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THE BROWNIAN MOTION ON Aff(R) AND QUASI-LOCAL THEOREMS

V. KONAKOV, S. MENOZZI, AND S. MOLCHANOV

Abstract. This paper is concerned with Random walk approximations of the Brownian motion on the Affine
group Aff(R). We are in particular interested in the case where the innovations are discrete. In this framework,
the return probability of the walk have fractional exponential decay in large time, as opposed to the polynomial
one of the continuous object. We prove that integrating those return probabilities on a suitable neighborhood
of the origin, the expected polynomial decay is restored. This is what we call a Quasi-local theorem.

1. Introduction

In his seminal paper [Yor92] (see also the related survey work [MY05]), M. Yor studied the distribution
density and the moments for the particular following exponential functional of the Brownian motion (Bs)s≥0:

(1.1) Aν
t =

∫ t

0

exp(2Bs + νs)ds,

which corresponds, up to a normalization in t−1 to the quantity appearing in the Asian options in the Black
and Scholes setting (see again [Yor92]). The general case ν 6= 0 can be reduced to ν = 0 using the Girsanov

theorem and the central object will be from now on the functional At =
∫ t

0
exp(2Bs)ds.

This functional appears in several different situations, including the study of the Brownian motion on the
group Aff(R) of the affine transformations of R : x 7→ ax+b, a, b ∈ R, a > 0. This group can be isomorphically

represented in the upper triangular 2× 2 matrices setting g =

[
a b
0 1

]
, a > 0. The affine group provides the

simplest example of solvable Lie group. We announced several results on the Brownian motion xt :=
(
at, bt

)

on Aff(R) in the short communication [KMM11] which partly rely on the results by Yor [Yor92].
The central result of [KMM11] is the following Theorem.

Theorem 1.1. Let p(t, ·, ·) be the transition density of the Brownian motion xt =
(
at, bt

)
on Aff(R) w.r.t. the

corresponding Riemannian volume. Then, for all g ∈ Aff(R):

(1.2) p(t, g, g) = p(t, e, e) ∼t→+∞

√
π

2

1

t
3
2

,

where e = I is the neutral element of Aff(R).

The note [KMM11] contains similar results for other solvable Lie groups. We will prove Theorem 1.1 in
Section 2.

The most interesting fact in Theorem 1.1 is the slow decay of p(t, g, g), t→ +∞, which looks contradictory
to the exponential growth of Aff(R). Observe that such an exponential growth occurs for all non trivial finitely
generated countable solvable groups, see e.g. Milnor [Mil68].

We will establish that the randomwalks on the subgroups of Aff(R) cannot directly give a good approximation
of the Brownian motion (xt)t≥0 on Aff(R).

More precisely, if (xεn)n∈N is the Markov chain corresponding to a symmetric random walk on the subgroup

Gε ⊂ G generated by the matrices

[
exp(+ε) 0

0 1

]
= g

+ε
1 ;

[
1 +ε
0 1

]
= g

+ε
2 with step ε2 in time, ε ∈ Q, then

for t = nε2 ∈ R+ we have that:

(1.3) P ε(t, g, g) := P ε(n, g, g) = Pg(x
ε
n = g) ≤ exp(−cn 1

3 ln(n)
2
3 ), g ∈ Gε.
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Let us stress that the exponential estimation P ε(n, g, g) ≤ exp(−cn), c > 0, which one could expect due to
the exponential growth of the group cannot hold. Indeed, the solvable groups are amenable and it therefore
follows from Kesten [Kes59] that P ε(n, g, g) decays at a sub-exponential rate. We will establish in Section 3
by direct elementary arguments this estimate which is a particular case of the typical asymptotics obtained
for the return probabilities of random walks on general solvable groups studied e.g. by Pittet and Saloff-Coste
[PSC03] and Tessera [Tes13]. The striking point is here that the return probability has fractional exponential
decay and does not behave as c

t
3
2
as one could have expected from Theorem 1.1. The cause of this phenomenon

is the special nature of the subgroup Gε (which is dense but again highly chaotically distributed).
Note that for the nilpotent groups, like e.g. the Heisenberg one H3, the corresponding local limit theorems

hold, see e.g. Breuillard [Bre05] (like in the case of the random walk on Zd see [IL71], [Pet05], [BR76]). We
also mention that for absolutely continuous innovations, a local Theorem on Aff(R), with the expected rate in
n−3/2, matching the diagonal decay of the heat-kernel in (1.2) for large times, was proved by Bougerol [Bou83].

In this work, we will establish what we call quasi-local theorems for the previously described random walk
on the discrete subgroup. Our first quasi-local theorem gives the estimation of the probability that xεn belongs
to a small neighborhood of the unit element e = I which shrinks to e when n → +∞. We establish that the
corresponding limit theorem holds with the expected convergence rate (see Section 4). It will be specified as
well in Section 4.1 how such phenomena, i.e. the dramatic difference between the super-exponential decay of
return probabilities stated in (1.3) and the polynomial one appearing when taking into account an associated
neighborhood (which precisely corresponds to the large time behavior in (1.2)), already occur for a specific
simple random walk on the dense locally uniformly distributed subgroup of R (generated by finitely many
rationally independent numbers +αi, i ∈ {1, · · · , N}). Roughly speaking, this dichotomy emphasizes that the
paths of the random walk on the subgroup are quite dense. We will then eventually show that introducing
(partially) an absolutely continuous component in the Markov chain xεn on Aff(R), one can check that the
densities of the finite dimensional distributions of xεn converge uniformly to the corresponding densities of the
diffusion on Aff(R).

2. Diffusion on Aff(R) and similar groups

We briefly recall the construction of the Brownian motion on Aff(R), see e.g. McKean [McK69], Ibéro [Ibé76]

or Rogers and Williams [RW85]. The Lie algebra A(Aff(R)) consists of the matrices of the form

[
x y
0 0

]
,

x, y ∈ R. The metric on this algebra (i.e. in each plane of the tangent bundle of Aff(R)) has the form
ds2 = dx2 + dy2. The exponential mapping Exp from the algebra A(Aff(R)) to the group Aff(R) then writes:

(2.1) g = Exp

([
x y
0 0

])
=

[
a b
0 1

]
=
∑

k≥0

1

k!

[
x y
0 0

]k
=

[
ex exy
0 1

]
,

i.e. x = ln(a), y = be−x = b
a so that

(2.2) ds2 = dx2 + dy2 =
da2 + db2

a2
,

i.e. the Riemannian metric on Aff(R) is given by the same formula as the hyperbolic metric on the Poincaré
model of the Lobachevskii plane (i.e. upper half plane of C):

C+ = {b+ ia, a > 0}.
The ball of radius R in this metric has an exponentially growing volume, i.e. V ol(B(R)) = 2π

(
cosh(R) − 1

)

(see e.g. Gruet [Gru96]).
In Section 3 we will consider the symmetric random walk on the finitely generated subgroups Gε ⊂ G. We

consider the simplest subgroups with two generators:

gε1 =

[
exp(ε) 0

0 1

]
, gε2 =

[
1 ε
0 1

]
.(2.3)

The number of different words of length n with the alphabet {gε1, g−ε
1 , gε2, g

−ε
2 } again grows exponentially with

n from Milnor [Mil68] (non-niplotent or non-abelian solvable groups with finite number of generators have
exponential growth).
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The symmetric Brownian motion on G can be constructed as the exponential mapping in the Stratonovich
sense of the Brownian motion

(
B1

t , B
2
t

)
, i.e. B1, B2 are two independent scalar Brownian motions, on A(Aff(R)):

(2.4) gt =

[
at bt
0 1

]
=
(
◦
) t⋂

s=0

[
(1 + dB1

s ) dB2
s

0 0

]
=

[
exp(B1

t )
∫ t

0
exp(B1

s )dB
2
s

0 1

]
.

