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tion to the dual AdS gravity. Namely, we are interested in computing the spherical confor-

mal blocks without the previously imposed restrictions on the conformal dimensions of the

internal channels. The duality is realised as an equality of the so-called heavy-light limit of

the n-point conformal block and the action of n−2 particles propagating in some AdS-like

background with either a conical singularity or a BTZ black hole. We describe a procedure
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1 Introduction

Computing correlators in conformal field theory (CFT) requires knowing the conformal

blocks [1]. They define the contributions of particular sets of primary fields and their de-

scendants to the intermediate channels when the operator product expansion (insertion of

a complete set of states) is applied. Although symmetry algebras in principle fix the coef-

ficients of the series expansions for these functions, conformal blocks are known explicitly

only in particular cases. The AdS/CFT duality reveals an interesting interpretation of con-

formal blocks [2]. Basically, this interpretation is available in a semiclassical treatment (but

see, e.g. [3, 4]). Nevertheless, despite a certain progress in understanding the dual descrip-

tion of conformal blocks, there are still some open questions, one of which we address here.

We focus on AdS3/CFT2 in the case of a pure Virasoro symmetry. The main issue

is to define bulk degrees of freedom appropriate to the observables of the boundary CFT.

According to the Brown-Henneaux relation c ∼ 1/GN , we are dealing with the large cen-

tral charge CFT limit and the classical gravity in the bulk [5]. The large central charge

behaviour of the conformal blocks was first considered in the context of their analytic

properties [6]. It was noticed that the classical limit of the conformal block has an in-

teresting exponentiation property: it becomes an exponent of a function depending on

appropriately rescaled conformal dimensions (called classical). This function is known as

the classical conformal block. To be interpreted as a classical action, a certain linearisation

procedure [2, 7] must be applied to the classical block. The obtained object is called a

heavy-light block. An important statement from the previous studies [8–17] implies that

the heavy-light block equals to the classical action up to some easily tractable terms. To
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verify this statement, some methods of calculating the CFT counterpart of the duality were

developed [18–20]. In this paper, we discuss the CFT on a sphere, but the duality can also

be extended to conformal blocks on higher-genus surfaces [21–23].

We consider the AdS/CFT correspondence in the example of the 5-point heavy-light

block. The dual description [24–26] for this object is as following: two heavy fields form

the BTZ or conical singularity [27], and three remaining light fields correspond to three

particles propagating in this background (see figure 2). Such an interpretation prescribes

that two dimensions of the heavy fields are equal. Calculating the minimal action of the

dual configuration involves solving a variation problem. The solution can be found exactly

when one of light external particles is absent and the configuration hence corresponds to a

4-point heavy-light block. The problem can then be solved using perturbation theory with

the third particle mass regarded as a small parameter. But one additional constraint on the

internal dimensions was imposed by this method. This approach led to the configuration

with equal dimensions of the internal fields. This point was not obvious, because there

are no physical reasons for this constraint. Hence, there is a question about principal

possibility to solve this problem with unequal internal dimensions.

In this note, we compute the action corresponding to the 5-point heavy-light block.

We use an approach that allows analysing the bulk configuration perturbatively without

the previously imposed restriction on the internal channels. We compare the obtained

action with the boundary CFT calculation and find agreement. The CFT side of the

problem requires an effective method for computing conformal block coefficients. The

most convenient method for our purpose is c-recursion. It was first developed for the 4-

point conformal block by Zamolodchikov [28] in the form of the pole decomposition over the

c-plane with the residues proportional to conformal blocks with shifted parameters. This

property leads to the recursion procedure of calculating the coefficients of conformal blocks

level by level. This idea was recently extended to n-point spherical and toric conformal

blocks [29]. We apply these results here to compute the 5-point block.

