Universal cohomological expressions for
singularities in families of genus 0 stable maps

Maxim Kazarian! Sergey Lando! Dimitri Zvonkine?

Abstract

We consider families of curve-to-curve maps that have no singular-
ities except those of genus 0 stable maps and that satisfy a versality
condition at each singularity. We provide a universal expression for
the cohomology class Poincaré dual to the locus of any given singu-
larity. Our expressions hold for any family of curve-to-curve maps
satisfying the above properties.

1 Introduction

1.1 A family of curve-to-curve maps

A family of curve-to-curve maps is a triple of smooth complex manifolds X,
Y and B and a commutative diagram

x-L.
N (1)
B
satisfying the following properties.

1. The map p is a flat family of reduced not necessarily compact nodal
curves.
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2. The map ¢ is a flat family of reduced not necessarily compact smooth
curves.

3. The map f is proper.

In Section 1.4 we will introduce a list of allowed singularities for the
map f. These will be precisely the singularities of genus 0 stable maps. For
each singularity we will also require a versal deformation property: infor-
mally, the map f should locally present all possible deformations of each
singularity. Assuming that f has allowed singularities only and satisfies the
versal deformation property, we will compute the cohomology class of every
singularity locus.

The forthcoming paper [4] extends the results of the present one to the
study of multisingularities.

1.2 Thom polynomials: a motivation

Let f: X — Y be a sufficiently generic map between two complex compact
manifolds. Denote by

o(f) = e(FH(TY))fe(T.X) = 1+ er(f) + ealf) + - .,

the full Chern class of the map f, ¢;(f) € H*(X).

Given a singularity type «, one can consider the locus of points z € X
such that f has a singularity of type o at x. This locus is a submanifold,
and we will denote the Poincaré dual cohomology class of its closure by [a] €
H*(X,Z).

In [8] Thom proved that for every singularity type o and for every generic
map f we have [o] = Py(c1(f), ca(f),...), where Py(cy,co,...) is a polyno-
mial independent of f.

For instance, we have [A;] = ¢;(f), thus P4, = ¢;.

The polynomials P, are called Thom polynomsials. It is, in general, quite
hard to compute them (Thom’s proof is not constructive); however comput-
ing even a single Thom polynomial may provide a solution for many seemingly
unrelated problems of enumerative geometry.

This paper grew out of an attempt to “apply” Thom’s theorem to the
map f of Eq. (2), a case to which it is not applicable since the genericity
condition for f brakes down due to existence of nonisolated singularities.

In Section 1.4 we describe all singularity types that can appear in a family
of genus 0 stable maps. In Section 1.7 we introduce a family of cohomology
classes (larger than just the classes ¢;(f)) that we will call basic classes.
Then we prove that the class determined by every singularity type has a



universal polynomial expression in terms of the basic classes, independent of
the family f. Moreover, we give a simple way to compute these expressions.

1.3 Local models

Consider two families of curve-to-curve maps.

/
Xi» X' —— Y

N S AN ?
B B

Letye Yand b=g¢q(y) € B; ¥y € Y and V' = ¢'(v') € B'. Let X; be a
closed subset of f~!(y) and X a closed subset of (f')~'(y'). In practice, X,
will be either a point or a connected component of f~!(y) contracted by f.

Definition 1.1 We say that the family (X', Y", B') is a local model for the
family (X,Y, B) if there exist three holomorphic submersions px : X — X',
oy : Y = Y' ¢ : B — B defined in a neighborhood of X,, vy, and b
respectively, identifying X, with X and commuting with the maps p, ¢, f.

1.4 Singularity types

Let x € X be any point, b = p(z) € B and y = f(z) € Y its images in
B and Y, respectively, and X, the fiber of p through z. We will describe
several types of singularities of f at x, namely, ramification points, nodes,
and contracted components. These are the only singularities that can arise
in families of genus 0 stable maps. A map C — CP! of a genus 0 nodal
curve C' to CP! is said to be stable if its automorphism group is finite. In
other words, a map is stable if each irreducible component of the domain C
that is contracted to a point has at least three points of intersection with
other irreducible components of C'.

For each singularity type we will define a versality condition using local
models. Both points and nodes are isolated singularities, while contracted



components are nonisolated ones. Universal polynomials for isolated singu-
larities in the absence of non-isolated ones were found in [2, 3]. They de-
termine the singularity classes modulo cohomology classes supported on the
subvariety in X consisting of contracted components. Including contracted
components completes the computation of universal polynomials for genus 0
curves.

1.4.1 Ramification points

Definition 1.2 We say that f presents a singularity of type Ay at x if x is
a smooth point of X; and f|x, has a ramification of order £ + 1 at z.

The local model for the A singularity is given by the family

U(ua’Ylv < 77]971) - uk+1 + /Ylukil + o Y1 U

Here:

(V1 -+, 76—1) is a system of coordinates in B,
(71561, u) a system of coordinates in X',
(V1.3 76-1,v) & system of coordinates in Y.

Definition 1.3 Let 2 € X be a point at which f presents an Ay singularity.
We say that the family (XY, B) is versal at z if it is locally modeled at the
neighborhood of z by the family (X', Y, B") above.

1.4.2 Nodes

Definition 1.4 We say that f presents a singularity of type Iy, j, at x if =
is a node of X, and f has ramifications of orders k; and ks on the branches
of X, at x.