The generator of
(
at, bt

)
t≥0

writes for all ϕ ∈ C2(R+\{0} × R,R):

(2.5) Lϕ(a, b) =
1

2

(
a2
(
∂2a + ∂2b

)
ϕ+ a∂aϕ

)
(a, b) =: ∆Aff(R)ϕ(a, b),

where ∆Aff(R) stands for the Laplace-Beltrami operator on Aff(R). Observe that the diffusion matrix a2I2 is

indeed the inverse of the Riemannian metric tensor a−2I2.
To find the fundamental solution of the parabolic equation ∂tp = Lp, i.e. the transition density of the

Brownian motion on Aff(R), we will apply the Doob transform to the well known density of the Brownian
diffusion on the hyperbolic space, see Karpelevich et al. [KTS59] and Gruet [Gru96] for multi-dimensional
generalizations. We also refer to Bougerol [Bou15] for other applications of Doob transforms on algebraic
structures.

Proposition 2.1 (Transition Density of the Brownian Motion on the hyperbolic plane H2). The density of
the diffusion with generator

Lϕ(a, b) = 1

2
a2∆ϕ(a, b)

w.r.t. the corresponding Riemann volume dadb
a2 is given by:

(2.6) pH2(t, x, y) =

√
2 exp(− t

8 )

(2πt)3/2

∫ +∞

r

u exp(−u2

2t )√
cosh(u)− cosh(r)

du,

where r = dH2(x, y) is the hyperbolic distance between x = (a1, b1), y = (a2, b2) ∈ H2, namely:

dH2(x, y) = arcosh

(
1 +

|x− y|2
2a1a2

)
,

where |x− y|2 = |a1 − a2|2 + |b1 − b2|2 is the usual squared Euclidean distance in R2.

Now we want to use the Doob transform. The following Proposition holds, see e.g. Pinsky [Pin95].

Proposition 2.2 (Doob transform). Let M be a Riemannian manifold with metric ds2 = gijdx
idxj and

corresponding Laplace-Beltrami operator

∆Mf(x) =
1√

det(g)
∂xi

(
gij
√
det(g)∂xjf

)
(x).

Let p(t, x, y) be the fundamental solution of the heat equation ∂tp = 1
2∆Mp = − 1

2∆
∗
Mp and ψ(x) > 0 be the

positive λ-harmonic function, i.e. it solves 1
2∆Mψ = λψ. Put

pλ(t, x, y) = exp(−λt)p(t, x, y)
ψ(x)

ψ(y).

Then, pλ(t, x, y) is the transition density of a new diffusion on M with generator:

Lλf(x) =
1

2

∆M (fψ)(x)

ψ(x)
− λf(x) =

1

2
∆Mf(x) +∇Mf(x) · ∇ ln(ψ(x)).

Here ∇M stands for the Riemannian gradient, and the densities are always intended to be w.r.t. the corre-
sponding Riemannian volume

√
det gdy.

Observe now that for ψ(a, b) = a
1
2 , simple computations give that

1

2
∆H2ψ(a, b) =

a2

2

(
a

1
2

)′′
= −1

8
ψ(a, b), λ = −1

8
.

Combining Propositions 2.1 and 2.2 and the above expression for ψ, we derive that the density of the Brownian
motion on Aff(R) can be expressed as the Doob-transform of the density of the Brownian motion on H2.
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Theorem 2.3 (Density of the Brownian motion in Aff(R) and Diagonal behavior in long time). The density
pAff(t, e, ·) of the Brownian motion in Aff(R) writes for all (t, g, h) ∈ R∗

+ ×Aff(R)2:

(2.7) pAff(R)(t, g, h) = exp
( t
8

)pH2(t, g, h)

ψ(g)
ψ(h) = exp

( t
8

)pH2(t, g, h)

a
1
2

c
1
2 , g = (a, b), h = (c, d).

with pH2 as in (2.6). For t→ +∞ one has for all g ∈ Aff(R):

pAff(R)(t, g, g) ∼
1

(2πt)
3
2

∫ +∞

0

u

sinh(u2 )
du =

√
π

2

1

t
3
2

.

The previous theorem has an important application in spectral theory (together with the remark that
pAff(R)(t, g, g) ∼ C

t as t→ 0, since dim(Aff(R)) = 2, see e.g. [Mol75]).

Theorem 2.4. Consider on Aff(R) the Schrödinger operator with non-positive fast decreasing potential W (g):

H = −∆Aff(R) +W (g),∆Aff(R) =
1

2
a2
(
∂2a + ∂2b

)
+

1

2
a∂a,

and the spectral problem Hψ = λψ. Then, since operator H has at most a finite negative spectrum {λj ≤ 0},
one has:

N0(W ) := ♯{j : λj ≤ 0} ≤ C1

∫

g∈Aff(R):0≤|W (g)|≤1

|W (g)| 34 σ(dg) + C2

∫

g∈Aff(R):|W (g)|>1

|W (g)|σ(dg),

where for g = (a, b), σ(dg) = dadb
a2 is the Riemannian volume element on Aff(R). Also, the constants C1, C2

here are independent of the considered potential W and can be computed directly.

The previous Theorem is a direct consequence of the work by Molchanov and Vainberg [MV08].

Eventually, we can also refer to Melzi [Mel02] for a global upper bound of the density of the Brownian motion
on AffR. This work provides a tractable control for the diagonal and off-diagonal behavior of the heat-kernel
in large time.

3. Approximation of Diffusion by Random Walks and Associated Return Probability

Estimates

In this section, we are interested in the approximation of the Brownian motion on Aff(R) by a discrete
random walk. Let now ε be a given small parameter. The time step of our random walk (xεn)n≥0 will be ε2

(with the usual parabolic scaling). In particular for a given time t > 0, it makes

(3.1) nε(t) = ⌊ t
ε2

⌋

steps on the interval [0, t]. Set xε0 =

[
1 0
0 1

]
, and for all n ≥ 1:

xεn+1 = xεnAε,n+1, Aε,n+1 =

[
exp(εXn+1) εYn+1

0 1

]
,

where the (Xi)i∈N∗ , (Yi)i∈N∗ are independent symmetric random variables, defined on some given probability
space (Ω,A,P), sharing the moment of the standard Gaussian law up to order two. Hence, the above dynamics
rewrites at time n:

xεn :=

[
aεn bεn
0 1

]
=

[
eε

∑n
i=1 Xi ε

(∑n
i=1 Yi exp(ε

∑i−1
j=1Xi)

)

0 1

]

=:

[
eεSn ε

(∑n
i=1 Yi exp(εSi−1)

)

0 1

]
,(3.2)

where we use the usual convention
∑0

j=1 = 0. We will consider here mainly two cases.

- The Bernoulli Case: both (Xi)i∈N∗ , (Yi)i∈N∗ are independent sequences of independent Bernoulli random
variables, i.e. P[X1 = 1] = P[X1 = −1] = P[Y1 = 1] = P[Y1 = −1] = 1

2 . In such case, it is easy to see that the

random walk stays on the subgroup Gε.1

1Observe that this would as well be the case for any integer valued independent sequences (Xi, Yi)i∈N∗ of independent random
variables sharing the two first moments of the Gaussian law.
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- The mixed case: (Xi)i∈N∗ , (Yi)i∈N∗ are independent sequences. The (Xi)i∈N∗ are still Bernoulli random vari-
ables whereas the (Yi)i∈N∗ have an absolutely continuous law.

In the first case we give an elementary proof that the return probability behave at least as exp(−Cn 1
3 ln(n)

2
3 )

for large n (see (1.3) and Theorem 3.1). We emphasize as well with the second case that, the density assumption
for the (Yi)i∈N∗ is sufficient to restore the LLT (see Theorem 4.8).

3.1. The Bernoulli Case. In this case, the idea is to express the non-diagonal element bεn in (3.2) in terms
of the local times L(a, n) of the random walk (Sk)k≥0 at level a ∈ [M−

n ,M
+
n ], where

M−
n := min

k≤n
Sk ≤ 0, M+

n := max
k≤n

Sk ≥ 0.

We also precisely define:

L(n, a) := ♯{k : Sk = a, 0 < k ≤ n}.
With these notations, we readily derive the following discrete occupation time formula:

(3.3) bεn = ε

M+
n∑

a=M−
n

( ∑

k∈[[1,n]]:Sk−1=a

Yk
)
exp(εa).