2 Conformal side of conformal blocks

We are interested in the conformal blocks of the correlation function with two heavy asymp-

totic states. Using projective invariance to fix z5 = ∞, z4 = 1, and z1 = 0 we obtain the

block depending on two modules z2 and z3. The corresponding diagram is depicted on

the figure 1. Introducing new variables q2 = z3 and q1 = z2/z3 and fixing intermediate

channels, the conformal block

F (∆1,2,3,4,5, ∆̃1,2|q1, q2) =
∞∑

r,s=0

Fr,s q
r
1 q

s
2 , (2.1)

with the expansion coefficients:

Fr,s =
∑

r=|k|=|l|

∑

s=|m|=|n|

M−1
k,l (∆̃1)M−1

m,n(∆̃2)〈∆1|O2L−k|∆̃1〉

×〈∆̃1|LlO3L−m|∆̃2〉 〈∆̃2|LnOh|∆h〉 . (2.2)

– 2 –
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0,∆1

z2,∆2 z3,∆3 1,∆h

∞,∆h

∆̃1 ∆̃2

Figure 1. 5-point conformal block.

HereMm,n(∆̃1,2) are Gram matrices elements for the corresponding Virasoro states, L−n =

Lik
−k . . . L

i1
−1 are elements of the universal enveloping of Virasoro algebra with |n| = i1 +

. . .+ kik and Lm = L†
−m.

2.1 Recursive representation

We provide here the recursive representation of the 5-point conformal block. The most

efficient way of computing the coefficients of the block is so-called q-recursion (see [30]),

but for our purposes it is more convenient to use c-recursion because it is more suitable for

comparison with the bulk computation.

Let us shortly review the recursive representation of the 4-point block. Calculations

based on the definition quickly becomes tedious with the increasing of the level. In [28]

the method based on the analysis of the analytical properties of 4-point blocks has been

proposed. Following [31] it was noticed that conformal blocks, considered as function of c,

have only simple poles in special points:

cr,s(∆̃) = 13 + 6(b2r,s(∆̃) + b−2
r,s (∆̃)),

b2r,s(∆̃) =
1

1− r2

(
2∆̃ + rs− 1 +

√
(r − s)2 + 4(rs− 1)∆̃ + 4∆̃2

)
,

(2.3)

where ∆̃ is the intermediate dimension. These poles are related to degenerate values of the

intermediate conformal dimension. If the fusion rules for the external fields are satisfied

the conformal block is regular. Consequently, the residues in points c = cr,s must contain

so-called fusion polynomials which have zeros cancelling zeros of the denominator and can

be derived from this requirement.

This idea can be generalized on an arbitrary number of intermediate channels [29]. Here

we provide necessary formulas for computing the 5-point conformal block. The conformal

block has poles in c = cr,s(∆̃1) and c = cr,s(∆̃2) (2.3) related to degenerate values in the

first and in the second intermediate channels

Fk,m = Gk,m +
∑

r≥2,s≥1

V
(1)
r,s

c− cr,s(∆̃1)
+

∑

r≥2,s≥1

V
(2)
r,s

c− cr,s(∆̃2)
, (2.4)

where V
(1)
r,s and V

(2)
r,s are the corresponding residues and Gk,m gives the asymptotics of Fk,m

as c → ∞. The residues are given explicitly by
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V (1)
r,s = −∂cr,s(∆̃1)

∂∆̃1

Acrs(∆̃1)
rs P rs

crs(∆̃1)

[
∆1

∆2

]
P rs

crs(∆̃1)

[
∆̃2

∆3

]
Fk−rs,m(∆̃1→∆̃1+rs,c→crs(∆̃1)), (2.5)

V (2)
r,s = −∂cr,s(∆̃2)

∂∆̃2

Acrs(∆̃2)
rs P rs

crs(∆̃2)

[
∆4

∆5

]
P rs

crs(∆̃2)

[
∆3

∆̃1

]
Fk,m−rs(∆̃2→∆̃2+rs,c→crs(∆̃2)), (2.6)

where A
crs(∆)
rs are the norms of the degenerated vectors:

Acrs(∆)
rs =

1

2

r∏

m=1−r

s∏

n=1−s

(mbrs(∆) + nbrs(∆)−1)−1, (m,n) 6= (0, 0), (r, s) , (2.7)

and P rs
crs(∆)

[
∆i

∆j

]
are the fusion polynomials:

P rs
crs(∆)

[
∆i

∆j

]
=

r−1∏

p=1−r step 2

s−1∏

q=1−s step 2

λi
rs(∆) + λj

rs(∆) + pbrs(∆) + qbrs(∆)−1

2

×λi
rs(∆)− λj

rs(∆) + pbrs(∆) + qbrs(∆)−1

2
, (2.8)

where

λi
rs(∆) =

√
(brs(∆) + brs(∆)−1)2 − 4∆i

4
. (2.9)

The last ingredient is Gk,m [25]:

Gk,m =
(∆̃1 +∆2 −∆1)k (∆̃2 +∆4 −∆5)m

(2∆̃1)k (2∆̃2)m
τk,m , (2.10)

where the function τk,m is given by

τk,m =

min[k,m]∑

p=0

(−1)p
(−2∆̃2 −m+ 1)p(∆̃2 +∆3 − ∆̃1)m−p(∆̃1 +∆3 − ∆̃2 + p−m)k−p

p!(k − p)!(m− p)!
.

(2.11)

These formulas provide an efficient way to compute the conformal block coefficients.

2.2 Classical block

Exponentiation of the conformal block in the semiclassical limit when all dimensions are

heavy was firstly observed in [1, 6] and has natural physical interpretation in the frame-

work of Liouville field theory consideration. The deep relation between AdS3 physics and

Liouville theory explains our interest to the classical blocks (see, e.g. [32–34]). Our study

of conformal blocks in this context is motivated by the goal to better understand this

connection.

From the quantum block we obtain the classical block taking the c → ∞ limit:

fcl(ǫ1,2,3,ǫh,ǫ̃1,2|q1,q2)=− lim
c→∞

6

c
logF

(
∆1,2,3→

c

6
ǫ1,2,3,∆h→

c

6
ǫh,∆̃1,2→

c

6
ǫ̃1,2,c|q1,q2

)
.

(2.12)

Let us notice that the existence of this limit imposes non-trivial constrains on the coeffi-

cients of the conformal blocks.
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2.3 Heavy-light block

Here we define and calculate the heavy-light block. Firstly, we notice that the introduced

notation can be confusing because the dimensions of the fields are usually classified ac-

cording their central charge scaling properties. Now we introduce a smallness parameter δ,

which corresponds to the weakness of the gravity interactions between two particles. We

call the first coefficient of the expansion of the classical block in δ the heavy-light block.

Namely, we change

ǫ1,2,3 → δǫ1,2,3, ǫ̃1,2 → δǫ̃1,2, ǫh → ǫh , (2.13)

and perform an expansion of the classical block in this parameter:

fcl = δfhl +O(δ2) . (2.14)

This procedure allows to take into account the fact that two fields are “heavy” in the sense

of the gravitational interaction. In other words, this takes into account the fact that two

fields form the background and all others are “light” so that back-reaction is neglected.

In order to compare with the bulk computation we perform the following substitutions

ǫh =
1− α2

4
, ǫ̃2 = ǫ̃1 + µǫ3, ǫ2 = ǫ1 . (2.15)

This yields the following expansion

fhl(ǫ1, ǫ1, ν, α, ǫ̃1, t|q1, q2) = −
∑

m=0

m∑

n=0

gmn(ǫ1, ǫ̃1)ǫ
m
3 µn . (2.16)