A local model for the singularity I, 5, is given by the family

ﬁ = U1Ug,
v=ul 4 %l)u’flfl I %8)71@“ +ub? 4+ 7%2)u’§zfl 4ot v,gilluz.
Here:
(%1), - 1&?—1»7@» e ,(cz)_l, f) is a system of coordinates in B’,
(%1), - IS)_p %2), cey ,(Cz)_l, uq, ug) a system of coordinates in X',
(%1), - IS)_p %2), . ,7,(63)_1, B,v) a system of coordinates in Y.

Definition 1.5 Let x € .X be a point at which f presents an Iy, x, singular-
ity. We say that the family (XY, B) is versal at x if it is locally modeled at
the neighborhood of x by the family (X', Y’, B') above.
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Figure 1: The contracted part C of a point x. Branches are indicated, to-
gether with the orders kq, ..., k; of the restriction of the function f;, to the
corresponding branch

1.4.3 Contracted components

Stable maps of genus 0 can also present non-isolated singularities. Suppose
that = happens to lie on an irreducible component of X, contracted by f.
Then we denote by C the connected component of f;'(y) C X, containing
x. Note that it necessarily includes the irreducible component of X} contain-
ing x, but may include other irreducible components as well. We call C the
contracted part of x. Finally we call branches the connected components of
the neighborhood of C in X, \ C. If, on C, we mark its intersection points
Z1,...,2, with the branches, it becomes a stable curve.

Definition 1.6 For ¢ > 3, we say that f presents a singularity of type
s gy 0 @ if

e f is constant on the irreducible component of X, containing z;
e the contracted part C has genus 0;

e there are £ branches and they can be numbered from 1 to ¢ in such a
way that f has ramification orders kq, ..., k; at their intersection points
with C.

To define a local model for this singularity we need to introduce the
space of relative stable maps; however, the local model may actually be only
a subspace of this space, see Definition 1.7.



Let Mo;kh,,_,k((CPl; o0) be the space of stable maps of genus 0 to CP!,
defined up to an additive constant, and relative to oo with ramification profile
(k1,...,k¢). This space has a distinguished sub-orbifold ﬂ(ikl,...,kACPlS o0)
that we will call the zero locus. It parametrizes maps from curves with ¢4 1
components: one contracted rational component and ¢ rational components
more that intersect the contracted one and on which the map equals 2,
1 <i < /{. As an orbifold, the zero locus is a gerb with base Mo;g and group
[, Z/kZ. Let

p: Eo;kh_,w(CPl; o0) — mo;kl7___7kl((CP1; o0) be the universal curve,

q: CP' x Mo, . 1,(CP';00) = Mou,...x,(CP'; 00) the universal target
curve, and

f: Eg;kl,m,kﬂ((CPl; o0) — CP! x Mg;kl,m,kl(CPl; oo) the universal map.
The union of contracted parts of fibers over the zero locus MOZ;,QM,W (CP'; 00)

forms the zero locus E(ikl,...,k[((CPl; o0) in the universal curve.
Let x € X be a point at which f presents an I, ., singularity and C

the corresponding contracted component. Let b € M(iklw,w((CPl; o0) be the
point of the zero locus such that the contracted component is isomorphic
to C. Consider a local chart of mo;kl7,__7kZ(CP1; oo) at b. Now, let B’ be any
sub-manifold of this local chart that is transversal to the zero locus and of
dimension at least

ditm Moy, (CP; 00) — dim Moy, (CP500) = Y ks,

Let X’ be a neighborhood of C in the preimage (p')~'(B’) and Y a neigh-
borhood of y = f(z) in the preimage (¢') "1 (B’).

Definition 1.7 Let x € X be a point at which f presents an Iy, ;, sin-
gularity and C the corresponding contracted component. We say that f is
versal at x if there exists a family (X,Y’, B) as above such that (X,Y, B) is
locally modeled on (X', Y, B') at a neighborhood of C.

1.5 Versal families

Definition 1.8 A genus 0 versal family of maps is a family of maps that
only has singularities of types Ay and Iy, 5, for £ > 2 and satisfies the
versality condition for each singularity.

Genus 0 versal families are precisely the object of our study. Before
proceeding we give several examples of genus 0 versal families.



Example 1.9 Consider the space Mg,4(CP') of stable genus 0 degree d maps
to CP' without marked points. The universal map over this space is a genus 0
versal family.

Example 1.10 Given a line bundle L — B over a smooth base B, consider
the space o
(L \ {zero section}) x¢- My.4(CP') — B.

Here C* acts on Mg.4(CP') via the natural action on the target CP'. The
universal map over this space is a genus 0 versal family.

Example 1.11 Given a principal PSL(2,C) bundle G — B over a smooth
base B, consider the space

G XPSL(2,C) Mo;d((CPl) — B.

Here PSL(2, C) acts on Mg,4(CP') via the natural action on the target CP*.
The universal map over this space is a genus 0 versal family.

Example 1.12 Consider the space Moy, . 1, (CP';00) of stable genus 0
maps to CP! relative to oo with ramification profile (ki,...,k,). Consider
the universal map over this space. Remove the oo section in the target curve
and its preimages in the source curve. The family thus obtained is a genus 0
versal family.