The simplest (and yet very important) local theorem for xεn concerns the asymptotic behaviour of the return

probability π2n = Pe[x
ε
2n = e] = P [S2n = 0,

∑2n
k=1 Yke

εSk−1 = 0].
The exact asymptotic convergence rates of π2n can be found in [PSC02], [PSC03]. Precisely, the following

Theorem holds.

Theorem 3.1 (Asymptotics of the return probabilities on the subgroup). Assume that eε is transcendental.
Then, there exists c ≥ 1 s.t. for n large enough:

c−1n
1
3 (ln(n))

2
3 ≤ − ln(π2n) ≤ cn

1
3 (ln(n))

2
3 .

In the quoted articles, the authors actually consider ε = 1, which readily gives the transcendence property.
In our work, we are interested in Donsker-Prokhorov type results (see Proposition 4.1 below), which will require
the previous scaling of (3.1). This leads us to consider the previous transcendence condition. Namely, if eε is
transcendent, and since (Si)i∈N is Z valued, we will have that:

2n∑

i=1

Yi exp(εSi−1) =
∑

a∈[[M−
2n,M+

2n]]

∑

k∈[[1,2n]],Sk−1=a

Yk exp(εa) = 0 ⇐⇒ ∀a ∈ [[M−
2n,M

+
2n]],

∑

k∈[[1,2n]],Sk−1=a

Yk = 0.

We now mention that, from the Lindemann-Weierstrass theorem, a sufficient condition for eε to be tran-
scendental is that ε is algebraic, which for instance happens if ε ∈ Q.

In the previously quoted article [PSC03], the lower bound of Theorem 3.1 follows from the Nash-Moser
approach to heat kernel estimates. We now provide a proof for this lower bound, which relies on stochastic
analysis arguments associated with some controls for the local time of the simple random walk, see e.g. [Rev05].

Proposition 3.2. If eε is transcendental then there exists c ≥ 1 s.t. for n large enough:

π2n ≤ exp(−c−1n
1
3 ln(n)

2
3 ).

In particular, the proof emphasizes that the upper bound of the return probability does not depend on ε as
soon as it is algebraic.

Proof. The numbers ekε, k ∈ Z being rationally independent the probability π2n rewrites:

π2n = P

[
∩a∈[[M−

2n−1,M
+
2n−1]]

L(2n− 1, a) = 0 Mod 2, S2n = 0, ∀a ∈ [[M−
2n−1,M

+
2n−1]]

∑

k∈[[1,n]]:Sk−1=a

Yk = 0
]
.

(3.4)
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Set now, A := {∩a∈[[M−
2n−1,M

+
2n−1]]

L(2n− 1, a) = 0 Mod 2, S2n = 0}. We can thus write:

π2n = E




∏

a∈[[M−
2n−1,M

+
2n−1]]

(
L(2n− 1, a)

L(2n−1,a)
2

)

2L(2n−1,a)
IA


 .(3.5)

Observe that, on the considered event A, for a ∈ [[M−
2n−1,M

+
2n−1]], the local time L(2n− 1, a) is even. The con-

tribution


 L(2n− 1, a)

L(2n−1,a)
2




2L(2n−1,a) then corresponds to the probability that a symmetric Binomial law with parameter
L(2n− 1, a) is equal to 0. This exactly describes the event

∑
k∈[[1,n]]:Sk−1=a Yk = 0.

Observe importantly that on A: (
L(2n− 1, a)

L(2n−1,a)
2

)

2L(2n−1,a)
≤ 1

2
.

Let us now localize w.r.t. the position of the minimum M−
2n−1 and maximum M+

2n−1. Namely, we want to

get rid of the large deviations for our current problem. Introduce the set Dα := {M−
2n−1 ≤ −α}⋃{M+

2n−1 ≥ α}.
Observe that

TDα
2n := E




∏

a∈[[M−
2n−1,M

+
2n−1]]

(
L(2n− 1, a)

L(2n−1,a)
2

)

2L(2n−1,a)
IDα∩A


 ≤

(
1

2

)α

2P[M+
2n−1 ≥ α]

≤ 4 exp(−α ln 2) exp(−α
2

4n
),

using the Bernstein inequality for the last control. Now in order to equilibrate the contributions of these large

deviations w.r.t the stated bound in Proposition 3.2 we want to solve the equation α2

n + α ln 2 = n
1
3 ln(n)

2
3 . It

is then easily checked that the positive root αn of the equation is s.t. αn ∼n
n

1
3 ln(n)

2
3

ln(2) =: mn. It thus follows

that there exists C1
0 s.t. for n large enough:

T
Dmn
2n ≤ exp(−C1

0mn).

On the other hand, we can as well derive the required control provided the extremas are small with the
previously emphasized threshold. Namely, introducing:

T S
2n := E




∏

a∈[[M−
2n−1,M

+
2n−1]]

(
L(2n− 1, a)

L(2n−1,a)
2

)

2L(2n−1,a)
I|M−

2n−1|≤
mn
ln(n)

,|M+
2n−1|≤

mn
ln(n)

IA




≤ P

[
|M−

2n−1| ≤
mn

ln(n)
,M+

2n−1 ≤ mn

ln(n)
, S2n=0

]
≤ P

[
∀k ∈ [[0, 2n]],

Sk√
n
∈ [− mn√

n ln(n)
,

mn√
n ln(n)

]
]
.

(3.6)

To control the last inequality we use the following important Lemma concerning tube estimates for the random
walk:

Lemma 3.3 (Tube Estimates for the Random Walk). There exists constants c ≤ 1, C ≥ 1 s.t.:

P[∀k ∈ [[1, 2n]], |Sk| ≤
mn

ln(n)
] ≤ C exp(−cn 1

3 ln(n)
2
3 ),

mn∑

a=−mn

P[L(2n− 1, a) > c−1n
2
3 ln(n)

1
3 ] ≤ C exp(−cn 1

3 ln(n)
2
3 ).

The above result can be viewed as a discrete analogue of the tube estimates for the Brownian motion that
can be found in [IW80]. The proof is postponed to the end of the Section for the sake of clarity.
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From Lemma 3.3 and (3.6) we get T S
2n ≤ C exp(−cn 1

3 ln(n)
2
3 ). Thus, it suffices to restrict to the study of:

TM
2n := E

[
∏

a∈[[M−
2n−1,M

+
2n−1(2n−1)]]

(
L(2n− 1, a)

L(2n−1,a)
2

)

2L(2n−1,a)
I|M−

2n−1|≤mn,M
+
2n−1≤mn

×
(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
IA

]
.

Fix now a δ ∈ (0, 1) and introduce the random set:

Aδ := {a ∈ [[M−
2n−1,M

+
2n−1]] : L(2n− 1, a) > nδ}.

Let us now fix c ∈ (0, 1). If ♯Aδ ≥ c mn

ln(n) , then:

TM,1
2n := E

[
∏

a∈]M−
2n−1,0[∪]0,M+

2n−1[

(
L(2n− 1, a)

L(2n−1,a)
2

)

2L(2n−1,a)
I|M−

2n−1|≤mn,M
+
2n−1≤mn

×
(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
I♯Aδ≥c mn

ln(n)
IA

]

≤ CE[
∏

a∈Aδ

1

L(2n− 1, a)
1
2

I|M−
2n−1|≤mn,M

+
2n−1≤mn

(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
I♯Aδ≥c mn

ln(n)
IA]

≤ C(
1

n
δ
2

)c
mn
ln(n) = C exp(− δ

2
ln(n)× c

mn

ln(n)
) = C exp(− δ

2
cmn),

where on the event Aδ, we used the Stirling formula for the first inequality. It remains to handle:

TM,2
2n := E

[
∏

a∈[[M−
2n−1,M

+
2n−1]]

(
L(2n− 1, a)

L(2n−1,a)
2

)

2L(2n−1,a)
I|M−

2n−1|≤mn,M
+
2n−1≤mn

(
IM+

2n−1>
mn
ln(n)

+ I|M−
2n−1|>

mn
ln(n)

)
I♯Aδ<c mn

ln(n)
IA

]
.