Below the explicit results for the first three coefficients are presented (up to the fourth

order on q1 and q2):

g00 = ǫ1
q21q

2
2

12

(
1−α2

)
+ǫ̃1

(
1

2
q1q2+

5

24
q21q

2
2−

1

48
α2q21q

2
2

)
, (2.17)

g10 =
q1
2
+
q2
2
+
q21
8
− q1q2

4
+
7q22
24

+
q31
24

+
q21q2
8

− q1q
2
2

24
+
5q32
24

+
q41
64

+
q31q2
16

− 11q21q
2
2

96
− q1q

3
2

48
+
469q42
2880

+α2

(
− q22

6
+
q1q

2
2

6
− q21q

2
2

24
− q32

6
+
q1q

3
2

12
− 11

72
q42

)
+

1

180
α4q42 , (2.18)

g11 = −q1
2
+
q2
2
− q21

8
+
q1q2
4

+
5q22
24

− q31
24

− q21q2
8

+
q1q

2
2

24
+
q32
8
− q41
64

− q31q2
16

+
11q21q

2
2

96
+
q1q

3
2

48
+
251q42
2880

+α2

(
− q22
12

+
q1q

2
2

12
− q21q

2
2

48
− q32
12

+
q1q

3
2

24
− 11q42

144

)
+
7α4q42
1440

. (2.19)

Let us notice that the heavy-light block depends linearly on the light dimensions. This

observation allows to think of it as describing a solution of some classical problem. In the

next section we will get an appropriate action.
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3 Bulk treatment

Here we consider a classical gravity of probe particles in the AdS background with an angle

defect. We provide necessary formulas in a very brief form (refer to [7, 24] for more details).

We have a triple of coordinates (t, ρ, φ) and the interval is

ds2 =
α2

cos2 ρ

(
− dt2 + sin2 ρdφ2 +

1

α2
dρ2

)
, (3.1)

where α corresponds to the conical defect. One can find the geodesic length for one particle

in this background:

S = ln

√
η

√
1 + η +

√
1− s2η

∣∣∣∣∣

η
′′

η
′

, (3.2)

with η′ and η′′ being initial and final radial coordinates of the geodesic. Angular coordinate

φ is cyclic and, as a consequence, we have conserved angular momenta. Here we have

introduced the following notation

s =
|pφ|
α

. (3.3)

The main hypothesis is the equivalence between the heavy-light block and the classical

action of 5-line configuration

fhl ∼ Scl , (3.4)

where Scl is the sum of the geodesic lengths with the particle masses being identified with

the block scaled dimension parameters.1

3.1 Five-line configuration

The goal of this section is to find the 5-particle geodesic length for the configuration depicted

on the figure 2. We denote by Si and Sĩ the contribution of each particle to the total action

S = ǫ1S1 + ǫ2S2 + ǫ3S3 + ǫ̃1S1̃ + ǫ̃2S2̃ . (3.5)

We minimize (3.5) and obtain in particular:

(
ǫ̃1p̃

1
µ + ǫ1p

1
µ + ǫ2p

2
µ

) ∣∣∣
A
= 0 ,

(
ǫ̃1p̃

1
µ + ǫ̃2p̃

2
µ + ǫ3p

3
µ

) ∣∣∣
B
= 0 , (3.6)

arising as a result of the variation with respect to the vertexes positions. The angular

momenta conservation laws imply

s̃2 = 0 , ǫ3s3 − ǫ̃1s̃1 = 0 , ǫ1s1 − ǫ2s2 − ǫ̃1s̃1 = 0 , (3.7)

where we suppose that proper time is growing with moving from the vertexes and it allows

us to fix signs. We can resolve the radial equilibrium conditions with respect to the radial

1The equality is achieved with an appropriate identification between q1,2 and the geodesic configuration

boundary points. The equivalence of the auxiliary monodromy problem on the boundary and the worldline

action computation problem in the bulk has been proven in [17].