Example 1.13 Given a line bundle L — B over a smooth base B, consider
the space

L\ {zero section}) xc« Mo, . 1 (CPL:00) — B.
( S5 Y

Here C* acts on Moy, . 1, (CP'; 00) via the natural action on the target CP".
Consider the universal map over this space. Remove the oo section in the
target curve and its preimages in the source curve. The family thus obtained
is a genus 0 versal family.

Example 1.14 Consider the space M,.4(C) of degree d genus g stable maps
to a given smooth curve C'. Consider the universal map over this space.
Remove from the universal map all the source curves that contain contracted
components of genus greater than 0. Also remove the images of these curves
in the target. The family thus obtained is a genus 0 versal family.



Example 1.15 Let 2z = zy,...,2 = 2 be a given set of points on CP' with
affine coordinate z. Consider the family of maps

4 k; ki—1
f(z) = : + % : + ot Yiki-1 : :
i1 z— Z; Z — Zj Z — Zj

This family is extended to u; = 0 in the following way. The source CP!
acquires a bubble with global coordinate w;. The point w; = 0 is attached
to 2 = z;. The function on the bubble is given by

1

ks i —
Wt iAWttt Vi -1 Wi

This family is a genus 0 versal family.

Example 1.16 This is an example of a family that is NOT versal. Let
2 = 21,...,2" = 2, ., be a given set of points on the projective line with
global coordinate 2’ and 2" = z7,...,2" = 2/ | be a given set of points
on another projective line with global coordinate z”. The point z, ,, is
identified with the point z; ,,. Consider the following family of maps on the

nodal curve thus obtained:

51 ! K, ’ k-1 '
n o_ U, U; U; -
f(Z ) - ! ! + ryial / ! +ooet in?k;*l ! ! + )
- 2 — 2 2 — 2 ol
i=1 ? ? ¢
£y " K " k-1 "
"y __ uz’ ’ ui ‘ uz’ Cﬂ/,
f(z ) - " " + %1 " " +- T+ Viky -1 " 1 +0

where the constants C' and C” are such that f(z, ,,) = f(2y, ;) = 0. This
family is extended to u; = 0 and ] = 0 as in the previous example.

This family is not versal. Indeed, even though it satisfies the versal prop-
erty for the singularity Ik,l""’k217klll""’k2’27 a generic map of this family also has

an I, singularity that does not satisty the versal property because the node
is never smoothened.

1.6 Singularity loci

Every singularity from the list in Sec. 1.4 determines a cycle in X, namely
the closure of the set of points x € X where f presents a given singularity.
By abuse of notation we will usually denote in the same way the singularity
type and the corresponding cycle in X.

For instance, the cycle I ; is the set of nodes of the fibers X.



The versal deformation property insures that the codimension of the Ay
locus equals k, that of the Iy, , locus equals ki + k2, and that of the Iy, 4,
locus equals Y k;.

In the notation Iy, .z, the indices form a multiset, that is, the order of
the indices is immaterial. Since the cycle Iy, . 5, is the closure of the set
where f presents the corresponding singularity, the ramification orders of f
at the attaching points of the branches can actually be greater than (but not
smaller than) k;. Thus, for instance, the cycle I 5 presents a self-intersection
along the cycle I55. Therefore the normalization of I; » contains two copies
of Iys.

Let |Aut{ki,...,k¢}| be the number of permutations o € Sy such that
kg(s) = k; for every 1.

Fix an order of the indices kq,..., ky,. Let Eﬁmk[ be the space of couples
(z € I, ..k, numbering of the branches), such that the ramification order at
the branch number i is equal to k; (greater than or equal to k; in the closure).
Then fkhm,k[ is a finite nonramified covering of the normalization of Iy, .
Its degree equals |Aut{ki, ..., ke}|.

Notation 1.17 We denote by a, € H?(X,Q) the cohomology class
Poincaré dual to the cycle Ay. We denote by iy, € H*2F(X,Q)
the cohomology class Poincaré dual to the cycle Iy, . x, multiplied by
]Aut{kl,...,kg}\.

¢

Remark 1.18 Including the factor |Aut{ky, ..., ke}| in the definition of co-
homology classes will greatly simplify the formulas in the sequel.

Notation 1.19 We denote by U: fkl,...,m — Iy, ..k, the covering map and
by V: Iy, .k, — MO,Z—H the natural map from the covering I to the moduli
space of curves:

U -~ 1
iy < Tiy oy — Mot
Given a class o € H* (M074+1), we denote by «iy, .k, the class UV * ().

Note that the notation is coherent: if & = 1 we have U, V*(1) = iy, 4,
as defined previously, because the map u has degree |[Aut{ky, ..., k¢}|.

Definition 1.20 The cohomology classes a; and «iy, .
called singularity classes.

, in H*(X,Q) are

1.7 Basic classes

Now we are going to introduce a different set of cohomology classes in X.
We will call them basic classes.



Definition 1.21

Let Lx — X be the line bundle whose fiber over x € X is the cotangent
line to X, at x. This line bundle is well-defined outside I;; and can be
uniquely extended to I;; (in the standard way). We denote by ¢ = ¢1(Lx) €
H?*(X,Q) its first Chern class.

Let £y — X be the line bundle whose fiber over x € X is the cotangent
line to f(Xp) at y = f(x). This line bundle is well-defined everywhere and
we denote by & = ¢1(Ly) € H*(X,Q) its first Chern class.