The first point to note is that, on the event {♯Aδ < c mn

ln(n)} ∩ {|M−
2n−1| ≤ mn, |M+

2n−1| ≤ mn}, necessarily the

occupation measure of Aδ is large. Precisely, we have that defining:

AC
δ := {a ∈ [[−mn,mn]], a 6∈ Aδ}, ♯AC

δ ≥ 2mn − c
mn

ln(n)
.

On the other hand, the total local time generated by the points in AC
δ is less than 2mnn

δ = 2n
1
3+δ ln(n)

2
3 < n,

for δ ∈ (0, 23 ) and n large enough. Hence, the occupation time of Aδ is s.t.:

|{i ∈ [[1, 2n]] : Si ∈ Aδ}| > n.

Since we also know that on the considered event {♯Aδ < c mn

ln(n)}, we derive that there necessarily exists a level

a ∈ Aδ s.t.

L(2n− 1, a) >
n

c mn

ln(n)

.

We obtain:

TM,2
2n ≤ P[|{i ∈ [[1, 2n]] : Si ∈ Aδ}| > n, ♯Aδ < c

mn

ln(n)
, |M−

2n−1| ≤ mn,M
+
2n−1 ≤ mn]

≤ P[∃a ∈ Aδ, L(2n− 1, a) > c−1n
2
3 ln(n)

1
3 , ♯Aδ < c

mn

ln(n)
, |M−

2n−1| ≤ mn,M
+
2n−1 ≤ mn]

≤
mn∑

a=−mn

P[L(2n− 1, a) > c−1n
2
3 ln(n)

1
3 ] ≤ C exp(−cn 1

3 ln(n)
2
3 ),

using again Lemma 3.3 for the last inequality. �
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Proof of Lemma 3.3 (Tubes for the random walk). Let us begin the proof observing that since,

P[∀k ∈ [[1, 2n]], |Sk| ≤
mn

ln(n)
] ≤ P[∃a ∈ [[− mn

ln(n)
,
mn

ln(n)
]], L(2n, a) ≥ n

mn

ln(n)

] ≤
mn
ln(n)∑

a=− mn
ln(n)

P[L(2n, a) ≥ n
2
3 ln

1
3 (n)],

it suffices to prove the second statement of the Lemma. To this end, observe first that from Theorem 9.4 in
Revesz [Rev05], we get for all a > 0, k ∈ N:

(3.7) P[L(2n, a) = k] =





1
22n−k+1

(
2n− k + 1

(2n+ a)/2

)
, if a is even,

1
22n−k

(
2n− k

(2n+ a− 1)/2

)
, if a is odd.

By symmetry we also derive that for a < 0, the above expression holds replacing a by |a| (recall indeed that

L(2n, a)
(law)
= L(2n,−a)). Eventually, for a = 0, Theorem 9.3 in [Rev05] yields:

(3.8) P[L(2n, 0) = k] = 2−2n+k

(
2n− k
n

)
.

Hence,

Pmn :=

mn∑

a=−mn

P[L(2n, a) > c−1n
2
3 ln(n)

1
3 ] = P[L(2n, 0) > c−1n

2
3 ln(n)

1
3 ] + 2

mn∑

a=1

P[L(2n, a) > c−1n
2
3 ln(n)

1
3 ].

Note as well from (3.7) that, in agreement with the intuition, P[L(2n, 0) = k] > P[L(2n, a) = k], a > 0, k ∈ N.
We therefore derive:

Pmn ≤ (1 + 2mn)P[L(2n, 0) > c−1n
2
3 ln(n)

1
3 ].

Write now from (3.8):

Pmn ≤ (1 + 2mn)

n∑

k=⌊c−1n
2
3 ln(n)

1
3 ⌋

2−2n+k

(
2n− k
n

)
.(3.9)

By the Stirling formula, we obtain that for k ∈ [[⌊c−1n
2
3 ln(n)

1
3 ⌋, n− 1]],

(3.10)

P[L(2n, 0) = k] = 2−2n+k

(
2n− k
n

)
≤ e

π
√
2n

√
n− k

2√
n− k

exp

(
(2n− k) ln(1− k

2n
)− (n− k) ln(1− k

n
)

)
.

The contribution for k = n gives P[L(2n, 0) = k] = 2−n and therefore a negligible term in the r.h.s. of (3.9).

We will now split the summation in (3.9) according to k ∈ [[⌊c−1n
2
3 ln(n)

1
3 ⌋, n1−η]] and k ∈ [[n1−η, n]] for η > 0

small enough to be specified later on. Observing that P[L(2n, 0) = k] is a decreasing function of k we obtain:

(3.11) Pmn ≤ (1 + 2mn) ≤ (1 + 2mn)

( n1−η∑

k=⌊c−1n
2
3 ln(n)

1
3 ⌋

P[L(2n, 0) = k] + nηP[L(2n, 0) = n1−η]

)
.

From (3.10) it can be deduced from usual computations that there exists C > 0 s.t. uniformly on k ∈
[[⌊c−1n

2
3 ln(n)

1
3 ⌋, n1−η]], for n large enough:

P[L(2n, 0) = k] ≤ C√
n
exp

(
− k2

5n

)
.
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Plugging this estimate in (3.11) yields:

Pmn ≤ C(1 + 2mn)

( ∑

c−1n
1
6 ln(n)

1
3 < k√

n
≤n1/2−η

1√
2πn

exp

(
−1

5

( k√
n

)2)
+ nη− 1

2 exp

(
−n

1−2η

5

))

≤ C(1 + 2mn)

(
1√
2π

∫ +∞

c−1n
1
6 ln(n)

1
3

exp(−x
2

5
)dx+ exp

(
−n

1−2η

6

))

≤ C(1 + 2mn)

(
exp(−c−1n

1
3 ln(n)

2
3 ) + exp

(
−n

1−2η

6

))
≤ C exp(−c−1n

1
3 ln(n)

2
3 ),

taking η ∈ (0, 13 ) and up to modifications of C, c for the last inequality. This completes the proof. �

4. Quasi-Local Theorems

We first mention that the integral theorem (which is an obvious corollary of the functional Donsker-Prokhorov
Central Limit Theorem (CLT) for the random walks) of course applies. Namely, we have the following result.

Proposition 4.1 (Donsker-Prokhorov approximation). Fix t > 0. If ε→ 0, nε(t) := ⌊ t
ε2 ⌋ → +∞, then

(aε⌊snε(t)⌋, b
ε
⌊snε(t)⌋)s∈[0,1]

(law)−→
ε→0

(a(st), b(st))s∈[0,1],

where a and b are defined in (2.4).

On the other hand, we are going to prove that some quasi-local Theorems as well hold. By quasi-local
Theorem, we mean here that we consider a suitable renormalization of a neighborhood of the origin. Our main
result in that direction is the following Theorem.

Theorem 4.2. Let g be a smooth test function s.t. its Fourier transform is compactly supported in [−1, 1] and
s.t.

∫
R
g(x)dx = 1. Denote, for a given δ > 0, by gδ(x) :=

1
δ g(

x
δ ) its rescaling. Fix t > 0, possibly large, and

define for n ∈ 2N, εn =
(
t
n

) 1
2 . Then, for δn := t

1
2n− 1

2+γ , γ ∈ (0, 12 ), we have:

(4.1) E

[
ISn=0 gδn

(
εn

n∑

j=1

Yj exp(εnSj−1)
)]

∼n
2εn

t
1
2

√
2π

· p2(t, 0).

Here, we denote for t > 0 by p2(t, ·) the density of the random variable b̃t :=
∫ t

0 e
B̃1

sdB2
s where

(
B̃1

s

)
s∈[0,t]

is a

usual Brownian Bridge independent of the Brownian motion B2. The subscript 2 in p2(t, ·), is here to recall
the considered random variable is associated with the second component of the Brownian motion on the group.

Also,

(4.2) p2(t, 0) = E

[ 1√
2π
∫ t

0
e2B̃

1
sds

]
∼t→+∞

π

t
,

1√
2πt

p2(t, 0) = pAff(R)(t, e, e).

Hence, we find the expected asymptotics in large time. We have a normalization in εn and not in ε3n in (4.1),
because we had already normalized our approximation of the stochastic integral in our scheme (3.2).

