb0 þ bÞ � 4a2�2

Thus, utility of peripheral agents decreases under

growth of the star if b0 � b < 2a, does not change if

b0 � b ¼ 2a, and increases if b0 � b > 2a. c

One important result of theorem 6.1 is that the utility of

the central agent, U0, increases in the number of peripheral

agents, n; thus, the central agent is always interested in a

growth of the star network.

Tables 1–3 summarize other results of theorem 6.1.

We see that, in the inner equilibrium, investment of any

of the two counterparts, center and periphery, depends

negatively on the productivity of the other counterpart. The

own productivity also plays role, but in dependence of

investment on the productivity of the counterpart. Invest-

ment of any agent, central or peripheral, depends positively

(negatively) on the own productivity if the productivity of

the counterpart is sufficiently high (sufficiently low,

correspondingly).

Conclusion

Research on the role of heterogeneity of actors/agents in

social and economic networks is rather new in the liter-

ature. In our model, we assume presence of two types of

agents possessing different productivities. On the first

stage (in time period 1), each agent in network may

invest some resource (money or time) to increase her

gain on the second stage (in period 2). The gain depends

on her own investment and productivity as well as on

investments of her neighbors in the network. Such situa-

tions are typical not only for social systems but also for

various economic, political, and organizational systems.

In framework of the model, we consider relations

between network structure, incentives, agents’ behavior,

and the equilibrium state in terms of welfare (utility) of

the agents.

We prove that agent’s utility depends monotonously on

her environment (the sum of her own investment and her

neighbors’ investments) and provide description of agent’s

behavior in terms of pure externalities and in terms of

environments. We show that in inner equilibrium, the

agent’s behavior is completely defined by her generalized

�-centrality which depends not only on her position in the

network but also on her relative productivity.

We touch some questions of network formation and

identify agents potentially interested in particular ways of

enlarging the network. In star network, the central agent is

always interested in enlarging the networks, while the

peripheral agents are interested in this only if their

Table 1. The dependence of investment of the central agent, k0, on parameters.

Dependence of k0 on b0 Dependence of k0 on b Dependence of k0 on n

If b < 2a
ffiffiffiffiffiffiffi
nþ1
n�1

q
If b ¼ 2a

ffiffiffiffiffiffiffi
nþ1
n�1

q
If b > 2a

ffiffiffiffiffiffiffi
nþ1
n�1

q
If b < 2a If b > 2a

k0 decreases k0 is independent k0 increases k0 decreases k0 decreases k0 increases

Table 2. The dependence of investment of each peripheral agent, k, on parameters.

Dependence of k on b0 Dependence of k on b Dependence of k on n

If b0 < 2a If b0 > 2a
k decreases k decreases k increases k decreases

Table 3. The dependence of the utility of the peripheral agent, U,
on the number of peripheral agents, n.

If b0 � b < 2a If b0 � b ¼ 2a If b0 � b > 2a

U decreases U is independent U increases
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productivity is sufficiently low in comparison with the cen-

tral agent’s productivity.

We introduce adjustment dynamics which may start

after a deviation from equilibrium or after a junction of

networks initially being in equilibrium.

We study behavior of agents with different productiv-

ities in two complete networks after junction. In particular,

we are interested how nonadopters (passive agents) change

their behavior (become adopters). If a network consisting

of nonadopters (passive agents) does unify with a network

consisting of adopters (active or hyperactive agents), and

the nonadopters possess a low productivity, then there is no

transition process, and the nonadopters stay passive. Under

somewhat higher productivity, the nonadopters become

adopters (come to active state), and under even higher pro-

ductivity, they become hyperactive.

Agents who are initially active in equilibrium in com-

plete network (which implies that their productivities are

sufficiently high) may also increase their level of invest-

ment in result of unification with another complete network

with hyperactive or active agents. The unified network

comes into equilibrium in which all agents are hyperactive.

A natural task for future research is to expand the results

to broader classes of networks.
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