Consider the cycle I, ; with £ subscripts. Over the (!-sheeted covering

711 consider the /¢ line bundles whose fibers are the cotangent lines to the
branches at their intersection points with the contracted part. Denote their
first Chern classes by vy,...,v. In a more traditional notation, we have
=V, 1=1...,¢
Let « € H* (HO,M) be a cohomology class. We denote by ady,, .. m, the
cohomology class U, (v™ - -- v, V*a).

Definition 1.22 The classes ¥*, and «dy, _, are called basic cohomology
classes.

Our aim is now to express singularity classes in terms of the basic classes
and vice versa.

1.8 Main results

We start with an explicit equality.

Theorem 1 For every m > 1 we have H (r — &) = ap, + P, where Py, is

a linear combination of terms of the form §q1/ﬂ’zkl . Moreover P, = 0 and

(Z Z ky---ky ikl,...,k4> + (my — &) Py

£>2 ki+-+kp=m
form > 2.

Sample calculations for 1 < m < 6 are given in the appendix.

The equality of Theorem 1 does not express a singularity class via basic
classes or a basic class via singularity classes. However it is the key result in
the proof of the following theorem.

Theorem 2 Fvery singularity class can be expressed as a linear combination
of basic classes multiplied by powers of &. Every basic class can be expressed
as a linear combination of singularity classes multiplied by powers of &.

10



The proof of this theorem is constructive, that is, the expressions can be
effectively computed. In the appendix we write out the expressions for all
classes up to codimension 5.

Finally, in the following theorem, we give an explicit formula for certain
coefficients in the expressions of basic classes in terms of singularity classes.

Introduce the following polynomials in variables xy:

!

¢
1 m)!
Xn=d5 2. (m — (+2)! H’”
l k1,...,ke =1
Zkizm—f—‘rQ
Denote by oy € Ht(’p(ﬂg;@rl) the cohomology class Poincaré dual to a
point.

¢

Theorem 3 Choose m and ki, ..., ky so that m +2 = €+ > k;. The co-
i=1

efficient of oyiy,, .k, in the expression for ¥™ is equal to the coefficient of

Ty Tk, 0 Xy, that is, to

1 m)!
k;.
|Aut{k1,... ke}| (m — €+ 2)! H

s {
Choose my,...,mg and ky, ... ke so that 2s+ > m; =+ k;. The co-
j=1 i=1

efficient of ayig, ..., in the expression for cgdpm, . m, 15 equal to the coefficient

of Ty + v+ g, 0 Xy, o+ Xop,

8

In Section 3 we relate these coefficients with Okounkov and Pandhari-
pande’s completed cycles.

2 Computations with singularity and basic
classes

2.1 Proof of Theorem 1

The proof goes by induction. The equality ¢ — & = A; follows from the fact
that df is a section of the line bundle Lx ® £} (see Definition 1.21) that has
a simple zero precisely on the A; locus.
Assume that the equality is true for m — 1 and prove it for m. By the
induction assumption we have
m

[(rv =€) = (mv — &) (@mr + Pucy).

r=1

11



The term (my — &)P,, 1 is a part of the expression for P,,. Thus our main
task is to compute the product (mi — &)am,_1-

To do that, note that d™f is a section of the line bundle £L{™ @ L3}
restricted to the locus A,,_;. Thus we must describe the components of the
zero locus of d™f and their multiplicities.

The obvious component of the zero locus is 4,, C A,,_1. On this compo-
nent the section d™ f has a simple zero as follows from the versality condition
for A,,. Indeed, in the local model of Definition 1.3 the stratum A,,_; is
parametrized by one variable a via

w4y = (v — @)™ (u + ma) + ma™;
the equation d™ f in this parametrization reads a = 0.

The other components are the cycles Iy, . 5, that lie in the closure of
A1 and are of codimension 1 in A, 1, that is, > k; = m. We are going
to show that all cycles Iy, j, with > k; = m lie in the closure of A,,_; and
that the vanishing multiplicity of d™f on the cycle Iy, _x, equals ki ---ky.
To do that, we study the local models for each of these singularities.

We will assume that ¢ > 3 leaving the simpler and very similar case £ = 2
to the reader (see also [3]).

Let Mo;kh,,_,kl(CPl; o0) be the space of stable maps of genus 0 to CP’,
defined up to an additive constant, and relative to oo with ramification pro-
file (ky,...,k¢). Denote by Cos,.. 4 (CP';00) the universal curve and let
Eoz;khm?k[((CPl;oo) C Couy....k,(CP'; 00) be the zero locus in the universal
curve (see the discussion before Definition 1.7).

Lemma 2.1 The natural section d™f : Ap—y — LY ® L3 on the stra-

tum Ay C Coumy...k,(CPY;00) has a vanishing of order kyi---ky along

E(ikl,...m((CPl; OO), whenever Z ki = m.

From the lemma we conclude that

(M) — &) m—1 = G + Z Z kv-oke [Iiy, ]

0 ki<-<ky
S ki=m
1 .
= Qpy + Z 7 Z kyov keing,. -
¢ k1yek
S ki=m
This holds for any family that satisfies the versality condition of Defini-
tion 1.7. Theorem 1 is proved. &

12



Proof of the lemma. We say that a point of 50;k17,_,7kl(CP1; o0) is generic
if the contracted part is smooth. We will study the vanishing order at a
generic point.