We proceed to its proof in Section 4.2.

To illustrate the phenomenon that appears on Aff(R), i.e. the tremendous different rates between the
pointwise return probabilities, and the quasi-local Theorem, we consider a rather simple model which already
enjoys such properties. Basically, this dichotomy emphasizes that, the discrete subgroups are in some sense
very dense, in the sense that they allow to have the expected convergence rates towards the densities of the
limiting objects when integrated on a suitable neighborhood.

4.1. Quasi-local CLT: the toy model. We discuss in this section some points related to the local CLT on

a dense subgroup Gε of a Lie group G in the simplest possible case, taking G = R, G1 = {x : x =
∑N

i=1 niαi}
(or more generally Gε = {x : x = ε

∑N
i=1 diαi}, ε > 0). Here, N ∈ N is a fixed given integer, α = (α1, · · · , αN )

is s.t. the
{
αi, i ∈ {1, · · · , N}

}
are rationally independent real numbers and d = (d1, · · · , dN ) ∈ ZN encodes

the coordinates/displacements associated with the entries of α.
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The subgroup G1 is not only dense in R but is also in some sense locally uniformly distributed. This can
for instance be seen from Herman Weyl’s classical result (see e.g. [SS03]). Consider for a fixed non negative
integer L, the sequence

x̃d =
( N∑

i=1

αidi

)
Mod L = 〈α, d〉 Mod L,

where here the notation Mod L stands for the remainder term of the division by L. Then, for an arbitrary
continuous and L periodic function f we have:

(4.3) lim
M→+∞

∑
d∈ZN :|d|≤M f(x̃d)

♯{d ∈ ZN : |d| ≤M} =
1

L

∫ L

0

f(x)dx,

where | · | stands here for the Euclidean norm of RN .
Consider now the symmetric random walk (xn)n∈N on R, s.t. x0 = 0, xn =

∑n
j=1 uj where the (uj)j∈N∗ are

i.i.d. real-valued discrete random variables with law:

u1
(law)
= p0δ0 +

1

2

N∑

i=1

pi(δαi + δ−αi), ∀i ∈ {1, · · · , N}, 0 < pi < 1,
N∑

i=0

pi = 1.

We can as well consider the auxiliary random walk (Xn)n∈N on RN s.t. X0 = 0, Xn =
∑n

j=1 Uj where the

(Uj)j∈N∗ are i.i.d. RN -valued discrete random variables with law:

U1
(law)
= p0δ0

RN
+

1

2

N∑

i=1

pi(δαiei + δ−αiei), ∀i ∈ {1, · · · , N}, 0 < pi < 1,

N∑

i=0

pi = 1.

In the above expression the (ei)i∈{1,··· ,N} denote the canonical basis vectors of RN .
Observe that the relation between the random variables (uj)j∈N∗ and ((Uj)j∈N∗), and therefore between x

and X is summarized as follows:

(4.4) ∀j ∈ N∗, uj = 〈Uj ,
N∑

k=1

ek〉 = 〈Uj,1〉, xn = 〈Xn,
N∑

k=1

ek〉 = 〈Xn,1〉,

where 1 :=
∑N

k=1 ek = (1, · · · , 1)∗.
Introduce now for notational convenience:

P[xn = 0] = rn,

i.e. rn denotes the return probability to 0 at time n. We want to emphasize the following fact. Even though,
from the standard CLT:

(4.5)
xn√
n
−→
n

N (0, σ2), σ2 = E[u21] =

N∑

i=1

piα
2
i ,

we do not have rn ∼n
c√
n
but instead rn ∼n

c
nN/2 . The result can be intuitively justified from the fact that

from the rational independence of the {αi}i∈{1,··· ,N},

(4.6) rn = P[xn = 0] = P[Xn = 0RN ].

For the latter event, this means that in each direction the same number of positive and negative transitions are
the same, and the asymptotics for this return probability corresponds to the product of the return probabilities
in each direction. This fact can be formalized with the following proposition.

Proposition 4.3 (Asymptotics for the return probability). As n→ +∞, the following result holds:

- If p0 > 0, then:

rn = P[xn = 0] ∼n
C(p)

n
N
2

, C(p) :=
N∏

i=1

1√
2πpi

.

- If p0 = 0, then: rn = 0 if n is odd and for n even:

rn = P[xn = 0] ∼n
2C(p)

n
N
2

.
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Proof. Observe thatXn is lattice valued. For a given n ∈ N, defining Ln := {(ξ1, · · · , ξN ), ∀i ∈ {1, · · · , N}, ξi ∈
{−nαi, · · · , nαi}}, we have P[Xn ∈ Ln] = 1. Actually supp(Xn) ⊂ Ln, where the inclusion is strict. Write
then for all t ∈ RN :

(4.7) E[exp(i〈t,Xn〉)] =
∑

ξ∈Ln

P[Xn = ξ] exp(i〈t, ξ〉).

Introducing the rescaled torus Tα
N := [− π

αi
, π
αi
], we get that for all (ξ, ζ) ∈ Ln,

1
|Tα

N |
∫
Tα
N
exp(−i〈t, ξ〉) exp(+i〈t, ζ〉)dt =

δξ,ζ . Hence, for any ξ0 ∈ supp(Xn):

(4.8) P[Xn = ξ0] =
1

|Tα
N |

∫

Tα
N

exp(−i〈t, ξ0〉)E[exp(i〈t,Xn〉)]dt =
∏N

j=1 αj

(2π)N

∫

Tα
N

exp(−i〈t, ξ0〉)ϕn(t)dt,

where ϕ(t) := E[exp(i〈t, U1〉)] = p0+
∑N

j=1 pj cos(tjαj) = 1+
∑N

j=1 pj
(
cos(tjαj)−1

)
= 1−2

∑N
j=1 pj sin

2
(

tjαj

2

)
.

Recalling (4.6), we thus readily get from the inversion formula (4.8) taking ξ0 = 0, and changing variable to
sj = αjtj , j ∈ {1, · · · , N}

rn = P[Xn = 0RN ] =
1

(2π)N

∫

TN

ϕn
( s1
α1
, · · · , sN

αN

)
ds =

1

(2π)N

∫

TN

(
1− 2

N∑

j=1

pj sin
2
(sj
2

))n
ds,

where TN := [−π, π]N . For small values of |s| we then get that:

(4.9) ϕ
( s1
α1
, · · · , sN

αN

)
= 1 +

N∑

j=1

pj

(
−
s2j
2

+O(s3j )
)
= exp

(
− 1

2

N∑

j=1

pjs
2
j +O(|s|3)

)
.

Set δn := c
(

ln(n)
n

)1/2
, c >

(
N

minj∈{1,··· ,N} pj

)1/2
. We now introduce BN (δn) := {s ∈ TN : |s|∞ ≤ δn} (ball of

radius δn around the origin) and CN (δn) := {s ∈ TN : ∀j ∈ [[1, N ]], sj ∈ [−π,−π + δn] ∪ [π − δn, π]} (corners
of radius δn of the torus TN ). Set MN (δn) := BN (δn) ∪ CN (δn). Observe that for s ∈ TN\MN(δn), we have
either:

(a) ∃j0 ∈ {1, · · · , N}, cos(sj0)− 1 = −2 sin2(
sj0
2 ) ∈ [−2 +

δ2n
2 + o(δ2n),− δ2n

2 + o(δ2n)].
(b) KS := {j ∈ {1, · · · , N} : |sj | ≤ δn} and KL := {j ∈ {1, · · · , N} : (π − |sj|) ≤ δn} are non empty.

In case (a), we readily get |1− 2
∑N

j=1 pj sin
2
( sj

2

)
| ≤

(
1− pj0

δ2n
2 + o(δ2n)

)
. In case (b), we derive:

|1− 2

N∑

j=1

pj sin
2
(sj
2

)
| ≤ |1− 2

∑

k∈KL

pk|+
δ2n
2

+ o(δ2n) := cL,S(n) ≤ 1− 1

2
min

j∈{1,··· ,N}
pj,

for n large enough. We can therefore rewrite:

rn =
1

(2π)N

∫

MN (δn)

(
1− 2

N∑

j=1

pj sin
2
(sj
2

))n
ds+Rn

N ,

|Rn
N | ≤ C

∫

TN\MN (δn)

{(
1− pj0

δ2n
2

+ o(δ2n)

)n

+ cL,S(n)
n

}
ds ≤ Cn−

pj0
c2

2 = o(n−N/2).