– 6 –
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1

2

3
2̃

1̃

A

B

w3

w2

0

Figure 2. Five-lines geodesic configuration at fixed time disk related to the 5-pt conformal block.

positions of the vertexes:

ηA =
1− σ2

s21 + s22 − 2s1s2σ
, σ =

ǫ21 + ǫ22 − ǫ̃21
2ǫ1ǫ2

, (3.8)

ηB = −(ǫ3 − ǫ̃1 − ǫ̃2)(ǫ3 + ǫ̃1 − ǫ̃1)(ǫ3 − ǫ̃1 + ǫ̃2)(ǫ3 + ǫ̃1 + ǫ̃2)

4 ǫ23 ǫ̃
2
2 s

2
3

. (3.9)

The equations (3.7), (3.8), (3.9) can be resolved for s1 and s3. We want to relate these two

momenta with angular positions of two particles w2 and w3 (the first coordinate is fixed

as reference point due to the axial symmetry). We can integrate angular coordinate along

the path and express the final angular position through the integration constants and the

coordinates of the vertexes:

eiαw2 =

(√
1−s21ηA−is1

√
1+ηA

)(√
1−s22ηA−is2

√
1+ηA

)

(1−is1)(1−is2)
, (3.10)

eiαw3 =

(√
1−s23ηB−is3

√
1+ηB

)(√
1−s̃21ηB−is̃1

√
1+ηB

)(√
1−s21ηA−is1

√
1+ηA

)

(1−is3)
(√

1−s̃21ηA−is̃1
√
1+ηA

)
(1−is1)

. (3.11)

The system of equations (3.7)–(3.11) completely defines the momenta and the radial coordi-

nates of the vertexes as functions of the rescaled dimensions and two boundary coordinates.

Partial lengths are following:

S1 = − ln

√
ηA√

1 + ηA +
√
1− s21ηA

− ln 2Λ , (3.12)

S2 = − ln

√
ηA√

1 + ηA +
√
1− s22ηA

− ln 2Λ , (3.13)

S3 = − ln

√
ηB√

1 + ηB +
√
1− s23ηB

− ln 2Λ , (3.14)

– 7 –
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S1̃ = ln

√
ηA√

1 + ηA +
√
1− (s̃1)2ηA

− ln

√
ηB√

1 + ηB +
√
1− (s̃1)2ηB

, (3.15)

S2̃ = ln

√
ηB

1 +
√
1 + ηB

, (3.16)

where we have introduced cutoff Λ.

3.2 Perturbative solution

We set ǫ1 = ǫ2. The case of different values of external dimensions can be considered

similarly, see appendix A. We start from one in some sense trivial solution of angular

equations. Setting {
ǫ3 = 0 ,

ǫ̃1 = ǫ̃2 ,
(3.17)

one obtains

s̃1 = s̃2 = 0 , (3.18)

so that the four-point heavy-light block corresponds to the following action [10]:

S(ǫ3 = 0, ǫ̃1 = ǫ̃2) = −2ǫ1 ln sin θ2 + ǫ̃1 ln tan
θ2
2
, (3.19)

where θ2,3 =
αw2,3

2 . In order to obtain the 5-pt block, we have to take into account an

additional external field. Following [24], the perturbed solution can be found with the

assumptions: {
ν = ǫ3

ǫ̃1
≪ 1 ,

ǫ̃1 = ǫ̃2 .
(3.20)

The calculation in this setting leads to the action, which corresponds to the 5-point heavy-

light block with two equal intermediate dimensions:

S(ǫ3 6= 0, ǫ̃1 = ǫ̃2) = −2ǫ1 ln sin θ2 + ǫ̃1 ln tan
θ2
2

− ǫ3 ln sin(2θ3 − θ2) +O(ǫ23) . (3.21)

We consider now the case, where ǫ̃1 6= ǫ̃2. Naively, such an assumption leads to the

divergence of the radial coordinate of the B-vertex (see eq.(3.9)). However, this problem

can be solved in the following way. The character of the divergence implies that the

difference between the two internal dimensions must be proportional to ν. We introduce

a new parameter µ in such a way that the previous case (3.20) is reproduced when this

parameter is equal to zero, and vice versa, if ν = 0 we must obtain (3.17) because the

internal dimensions are related, in fact, to one field. As a result, we can express the

conditions in the following form:

{
ν = ǫ3

ǫ̃1
≪ 1 ,

ǫ̃2 = ǫ̃1(1 + νµ) .
(3.22)

– 8 –
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With these assumptions we obtain the following angular momenta

s1=−cotθ2−ν
ǫ̃1
2ǫ1

cot(2θ3−θ2)+
ǫ̃1
2ǫ1

cscθ2+µν
ǫ̃1
2ǫ1

csc(2θ3−θ2), (3.23)

s2=−cotθ2+ν
ǫ̃1
2ǫ1

cot(2θ3−θ2)+
ǫ̃1
2ǫ1

cscθ2−µν
ǫ̃1
2ǫ1

csc(2θ3−θ2), (3.24)

s3=−cot(2θ3−θ2)+
µ

sin(2θ3−θ2)
− ν

4

(3+cos(4θ3−2θ2)−2cos(2θ3−2θ2)−2cos2θ3)

sin(2θ3−θ2)3

−µν

4

(6cosθ2+cos(4θ3−θ2)+cos(4θ3−3θ2)−8cos(2θ3−θ2))

sin(2θ3−θ2)3
, (3.25)

s̃1=−cot(2θ3−θ2)+µνcsc(2θ3−θ2), (3.26)

and the following positions of vertexes:

ηA =
4ǫ1 − ǫ̃21

(ǫ̃1 csc θ2 − 2ǫ1 cot θ2)2
, (3.27)

ηB = tan(2θ3 − θ2)
2 + 2µ

tan(2θ3 − θ2)
2

cos(2θ3 − θ2)
− ν

1− 2 cos θ2 sec(2θ3 − θ2) + sec(2θ3 − θ2)
3

cos(2θ3 − θ2)

+ µν
(
1− 3 sec(2θ3 − θ2)

4 + 2 cos θ2 sec(2θ3 − θ2)(2 sec(2θ3 − θ2)
2 − 1)

)
. (3.28)

Now we substitute the obtained momenta and the vertexes positions in the expression for

the geodesic lengths:

S1 = − log(sin θ2)− ν cot(2θ3 − θ2) sin θ2 + µν
sin θ2

sin(2θ3 − θ2)
, (3.29)

S2 = − log(sin θ2) + ν cot(2θ3 − θ2) sin θ2 − µν
sin θ2

sin(2θ3 − θ2)
, (3.30)

S3 = − log(− sin(2θ3 − θ2)) +O(ν) , (3.31)

S1̃ = log

(
tan

θ2
2

)
− log

(
tan

(
θ3 −

θ2
2

))
+ ν

1

4 sin(2θ3 − θ2)2
×

×
(
3 + cos(4θ3 − 2θ2)− 4 cos θ2 cos(2θ3 − θ2) + 4µ(cos θ2 − cos(2θ3 − θ2))

)
, (3.32)

S2̃ = log

(
tan

(
θ3 −

θ2
2

))
− ν

1

4 sin(2θ3 − θ2)2
×

×
(
3 + cos(4θ3 − 2θ2)− 4 cos θ2 cos(2θ3 − θ2) + 4µ(cos θ2 − cos(2θ3 − θ2))

)
, (3.33)

We now have assembled all the ingredients that we need in order to write down the total

action. Using

θ2 =
iα

2
log(1− q1q2) , θ3 =

iα

2
log(1− q2) (3.34)

and expanding the total geodesic length up to the first order in ǫ3, we get

S = −2ǫ1 logsinh

(
α

2
log(1−q1q2)

)
+ǫ̃1 logtanh

(
α

4
log(1−q1q2)

)
(3.35)

−ǫ3 logsinh

(
α
2log(1−q2)−log(1−q1q2)

2

)
+ǫ3µlogtanh

(
α
2log(1−q2)−log(1−q1q2)

4

)
.