Introduce a coordinate z on the contracted part and denote by z, 21, ..., 2z
the marked point and the intersection points with the branches. It is proved
in [1] that Mo;khw ((CPI; o0) is a cone over its zero locus and that the fiber of
this cone is parametrized by coordinates u;, 1 <7 <{and a;;, 1 <j <k;—1
if we write the stable map in the following form:

=3 () e (22) v (25)]

Let

(z —a)"
z) = .
A T ET
This is the unique, up to transformations f + c¢f + b, rational function with
poles of orders k; at the points z; and such that f'(z) = f"(z) = --- =
f0»U(z) = 0. Expand f in the form (3) and denote by u; and a;; the
coefficients thus obtained. Further, let

K = LCM(ky, ... , k)

and
rp,=— for 1<i<V/.

Then the stratum A, 1 in Moy, _x, (CP'; 00) consists of ky - - - ky/ L irre-
ducible components parametrized by a complex parameter ¢ in the following
way: A

u; = ;i G = Ofgcjridij-
Here (au, ..., ap) is a collection of roots of unity, ozf" = 1. We should choose
one such collection in each of the d orbits of Z/KZ in Z/k\Z X - -+ X L/ k,Z
and this choice determines the irreducible component of the stratum A,,_;.

In each component of the stratum, the mth derivative at x of the function
corresponding to parameter ¢ is equal to ¢%- f(™) (x). Thus the vanishing order
of the mth derivative at ¢ = 0 equals K for each component. Since there are
ki---k¢/ K components, we get the total vanishing order equal to k; - - k.

¢
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2.2 Proof of Theorem 2
2.2.1 Classes in MO;ZH

The definition of both basic and singularity classes involves a class a €
H*(Mo,41). Before proving the theorem we must introduce notation for
these classes. They will be described using marked trees.

Definition 2.2 An /-tree or just a tree is a rooted tree with ¢ leaves; the
valencies of all vertices except the leaves and the root are at least 3; the
valency of the root is 1 (but we don’t call it a leaf). A marked (-tree or just
a marked tree is an (-tree whose all vertices except the root are marked with
nonnegative integers.

The picture below shows a marked tree.

(=]
NO—=O N~

If T" is a marked tree we will denote by ¢ the underlying tree obtained by
forgetting the markings.

Take a marked tree 7" and number its leaves in an arbitrary way. This
tree with numbered leaves determines a cohomology class in M0;4+1 as fol-
lows. Consider the set of curves in Mg, whose dual graph! is isomorphic
to t, the marked point x being the root of the tree. Every interior vertex
of t corresponds to an irreducible component of the curve. On this irre-
ducible component there is exactly one marked point that leads to x (in
other words, from every vertex v of ¢ exactly one edge leads to the root).
The first Chern class of the cotangent line bundle to this point is denoted
by ,. The cohomology class that we assign to 1" with numbered leaves is
given by [T] = HvEV(T) Ui supported on the boundary stratum correspond-
ing to t, where the product runs over all internal vertices v of ¢ and m, is
the corresponding marking. Note that this class does not depend on the
markings of the leaves.

Using the class [T we can now assign to a marked tree T' both a singularity
class and a basic class. These classes will not depend on the numbering of
the leaves of T', but will depend on their markings. Denote by mq,...,my
the integer markings on the leaves.

'The dual graph of a curve is obtained by replacing every irreducible component by a
vertex, every node by an edge, every marked point by a leaf, and the point x by the root.

14



Basic class. The basic class that we assign to T is given by

[T]basic — U* (V*[T] H l/ln”> 5

where U': fll — Iy, and V: fll — MO;Z—H are as in Definition 1.22.

The singularity class. The singularity class assigned to T is
[Tlsing = U (V*[T),

where U: Ly, 1, mg+1 = Tat1,mer and Vi Iy i1 — Moeyq are as
in Notation 1.19 and Definition 1.20.

Example 2.3 If T is the tree

then [T]sing = djpiml—&—l,...,mg—l—h [T]basic = I/)péml,...,mg-
Notation 2.4 If T is the tree
P——em

we let7 by COHVGHtiOH, [>_' m]basic — Wn» [>_' m]sing = Qm, [Ho]basic =
[Ho]sing =1

Thus every singularity class and every basic class can be represented as
a linear combination of trees.

Remark 2.5 Keel [5] proved that the cohomology classes Poincaré dual to
the boundary strata of Mg, span the whole cohomology ring of M. ;.
Therefore our tree notation is sufficient to express any class, but is strongly
redundant. For instance, whenever the integer d, assigned to an interior
vertex of T' is greater than the valency of v minus 3, the corresponding class
vanishes. As another example of redundancy, we have [Ti]sng = 3[1%]sing.
where

15



However the classes in our expressions naturally appear in the form of marked
l-trees, and we chose not to simplify them further, since we do not know any
simple nonredundant expression for the result of such simplification.

We finish this section with a definition that we will need soon.

Definition 2.6 Suppose ¢ marked trees 17, ...,1, are assigned to the leaves
of a marked /-tree T'. The substitution of 11, ..., 1T, into 1" is the tree obtained
by erasing the leaves of 7" and gluing the roots of 71, ..., Ty into the vertices

on which the leaves grew. Note that every vertex of the substitution (except
the root) inherits an integer from either T or one of the T;’s, but not both.

*
S

)

_
NO—O N —

If instead of the trees T}, ..., T, we have £ linear combinations of trees we
can, of course, extend the operation of substitution by multi-linearity.