Let us discuss now the contribution associated with CN (δn). For s ∈ CN (δn), one has for all j ∈ {1, · · · , N}:

−2 sin2
(sj
2

)
= −2

(
1−

(π − |sj |
2

)2)
+O

(
(π − |sj |)3

)
,

so that 1− 2
∑N

i=1 pj sin
2
( sj

2

)
= −1 + 2p0 +

∑N
j=1 pj

(π−|sj |)2
2 +O

(
(π − |sj |)3

)
. Hence,

- if p0 6= 0, we thus readily get 1

(2π)N

∫
CN (δn)

(
1− 2

∑N
j=1 pj sin

2
( sj

2

) )n
ds = o(n−N/2).

- if p0 = 0, by symmetry, we get rn = 0 if n is odd and

1

(2π)N

∫

MN (δn)

(
1− 2

N∑

j=1

pj sin
2
(sj
2

))n
ds =

2

(2π)N

∫

BN (δn)

(
1− 2

N∑

j=1

pj sin
2
(sj
2

))n
ds,
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if n is even. Recall now from (4.9) that:

1

(2π)N

∫

BN (δn)

(
1− 2

N∑

j=1

pj sin
2
(sj
2

))n
ds =

1

(2π)N

∫

BN (δn)

exp
(
− n

{ N∑

j=1

pj
s2j
2

+O(|s|3)
})
ds

=
1

(2πn)
N
2

∏N
j=1

√
pj

∫
∏N

j=1

{
|s̃j |≤ln(n)1/2p

1/2
j

} exp
(
− 1

2

N∑

j=1

s̃2j +O
( ln(n)3/2

n1/2
)
) ds̃

(2π)
N
2

∼n
1

n
N
2

N∏

i=1

1√
2πpi

=
C(p)

n
N
2

.

This gives the stated result.

We can as well refer more generally to the proof of the classical local CLT (see e.g. [Pet05] or Chapter 5 in
[BR76] for the multidimensional case).

Observe that the asymptotic of the return probability rn does not depend on the rationally independent
numbers (αj)j∈{1,··· ,N} chosen. We simply used the fact that, to return to 0, we must have over the considered
time interval, for all j ∈ {1, · · · , N}, the same numbers of random variables taking the values −αjej and
αjej . �

Hence, the bigger N , the smaller the exact return probability. Similarly, from (4.8) we can extend the
previous proposition with the following result.

Proposition 4.4 (Deviation bounds for the LLT). Let n→ +∞ and y ∈ RN ∩ supp(Xn) be s.t. its Euclidean

norm |y| ≤ n
2
3−γ , γ > 0 (which is meant to be small). Then, for p0 > 0, recalling as well that X0 = 0, we

obtain:

P[Xn = y] ∼n

N∏

j=1



exp(− y2

j

2α2
jpjn

)

(2πpjn)
1
2


 .

Proof. We indicate that starting from (4.8), proceeding as in the previous proof of Proposition 4.3 and consid-
ering a localization with respect to a ball of radius δn = n−1/3+γ/3, we derive:

P[Xn = y] =
1

(2π)N

∫

B(δn)

exp
(
− i

〈( y1
α1
, · · · , yN

αN

)
, s

〉)
exp(−n

2

N∑

j=1

pjs
2
j)ds+Rn

N =:Mn
N +Rn

N ,

|Rn
N | ≤ C

∫

TN\B(δn)

(
(1− pj0

δ2n
2
)n + cL,S(n)

n
)
ds ≤ C exp(−cn1/3+2γ/3).

On the one hand, it is clear that Mn
N ∼n

∏N
j=1




exp(−
y2j

2α2
j
pjn

)

(2πpjn)
1
2


. On the other hand, on the considered range

set for y, we have that |Rn
N | ≤ C exp(−cn1/3+2γ/3). Hence, this term can indeed be seen as a global remainder

uniformly in y. This yields the result. Observe as well that for y ∈ supp(Xn),
(

y1

α1
, · · · , yN

αN
) ∈ ZN . �

Observe now that from the previous definition of xn, for any Γ ⊂ R,

(4.10) P[xn ∈ Γ] = P[〈Xn,1〉 ∈ Γ] =
∑

y∈ZN ,〈y,α〉∈Γ

P[Xn =

N∑

i=1

αiyiei].

From equation (4.10) in Proposition 4.4, we derive the following theorem.

Theorem 4.5. For a given γ ∈ (0, 12 ), and a positive sequence δn →n 0 and s.t. δn ≥ n−( 1
2−γ), we have for

p0 > 0:

P [x2n ∈ (−δ−1
n , δ−1

n )] ∼n 2δ−1
n

1√
2π(2n)σ

,

where as in the usual CLT stated in (4.5), σ2 =
∑N

i=1 piα
2
i .

From Proposition 4.3 and Theorem 4.5, we precisely see that, the integrated probability gives the expected
usual rate in n−1/2. Actually, this is precisely due to the last part of Proposition 4.4, we integrate in a neigh-
borhood of a hyperplane of RN , whereas the pointwise return probabilities might have arbitrarily polynomial
decay in function of the chosen N . We will now show a similar behavior for our random walk on Aff(R).
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4.2. Proof of Theorem 4.2. We first need the following auxiliary lemma concerning the maximum of the
conditioned random walk.

Lemma 4.6 (Maximum and Minimum of the conditioned random walk). Let n ≥ 0 be given and consider

the conditioned random walk
(
S̃j

)
j∈[[0,n]]

, S̃j =
∑j

i=1Xi s.t. S̃0 = S̃n = 0. We recall here that (Xi)i∈N∗ is a

sequence of i.i.d. Bernoulli random variables. Denoting by M̃+
n := maxi∈[[0,n]] S̃i, M̃

−
n := mini∈[[0,n]] S̃i we have

that for all θ > 0 there exists c := c(θ) ≥ 1 s.t.

(4.11) E

[
exp

(
θ
M̃+

n√
n

)]
+ E

[
exp

(
θ
M̃−

n√
n

)]
≤ c exp(cθ2).

Proof. It is well known from the Donsker invariance principle that M̃+
n , M̃

−
n respectively converge in law towards

the maximum and the minimum of a standard Brownian bridge on [0, 1] (see e.g. Liggett [Lig68] or Vervaat

[Ver79]). For the rest of the proof we focus on M̃+
n , the results for M̃−

n can be derived similarly by symmetry.

For any A > 0, denoting by M̃+ := sups∈[0,1] B̃s where
(
B̃
)
s∈[0,1]

is a standard Brownian bridge, we get

that for all θ ≥ 0:

E

[
exp

(
θ
M̃+

n√
n

)
I∣∣∣∣

M̃
+
n√
n

∣∣∣∣≤A

]
−→
n

E

[
exp(θM̃+)I|M̃+|≤A

]
≤ E

[
exp(θM̃+)

]
.

Letting A→ ∞, we then obtain by usual uniform integrability arguments that:

E

[
exp

(
θ
M̃+

n√
n

)]
−→
n

E

[
exp(θM̃+)

]
.

Therefore, there exists C := C(θ) ≥ 1 s.t. for all n ≥ 0,

E

[
exp

(
θ
M̃+

n√
n

)]
≤ CE

[
exp(θM̃+)

]
≤ C exp(cθ2),

where the last inequality simply follows from the exact expression of the joint law of the Brownian motion and
its running maximum, see e.g. [RY99]. �

Proof of Theorem 4.2. We have first, for even n:

E

[
ISn=0 gδn

(
εn

n∑

j=1

Yj exp(εnSj−1)
)]

= P[Sn = 0]E

[
gδn

(
εn

n∑

j=1

Yj exp(εnSj−1)
)
|Sn = 0

]

= P[Sn = 0]E

[
gδn

(
εn

n∑

j=1

Yj exp(εnS̃j−1)
)]
,

where (S̃j)j∈[[1,n]] stands for the random walk conditioned to be at 0 at time n. Then:

E

[
ISn=0 gδn

(
εn

n∑

j=1

Yj exp(εnSj−1)
)]

∼n
2√
2πn

E

[
1

2π

∫

R

ĝ(δnx) exp
(
− iεnx

n∑

j=1

Yj exp(εnS̃j−1)
)
dx

]
.