– 9 –
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The corresponding result for the heavy-light block in the same approximation is

fhl = −S−ǫ3 log

(
− αq2
1−q2

)
+ǫ3µlog

(
−αq2

2

)
+ǫ̃1 log

(
−αq1q2

4

)
−2ǫ1 log

(
−αq1q2

2

)

+ǫ1 log(1−q1q2). (3.36)

The terms in the right hand side are connected with the standard conformal block prefactor

and the prefactor, related to the conformal transformation of the fields (3.34).

4 Conclusion

We have considered the AdS/CFT correspondence between 5-point heavy-light classical

conformal blocks in the boundary CFT with a pure Virasoro algebra and classical worldline

actions in the bulk. We calculated the action for the 5-line geodesic configuration, and after

the conformal transformation (3.34), we obtained the equivalence between action (3.35) and

the 5-point heavy-light block (2.16)–(2.19) computed using c-recursion formulas (2.4). We

thus demonstrated that there exists a dual interpretation of the 5-point heavy-light block

with unequal internal dimensions.

It is interesting to study possible generalizations of the holographic interpretation

of conformal blocks on a sphere and on higher-genus surfaces to the case of the bound-

ary CFT with an extended symmetry algebra and, in particular, to the case of W- and

super-symmetry. Another interesting question is to investigate the 1/c corrections for the

conformal blocks in the context of the correspondence.
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A Case of unequal external dimensions

In order to consider the case of unequal external dimensions we introduce the additional

small parameter λ

ǫ2=ǫ1+λ. (A.1)

Using similar perturbation approach we get the following correction

Sλ = λ
e3
ǫ̃1

coth

(
α
2log(1−q2)−log(1−q1q2)

2

)
sinh

(
α

2
log(1−q1q2)

)

+λ
e1
ǫ̃1

(
8−4αq1q2+α2q21q

2
2

4(αq1q2−2)
+
sinh(αlog(1−q2))+sinh(α(log(1−q2)−log(1−q1q2)))

2sinh

(
α2log(1−q2)−log(1−q1q2)

2

)
)
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−λlog

(
sinh

(
α

2
log(1−q1q2)

))
+λ

e3µ

ǫ̃1

sinh

(
α
2 log(1−q2q2)

)

sinh

(
α2log(1−q2)−log(1−q1q2)

2

) , (A.2)

to the total action

Stot=S+Sλ+O(λ2). (A.3)

In the same setup we obtain the following correction to the heavy-light block (up to the

fourth order in q1 and q2)

fhl,λ = λ

(
− q1q2

2
− 7q21q

2
2

24
+
α2q21q

2
2

24

)
(A.4)

+λ
ǫ3
ǫ̃1

(
− q1

2
− q21

4
− q31

8
− q41
16

+
q1q2
4

+
q1q

2
2

24
− q31q2

16
+
5q21q

2
2

48
+
q1q

3
2

48
−α2 q1q

2
2

6
+α2 q

2
1q

2
2

12
−α2 q1q

3
2

12

)

+λ
ǫ3µ

ǫ̃1

(
q1
2
+
q21
4
+
q31
8
+
q41
16

− q1q2
4

− q1q
2
2

24
+
q31q2
16

− 5q21q
2
2

48
− q1q

3
2

48
−α2 q1q

2
2

12
+α2 q

2
1q

2
2

24
−α2 q1q

3
2

24

)
,

so that the total heavy-light block up to the first order in λ is

fhl,tot=fhl+fhl,λ . (A.5)

Taking into account conformal pre-factors final correspondence has the following form:

fhl,tot = −Stot−ǫ3 log

(
− αq2
1−q2

)
+ǫ3µlog

(
−αq2

2

)
+ǫ̃1 log

(
−αq1q2

4

)
−2ǫ1 log

(
−αq1q2

2

)

+ǫ1 log(1−q1q2)−λlog

(
α

2

q1q2
1−q1q2

)
. (A.6)
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