2.2.2 Basic classes via singularity classes

Recall the list of basic classes: ¥ and [Tpasic, where T is an (-tree, £ > 2.
We must express every class like that as a linear combination of singularity
classes multiplied by powers of &.

m

Expressions for ¢/™. Theorem 1 gives an expression for [[(r¢ — &) as a
r=1
linear combination of singularity classes multiplied by powers of £&. Writing

b= W-0+¢
O TG Rt LS R S U R
W= B OO -8+ (- O -+ (€ -+,

and so on, we obtain similar expressions for powers of .

[r N IS NN

Example 2.7 We have

1 1. 3
Y =a; +¢, W = 50 + g + 55611 + &

More computations are given in the appendix.

To sum up, for every m there exists a linear combination L,, of trees with
coefficients in Q[¢] such that ™ = [Ly,]sing-
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The general basic class. Consider class [T]pasic and denote by my, ..., my
the integers on the leaves of T'.

Proposition 2.8 Let T be the substitution of Ly, ..., Ly, into the tree T'.
Then the class [Tpasic @5 equal to [Tging.

Proof. This proposition is almost obvious. It suffices to note that every
class v; plays the role of the class ¢/ on the corresponding branch, and there-
fore we can use the expressions for /™ to express v, for each i. &

Example 2.9 Let us compute the expression of Jy ;o in singularity classes.

We have
0 0
50,172 = {>—<1} )
2 I basic
1= [>_.O ]sing ) dj = [>_.] ]sing + 5 [Ho]sing ’
1 1 0 3
2 _ - . - 9 2 . 2 .
¢ - 9 [>_°2 ]smg + 4 |:>_<0 :| ding + 25 [>_°1 ]smg +§ [>_'0 ]smg

Substituting the last three expressions into the first tree, we obtain a linear
combination of 8 trees that simplifies to

1. 3 . 1 . d . .
do,1,2 = St123 + =&l + =€l 3 + —5221,1,2 + 53’41,1,1‘1‘
2 2 2 2
1 N 1 0
1 0
i "<° it "éo
0 0 sing 0 0 sing
2.2.3 Singularity classes via basic classes
Let T" be a marked /-tree with the markings of the leaves equal to my, ..., my.

We call my + - -+ + my the weight of T'. It follows from the previous section
that the expression of [T|yasic via singularity classes has the form

1

[T]basic — ml! T mZ!

[T)sing + lower weight terms.
Therefore these expressions form a triangular change of basis and can be
inverted.

The expressions for the simplest singularity classes are computed in the
appendix.
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2.3 Proof of Theorem 3

The expression for ™. The first claim of Theorem 3 gives an explicit
formula for the coefficient of the class oy, .k, in the expression of ¥™,
where ay is the class of a point in Mg, 1. We will prove this formula using
Theorem 1; however, since the terms we are interested in do not contain the
class £, we can reduce the formula of Theorem 1 modulo . We obtain:

M =y + Py (mod ),
where ﬁl =0, and
~ 1 , -
Pm - (Z E Z kl T ké Zkl:w;kl) + ml/J mel
n>2 " kyifetk=m

for m > 2. B
Thus we see that the term iy, , first “appears” in P,,,_,,o with coefficient

kyoooky
|[Aut{ky,... ke}|
and then gets multiplied by (m — ¢ + 3)v, ..., mi, until it becomes
ki---kg m!

A T
|JAut{ky,... ket (m — €+ 2)!

Since the class 1" 2 is precisely the class of a point in MO;[+1 (see, for
instance, [1]), we obtain precisely the same coefficient as in the formulation
of the theorem.
The expression for a0, .. Recall that ay € H" 2(Mgy.1) is the
class of a point.

According to Proposition 2.8, to obtain the expression of a0, . m, We
must substitute the expressions for ¢ into the marked ¢-tree T

s

It is easy to determine when a substitution of ¢ marked trees 17, ..., 1, into T
contributes to the class ayiy, . x,. First of all, the marked trees 7; must have
¢ leaves altogether with markings ky — 1,..., k; — 1. Second, if a marked tree

18



T; has /; leaves with markings kij) -1,..., k:,(f]) — 1, then it must describe a

singularity class proportional to z'k(]-) ROR The coefficient of the singu-
1 EAR ) 7Lj

larity class oznjik(j) LO) in the expression for V;z]- is equal to the coefficient
1 oeolfing 4

of the monomial NORE ~x§j) in the polynomial X, Therefore, as claimed
1 "y

in the theorem, the coefficient of the singularity class ayiy, .., in the expres-

sion for a0y, ,..m, is equal to the coefficient of the monomial zy, ---xg, in

4
the polynomial X, - X,,,.

3 Completed cycles

3.1 Completed cycles and the classes y™

Let CSy be the group algebra of the symmetric groupt Sy. If f € CSy is
a central element of the group algebra, and A a partition of N, we denote
by f()\) the scalar by which f acts in the irreducible representation A. (By
Schur’s lemma every central element of CSy acts by a scalar in every irre-
ducible representation of Sy.) This identifies the center of CSy with the
algebra of functions on the set of partitions of N. Let C}, ., be the sum of
all permutations in Sy with £ numbered cycles of lengths kq, ..., ks respec-
tively, and N —>_ k; non-numbered fixed points. For instance, C5 is the sum
of all transpositions, C;; is N(N — 1) times the identity permutation, etc.
Note that Cy, ., defines a central element in CSy simultaneously for all N.
For instance, the sum of transpositions C5 is a well-defined element of CSy
for any N. If N < Y k;, then the corresponding central element vanishes.
Thus Cy, ...k, is actually a family of central elements in the group algebras
CSy for all V.