Taking the conditional expectation w.r.t. to (S̃j)j∈[[1,n]] and using the symmetry of the i.i.d random variables
(Yj)j∈[[1,n]], we derive:

E

[
ISn=0 gδn

(
εn

n∑

j=1

Yj exp(εnSj−1)
)]

∼n
2√
2πn

1

2π

∫

R

ĝ(δnx)E

[
n∏

j=1

cos
(
εnx exp(εnS̃j−1)

)
]
dx.

Let now M̃−
n , M̃

+
n denote the respective minimum and maximum values of the conditioned random walk (bridge)

(S̃j)j∈[[1,n]]. We can assume w.l.o.g. that |M̃+
n | ≤ cn

1
2 ln(n)

1
2 for a sufficiently large constant c. Indeed,

P[|M̃+
n | ≥ cn

1
2 ln(n)

1
2 ] =

E[I|M+
n |≥cn

1
2 ln(n)

1
2
ISn=0]

P[Sn = 0]

≤ Cn
1
2P[|M+

n | ≥ cn
1
2 ln(n)

1
2 ]

1
pP[Sn = 0]

1
q , p, q > 1,

1

p
+

1

q
= 1,
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using the lower bound of the control

C−1

√
n

≤ P[Sn = 0] =

(
n
n/2

)
1

2n
≤ C√

n
, C ≥ 1,

which follows from the Stirling formula, for the last inequality. The upper bound and the Bernstein inequality2

for the standard random walk on Z then yield:

P[|M̃+
n | ≥ cn

1
2 ln(n)

1
2 ] ≤ C exp

(
− c2

2p
ln(n)

)
n

1
2 (1− 1

q ) = Cn− c2

2p+
1
2 (1− 1

q ),

which again gives a negligible contribution w.r.t. to the scale n− 3
2 for c large enough.

Recalling as well that we have assumed ĝ to be compactly supported in [−1, 1], we get that we only have
to consider the integration variable x in the range |x| ≤ 1

δn
. Recall from the statement of Theorem 4.2 that

εn
δn

= n−γ for 0 < γ < 1
2 . Then, for all j ∈ [[1, n]], on the event {M̃+

n ≤ cn
1
2 ln(n)

1
2 }:

(4.12) εn|x| exp(εnS̃j−1) ≤
εn
δn

exp(εnS̃j−1) ≤ n−γ exp(εnM̃
+
n ) ≤ n−γ exp

(
ct

1
2

(
ln(n)

) 1
2

)
→n 0.

On the associated sets, we will therefore obtain that the arguments in the cosines are uniformly small. Precisely:

E

[
n∏

j=1

cos
(
εnxYj exp(εnS̃j−1)

)
I
M̃+

n ≤cn
1
2 ln(n)

1
2

]

= E

[
n∏

j=1

(
1− (εnx)

2 exp(2εnS̃j−1)

2
+O

(
(εnx)

4 exp(4εnS̃j−1)
))

× I
M̃+

n ≤cn
1
2 ln(n)

1
2

]

= E

[
exp

(
−

n∑

j=1

{ (εnx)2 exp(2εnS̃j−1)

2
+O

(
(εnx)

4 exp(4εnS̃j−1)
)})

× I
M̃+

n ≤cn
1
2 ln(n)

1
2

]
.

Hence,

1

2π

∫
ĝ(δnx)E

[
n∏

j=1

cos
(
εnxYj exp(εnS̃j−1)

)
]
dx

∼n
1

2π

∫
ĝ(δnx)E

[
exp

(
− x2

2
(Ãn(t) + R̃n(t))

)
I
M̃+

n ≤cn
1
2 ln(n)

1
2

]
dx =: In,

(4.13)

where,

Ãn(t) := ε2n

n∑

j=1

exp(2εnS̃j−1), |R̃n(t)| ≤ C
(
ε2n

n∑

j=1

exp(4εnS̃j−1)x
2ε2n

)
,(4.14)

where the constant C in absolute constant, which in particular does not depend on x, t or n. Now, we derive from

(4.12) that x2ε2n exp
(
2εnS̃j−1

)
≤ Cn−2γ exp

(
2ct

1
2 (ln(n))

1
2

)
→
n

0. Thus, |R̃n(t)| ≤ C
(
ε2n
∑n

j=1 exp(4εnS̃j−1)x
2ε2n

)
≤

CÃn(t)n
−2γ exp

(
2ct

1
2 (ln(n))

1
2

)
:= CÃn(t)βn, βn →n 0. We get that:

(4.15) In ∼n
1

2π

∫
ĝ(δnx)E

[
exp

(
− x2

2
Ãn(t)

)
I
M̃+

n ≤cn
1
2 ln(n)

1
2

]
dx.

Indeed, for all λ ∈ [0, 1],

(4.16) Ãn(t) + λR̃n(t) ≥ ε2n

n∑

j=1

exp(2εnS̃j−1)− |R̃n(t)| ≥
1

2
ε2n

n∑

j=1

exp(2εnS̃j−1) =
1

2
Ãn(t).

2We can also refer here to formula (2.16) of Theorem 2.13 in [Rev05] for a more precise result which is not needed for our
current purpose.
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so that:

|∆n(t, x)| :=
∣∣∣∣∣ exp

(
− x2

2
(Ãn(t) + R̃n(t))

)
− exp

(
− x2

2
Ãn(t)

)∣∣∣∣∣ ≤
∫ 1

0

exp

(
− x2

2
(Ãn(t) + λR̃n(t))

)
x2

2
|R̃n(t)|dλ,

≤
(4.16)

C exp

(
− x2

4
Ãn(t)

)
x2

2
Ãn(t)βn ≤ C exp

(
− x2

8
Ãn(t)

)
βn.

Thus, exploiting that ĝ is bounded we get:
∣∣∣
∫
ĝ(δnx)E

[
∆n(t, x)I

M̃+
n ≤cn

1
2 ln(n)

1
2

]
dx
∣∣∣ ≤ CβnE[|Ãn(t)|−1/2].(4.17)

We now state a useful Proposition, whose proof is postponed to the end of the section for the sake of clarity.

Proposition 4.7. For θ ∈ { 1
2 , 1} and n ≥ 1, there exists C ≥ 1 s.t.:

(4.18) E[|Ãn(t)|−θ] ≤ Ct−1.

Let us now prove that Proposition 4.7 and (4.17) yield (4.15).
We first split the term In introduced in (4.13) and equivalent to the r.h.s. of (4.15) into two parts.

I1n :=
1

2π

∫

|x|≤ 1√
δn

ĝ(δnx)E[exp(−
1

2
x2Ãn(t))I

M̃+
n ≤c(n ln(n))

1
2
]dx

∼n ĝ(0)
1

2π

∫

|x|≤ 1√
δn

E[exp(−1

2
x2Ãn(t))I

M̃+
n ≤c(n ln(n))

1
2
]dx =: Īn.

Now, from the Fubini theorem, we get:

Īn := ĝ(0)
1

2π

(
E

[{∫

R

exp(−1

2
x2Ãn(t))dx

}
I
M̃+

n ≤c(n ln(n))
1
2

]
−
∫

|x|> 1√
δn

E[exp(−1

2
x2Ãn(t))I

M̃+
n ≤c(n ln(n))

1
2
]dx

)

=

(
E[

1√
2πÃn(t)

I
M̃+

n ≤c(n ln(n))
1
2
]

)
+O

(
E[exp(−1

4

Ãn(t)

δn
)

1

Ãn(t)1/2
]

)

=

(
E[

1√
2πÃn(t)

I
M̃+

n ≤c(n ln(n))
1
2
]

)
+O

(
δ1/2n E[(Ãn(t))

−1]

)
.