Definition 3.1 Given the positive integers ki, ..., kg, the family of central
elements Cy, ., € CSy for N > 1 is called a stable® central element.

Theorem 4 (Kerov, Olshanski [6]) For every m > 0 there exists a

unique linear combination 6m+1 of stable central elements Cy, . i, such that
— 1
Crs1(N) = ——— [\ —i+1/2)™ — (=i 4 1/2)™H!
) = Gy [ =i+ 2/277 = (i 127

for every partition A = (A > Ao > ...) of every integer N.

2This has nothing to do with stable maps.
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Example 3.2 We have

C, = O,

Cy = Oy,

Cs = %Cg, + %Cl’l + icb

C, = é@ + %Cm + 25—4027

o — 21_405 " %01,3 i 11_20272 + %CLM + %Cg + %Cm + 191—2001.

Definition 3.3 The linear combination C,,; is called the completed (m+1)-
cycle.

Remark 3.4 The set Sy = {(\; —i+1/2);51} C Z+ % is a uniform way to
encode a partition of any size. The empty partition corresponds to the set
Sp of negative half-integers. The set S) differs from Sy by a finite number of
elements. The function C,,; is basically the renormalized sum of (m + 1)-st
powers of the elements of Sy divided by (m + 1)L

Denote by S(z) the power series

_ Sinh(z/2).

S() z/2

Proposition 3.5 (Okounkov, Pandharipande, [7], Proposition 3.2)

We have )
Cny1 = Z 7 Z [ O R

gZO, kl,...,k[
n>1 S kit+e+29—2=m

where the rational constant pgk, .., 1S the coefficient of z°9 in the power

series

¢

£ 4

%S(Z)Kl [[Skiz), K= k.

Remark 3.6 Our normalization of completed cycles differs from that of [7]
in three ways. First, by a factor of m!; second, by the absence of a constant
term corresponding to ¢ = 0; third, by the fact that, contrary to [7], for us
Chy....k, 18 the sum of permutations with ¢ numbered cycles, which changes the
corresponding coeflicient in the completed cycle by a factor [Aut{ky, ..., ke}|.
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Every constant pgy, . i, is associated to a singularity of a higher genus
stable map. Namely, by analogy with Definition 1.6, we can say that f
presents a singularity of type Ik, ., at © € C if x lies on a contracted part
of genus g meeting £ branches of C' at ramification points of orders k1, ..., ky.
It is well-known that if a stable map f presents a singularity of type Ik, .k,
at x, then the image f(x) must be considered a branch point of multiplicity
m = > k;+ €+ 2g — 2. In particular, if the stable map can be deformed
into a generic smooth map, the branch point will split into m simple branch
points.

Since in this paper we only study stable maps of genus 0, we will be only
interested in the genus 0 part of the completed cycles, that is, the part that
corresponds to the ¢ = 0 terms in the sum of Proposition 3.5, or in other
words, to the terms satisfying > k; + ¢ = m + 2.

Proposition 3.7 If > k; + n = m + 2, then the coefficient of Cy, ., in
Cint1 18 the same as the coefficient of iy, ...k, in the expression of Y™ via
the singularity classes, where ay is the class of a point in Moq.

Proof. According to Theorem 3 and Proposition 3.5 both are equal to

1 Ik
Aut{kr, . k| (O k)

¢

Remark 3.8 In [7] Okounkov and Pandharipande established a relation be-
tween Gromov-Witten invariants of CP! and the completed cycles. There-
fore the result of Proposition 3.7 was to be expected. Note, however, that
Gromov-Witten invariants are only intersection numbers, while here we are
working with cohomology classes. Therefore we can expect to get more in-
formation than what is contained in the completed cycles. And indeed, our
expressions for )™ involve terms that do not appear in the completed cycles
and do not contribute to the computation of Gromov-Witten invariants.

3.2 Products of completed cycles and the classes
as5m1,...,m

§

Proposition 3.9 ([6]) The product of two stable central elements is a finite
linear combination of stable central elements.

Example 3.10 We have C; = Cyy + 3C5 + %Cl,l- Indeed, C5 is the sum
of all transpositions, so C7 is the sum of products of all possible pairs of
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transpositions. A product of two transpositions can give either a permutation
with two disjoint 2-cycles (in a unique way if we number the 2-cycles in the
same order as the transpositions), or a 3-cycle (and every 3-cycle can be
decomposed into a product of two transpositions in three possible ways), or
an identity permutation with two marked elements (but we can number these
marked element in two different ways).

The proof in the general case is a simple generalization of the above
example and is left to the reader.

Proposition 3.11 Let oy € HtOp(MO;[+1) be the class Poincaré dual to a
point. Choose my,...,ms and ky,... ke such that 2s + > m; = €+ > k;.
Then the coefficient of ayi, ..k, in the expression of asOm, . m, in terms of
singularity classes equals the coefficient of the stable central element Cy, . g,
in the product 6m1+1 - 'Umﬁ—l-

Proof. Accroding to Theorem 3, the coefficient of ayig, . 5, in the expres-
sion for a0, ,..m, is equal to the coefficient of the monomial zy, ---xg, in
the product of polynomials X,,, - -+ X,,,. Recall that the polynomials X,, are

defined as ,
1 m)
AP DF D D e e | Kt

S

They are transformed into the genus 0 part of the completed cycles C,, if we
replace every monomial xy, - - - xx, by the stable central element Cy,  ,.
Let us call £+ )" k; the order of the stable central element Cy, . x,. Then
the genus ¢ terms of a completed cycle C,, have order m + 2 — 2g. The
genus 0 elements have the biggest possible order m + 2.
Consider two stable central elements Cy, . x, and Cj, ;.. Denote their
orders by d; and ds. Then we have

Crrvoy  Cly

where the order of the first term equals d; 4+ dy. We conclude that if we
only keep the highest order terms, then stable central elements multiply like
monomials:

= Chy...ky 1yt + lower order terms,

E]

(- xp,) - (w0, 3y) = Tp, oo T, T,

This is enough to prove the second assertion of Theorem 3. Indeed, we
have already identified the highest order terms of a completed cycle C,, 4
with the coefficients of the polynomial X,,. Therefore the highest order
terms of the product C,,, 11+ C,,, 11 are identified with the coefficients of
the product of polynomials X,,, --- X,,..
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4 Appendix: sample computations

4.1 Expressions for [[(r¢ — §)
Theorem 1 leads to the following expressions for [[(r¢) — &):

o« &=
ay

« WO -¢) =
az + %ﬁ’l

e (V=82 -8By —¢) =

asz + 219 + 2171,1 2@1,1-
o (v—8)(2¢ -3y~ 5)(41/) —&) =

(g + it + a0 +i110 + 501,000 + Vi1 — &2 + i) + 5%
o (Yv—& (29— f)(3¢ — &) (4 — 5)(51/1 —§) =

as + 4114 + 6193 + Zl 131t 201990+ Z1 1,12+ 12021,1,1,1,1 + 5¢i11

Eat Rt

_4 slydsy sL, 1, IE
2 ZWl111—5(3213—|-2222—|-2112‘1'24211114‘ Yir1)+E (2212+ i1,1,1)
_1531'
587111
4.2 Expressions for powers of v

By taking linear combinations of the equalities of Section 4.1, we obtain the
following expressions for the powers of ¢ (the underlined terms appear in
Okounkov and Pandharipande’s completed cycles):

* Yp=a +¢
o U7 = jas + jiry + 5ar + &
3_1 3¢ 72 3
® Y = a3+ 212+362111+1256124‘8521714‘45a1+f-
o V' = Jas+giis+ 12222+241112+57621,1,1,1+36¢1111+ 2eas+ 152

+;ﬁfll 11+ 58+ 5% + 28a + &

5 _
° Y= 120a5 + 3011 1t 2012 3t 8021 13+ 6011 22t 360@171,1,2 + a0 14400 11,1,1,1,1

24w21 1,2 + 576¢2171,171 + 144050’4 + 96521 3 + 144522 2 + 288521,172

a5e2, 2 2 575 3,
+6912&171,1,1 + 216&“1 1,1+ ggg& 03 + 1085 2+ 1296§ 11,11 T i35

+ég Yir+ 1654@ +&
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4.3 Basic via singularity classes

Using the expressions for the powers of 1) we obtain the expressions for the
other basic classes:

Codimension 2:

® 0o = i1,1

Codimension 3:

L4 50,070 = Z'1,171

® do1 = i1+ &l
Codimension 4:

L4 50,070,0 = Z‘171,1,1

® 0o01 =1t112+E&1

® 00 = Vi1

® 01,1 =lao+ 28i1o + %1y

® Jpo = %ﬁ,g + };1/12‘1,1,1 + %fil,z + 52i1,1
Codimension 5:

® 30,0000 = %1,1,1,1,1

® 00,001 = 1,1,1,2 + &1,

ado000 = iy 11, for any class @ € H*(Mgs)

- . 2 .
® 0o, =t1292 + 280,12 + &%,

1 1 3¢s 2
® Jo02 = 3113+ 7 + 5812 + %1

(==l el o]

0 sing

Pdo01 = Vit + Wi

012 = giaz + Witz + 3803 + 5820 + ;&I + 5E%0 + iy
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4.4

1 1) 1 11 ¢ 3¢ 7¢2;
003 = gliat3¥iniotsg % + 5803580t E e+

0 sing
3 .
3 111

S O o O

Singularity via basic classes

Inverting the relations of Sections 4.2 and 4.3 we obtain the following expres-
sions for the singularity classes in terms of basic classes:

Codimension 1:

@ =19 —¢

Codimension 2:

1,1 = 00,0

ag = 2% — %50,0 — 36 + &

Codimension 3:

i1,1,1 = 00,0,0
i12 = 00,1 — &00,0

az = 61> — 2601 — §00,00 — 1160% + 3009 + 662 — &

Codimension 4:

11,111 = 00,0,0,0

i1,1,2 = 90,01 — £00,0,0

Yira, = 100,00

ing = 011 — 26001 + 2000

i3 = 2002 — 310,00 — 3001 + 2600

ag = 240* — 6602 — 611 — 0,01 + 20,00 — 5790000 — DOEY® + &0 1+
%55070,0 + 35&%p? — %5250,0 —106%) + ¢!
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