From Propositions 4.1 and 4.7 and Fatou’s lemma, we obtain:

Īn ∼n E

[
1√

2πÃ(t)

]
= p2(t, 0) ∼t→+∞

π

t
,(4.19)

where Ã(t) =
∫ t

0 exp(2B̃
1
s )ds and p2(t, .) stands for the density of

∫ t

0 exp(B̃
1
s )dB

2
s at time t and point 0 (see

(4.2)). Indeed, conditionally to {(B̃1
s )s∈[0,t]} the law of

∫ t

0
exp(B̃1

s )dB
2
s is a centered Gaussian with variance

Ã(t) (Wiener integral). The last equivalence in (4.19) can be derived directly from Proposition 6.6 in [MY05].
Another derivation, exploiting the explicit large time behavior of the return probability on Aff(R) given in
Theorem 2.3, is proposed in equation (4.23) below. The term I1n ∼n Īn is the main contribution of In. The
other contribution is small and can be treated as the above remainder. Let us write:

|I2n| :=
1

2π

∫

|x|> 1√
δn

|ĝ(δnx)|E[exp(−
1

2
x2Ãn(t))I

M+
n ≤c(n ln(n))

1
2
]dx

≤ CE[exp(−1

4

Ãn(t)

δn
)

1

Ãn(t)1/2
] ≤ δ1/2n E[(Ãn(t))

−1].

This completes the proof of Theorem 4.2. �
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Proof of Proposition 4.7. We recall from Donati-Martin et al. [DMMY00] (see also Chaumont et al. [CHY01])
that for a standard Brownian bridge (bu)u∈[0,1] on [0, 1], it holds that for α ∈ R+,

(4.20) E

[(∫ 1

0

exp(αbu)du

)−1
]
= 1.

We now detail how the indicated convergence rate in time can be deduced for θ = 1 and the limit Brownian
bridge from (4.20). Recall that if (B̃u)u∈[0,t] is a standard Brownian bridge on [0, t], then

(B̃u)u∈[0,t]
(law)
=
(
(t− u)

∫ u

0

dBv

t− v

)
u∈[0,t]

,

where (Bu)u≥0 is a standard Brownian motion. Hence:

E

[(∫ t

0

exp(2B̃u)du

)−1
]

= E

[(∫ t

0

exp
(
2(t− u)

∫ u

0

dBv

t− v

)
du

)−1
]

= t−1E

[(∫ 1

0

exp
(
2t(1− u)

∫ ut

0

dBv

t− v

)
du

)−1
]
.(4.21)

A usual covariance computation then shows that
(
(1− u)

∫ ut

0
dBv

t−v

)
u∈[0,1]

(law)
= 1

t1/2

(
(1− u)

∫ u

0
dBv

1−v

)
u∈[0,1]

(law)
=

1
t1/2

(bu)u∈[0,1]. Thus, from (4.21) and (4.20):

(4.22) E

[(∫ t

0

exp(2B̃u)du

)−1
]
= t−1E

[(∫ 1

0

exp
(
2t1/2bu

)
du

)−1
]
= t−1.

On the other hand, recall that:

pAff(R)(t, e, e) = p(
B1

t ,
∫

t
0
exp(B1

s)dB
2
s

)(0, 0) = pB1
t
(0)p∫ t

0
exp(B1

s)dB
2
s
(0|B1

t = 0)

=
1√
2πt

E

[(
2π

∫ t

0

exp(2B1
s )ds

)−1/2 ∣∣∣B1
t = 0

]
.

Hence, the asymptotic behavior of the return density for the Brownian motion on the group given in Theorem
2.3 (see also (4.2)) yields:

(4.23) E

[(
2π

∫ t

0

exp(2B̃1
u)du

)−1/2
]
∼t→+∞

π

t
.

Let us now detail how the statement (4.18) of Proposition 4.7 can be derived from the previous controls (4.23),
(4.22) on the continuous objects through convergence in law arguments. Starting from our simple random walk

S0 = 0, Sk =
∑k

j=1Xj, k ≥ 1 we first introduce for any fixed n ∈ N the random polygonal function

xn(u) := S⌊nu⌋ + (nu− ⌊nu⌋)X⌊nu⌋, u ∈ [0, 1],

where we recall that ⌊·⌋ stands for the integer part. Introducing the rescaled conditioned process
(
θn(u)

)
u∈[0,1]

:=
1√
n

(
xn(u)|Sn = 0

)
u∈[0,1]

, we derive from Theorem 2 in [Ver79] that
(
θn(u)

)
u∈[0,1]

⇒
(
bu
)
u∈[0,1]

, standard

Brownian bridge on [0, 1] with canonical measure µ on C([0, 1]). Considering now the stepwise constant ap-
proximation:

x̃n(u) := S⌊nu⌋, u ∈ [0, 1],

and its associated rescaled conditioned process
(
θ̃n(u)

)
u∈[0,1]

:= 1√
n

(
x̃n(u)|Sn = 0

)
u∈[0,1]

, it is easily seen that

the corresponding measures µ̃n on D([0, 1]) converge weakly in D[0, 1] to the distribution µ (canonical measure

of the Brownian bridge on C([0, 1])). From the definition of Ãn(t) in (4.14), recalling a well that εn =
(
t
n

)1/2
,

we thus rewrite:

Ãn(t) := ε2n

n∑

j=1

exp(2εnS̃j−1) =
t

n

n∑

j=1

exp

(
2t1/2

1√
n
x̃n
( j
n

))
= t

∫ 1

0

exp
(
2t1/2θ̃n(u)

)
du.



THE BROWNIAN MOTION ON Aff(R) AND QUASI-LOCAL THEOREMS 17

Hence, from the previous convergence in law Ãn(t)
(law)→ t

∫ 1

0 exp(2t1/2bu)du
(law)
=
∫ t

0 exp(2B̃u)du and for a given

A > 0 and θ ∈ { 1
2 , 1}:

E[(Ãn(t))
−θIA−1≤Ãn(t)≤A] −→n E[(Ãt)

−θIA−1≤Ã(t)≤A].

The statement (4.18) now follows from the above equation and the previously established estimates (4.23),

(4.22), noting as well that, since Ãn(t)
−θ ≤ (t exp(2t1/2

M−
n√
n
))−θ, Lemma 4.6 gives that the sequence

(
Ãn(t)

−θ
)
n≥0

is bounded in L2(P) and therefore uniformly integrable. The proof is complete. �

Remark 4.1 (Balance of n and t for the approximation). Observe from the previous proof of Theorem 4.2
that one can actually consider a the same time n and t going to infinity with a suitable polynomial dependence
to get a convergent approximation.

4.3. The Mixed Case. We consider in this Section that the random variables (Yi)i∈N in the definition of the

random walk approximation (3.2) are i.i.d. and have common standard Gaussian law, i.e. Yi
(law)
= N (0, 1).

This modification is precisely enough to restore the “expected” local limit theorem.

Theorem 4.8. For the previously described random walk, taking εn =
(
t
n

) 1
2 and for n ∈ 2N:

P[aεn = 1, bεn ∈ [0, dx)] = P[Sn = 0, εn

n∑

j=1

Yj exp(εnSj−1) ∈ [0, dx)] ∼n 2εn · pAff(R)(t, e, e)dx.

We indeed have a result similar to Theorem 4.2, except that no integration with respect to the previous
mollifyer gδn is needed.

Proof. Note that the random variable bε(n) now has a conditional Gaussian density (for fixed trajectory
(Sk)k∈N). We thus readily get:

P[aεn = 1, bεn ∈ [0, dx)] ∼n
2√
2πn

E


 1√

2πε2n
∑n

j=1 exp(2εnSj−1)

∣∣∣∣∣∣
Sn = 0


 dx.

Proposition 4.7 remains valid taking R̃n = 0 in the definition (4.16). With the notations used therein, this

precisely gives Ãn(t) = ε2n
∑n

j=1 exp(2εnSj−1). We then derive the statement from Propositions 4.1, 4.7 and
Fatou’s lemma.

�
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