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1. INTRODUCTION

Among the multiband materials with a tendency to
electronic phase separation, there exists an important
family of systems with the nesting of the Fermi surface.
The Fermi surface nesting is a very popular and
important concept in condensed matter physics [1].
The existence of two fragments of the Fermi surface,
which can be matched upon translation by a certain
reciprocal lattice vector (Q,), entails an instability of a
Fermi liquid state giving rise to an additional order
parameter. The nesting is widely invoked for the anal-
ysis of charge density wave (CDW) states [2, 3], spin
density wave (SDW) states [4, 5], mechanisms of high-
T, superconductivity (HTSC) [6—8], antiferromag-
netism of chromium and its alloys [9—12], etc. It is
important to emphasize that the nesting in a real mate-
rial may be imperfect; i.e., the Fermi surface frag-
ments can match only approximately via the transla-
tion by the Q, vector. Quite recently, it was demon-
strated that the imperfect-nesting mechanism can be
responsible for the nanoscale phase separation in
chromium alloys [13], in iron-based superconductors
[14], and in doped bilayer graphene [15, 16]. In this
context, the studies of spin and charge inhomogene-
ities related to the imperfect nesting are currently
especially active in the physics of low-dimensional
compounds [17—19].

Physical mechanisms underlying the nucleation of
the inhomogeneous state in the systems with nesting
are the following. The electronic spectrum instability
related to the nesting gives rise to a new order param-
eter. Hence, the free energy of the system becomes

lower. The better the nesting, the larger is this energy
gain. Thus, it may be favorable for the system to break
up into two phases with the better and worse (or even
absent) nesting and having different densities of itiner-
ant electrons.

2. RICE MODEL. PHASE SEPARATION
IN CHROMIUM AND ITS ALLOYS

We start with the model proposed by Rice [12] to
describe the incommensurate antiferromagnetism in
chromium and its alloys (see also review [20]). On one
hand, this model is rather simple and allows for a
detailed examination of its phase diagram. On the
other hand, it can be applied to describe important
real systems.

The model band structure corresponds to two
spherical pockets of the Fermi surface, electron and
hole ones. The radii of these pockets may be different.
It includes as well another band or bands, which do
not participate in the magnetic ordering (nonmagnetic
bands). All interactions are ignored except the repul-
sion between electrons and holes in the pockets giving
rise to the ordering since even a small coupling in this
channel generates a band instability and opens a gap in
the electron spectrum. The system we study is a three-
dimensional one. Its Hamiltonian has the form

ﬁ - Zea(k)ng" +V Z ai*‘lﬁakﬁblj'—qc'bk'c', (1)

k,c,00 k.k'.q,0,6'
where o is equal to a (electrons), b (holes), and ¢

(“nonmagnetic” charge carriers); a’ and b'are the
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creation operators for electrons and holes, respec-
tively; n is the number operator; and V is the Coulomb
repulsion, and & is the spin projection. The “nonmag-
netic” charge carriers have the density of states N, at
the Fermi energy. The energy spectra for electrons and
holes near the Fermi energy can be written in the form

€k = vk — ko) = hvi(k = ke) = 1,
€xeq, = Viplk — ki) = —hvelk —ke) - p,

where kg = (kg, + kpy)/2, W =nve(kp, — kg,)/2 s
the chemical potential, and vector Q, connects the
centers of electron and hole pockets in the momentum
space.

We consider the weak-coupling regime: VN,, < 1,

where N, = ké /21’ h v. If the radii of electron and
hole pockets are identical (perfect nesting), we have
W = 0. Performing the standard BCS-like calculations,
we find that the ground state at |l = 0 corresponds to
the antiferromagnetic (AFM) order parameter
Ay =€pexp(—1/N,|V|) < e = hvgkp. The order
parameter A, couples charge carriers with unequal
momenta. Consequently, in the real space, the order
parameter A, corresponds to the rotation of the mag-
netization axis related to the wave vector Q,. Usually,
the electron and hole pockets are located at the high-
symmetry points of the Brillouin zone and the vector
Q, is the reciprocal lattice vector. This AFM ordering
is usually referred to as the commensurate one.

()

Ifu # 0, the electron and hole Fermi spheres have
different radii and do not coincide upon a translation.
However, if u is small, the difference between the
spheres remains small, and we can define a new nest-
ing vector Q, = Q, +Q, which corresponds to the
minimum energy of the spin density wave. Hence, Q
becomes an additional optimization parameter. The
SDW order parameter can be written as

A= Vz<al;rcbk+Q,—G>‘ (3)
k

Vector Q is small: |Q| ~ |Al/AvE < |Qg|. Thus, the order

parameter A describes an AFM ordering with a slowly
rotating magnetization axis. This rotation is unrelated
to the lattice symmetry. Such ordering is referred to as
the incommensurate one. Note that the state under
study is similar to the Fulde—Ferrell-Larkin—
Ovchinnikov (FFLO) state in superconductors [21,
22]. Note also that we can introduce the order param-
eters of a slightly different structure than that in (3).
However, the general results do not change signi-
ficantly [13, 22, 23]. The difference in the free energy
and the chemical potential calculated for different
forms of the order parameter is small, and the balance
in real systems may be shifted by factors disregarded
in the present model (e.g., the anisotropy and disor-
der) [13].
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It is convenient to calculate the equilibrium param-
eters of the system by the minimization of the thermo-

dynamic potential Q =—-T7'In [Tr exp (—#ﬂ,

where N is the operator of the total number of parti-
cles. In the mean-field approximation, the eigenener-
gies of Hamiltonian (1) are

€l + el el — ¢! ?
E, = %i A%+ {%} ] (4)

Within the same approximation, the grand potential
per unit volume can be written as

2 3
Q= % - 2Tzs:j(;’T')‘31n (14757

- 2TN,I In(1+e"7)de,

%)

where the first and second terms are the contributions
of the “magnetic” electrons, whereas the third term
corresponds to “nonmagnetic” charge carriers. To
carry out the integration over k, we expand the band

energies in powers of |Q| and 0k = |k| — k:

€rio, T+ €4 = 2U+ 20N,

. . (6)
€xrg, — €k = 2vEdk +20M,

where Q = v¢|Q| and m is the cosine of the angle
between k and Q. After the integration, we find [13]

3Q = Q(A,0,1) — (0,0, 1)

:k_é{Az[lnA_l}Q_muﬁ

er Ay 2) 3 3
oo 1

+ T[dg[anin[fOn-u-e)f-on-ol,

0 -1
where f(e) =1/[1+ exp(e/T)] is the Fermi distribu-

tion function and € = \JA® + iz . The equations for the
equilibrium values of A and Q are determined by min-
imizing 6Q [13]:

oo 1
m%:Ii—gjdn[f(e+u—Qn)+f(€—M+Qn)],

0 €5 (7)
oo 1
% = [ag fndn[f(e +u—-0m+ fle —p+ o).

0 -1

The total number of electrons per unit volume n(W) is
the sum of magnetic and nonmagnetic contributions

n, (W) and n,.(u), respectively. The doping level x is
x =n(L) —n(0). Since 7, L K €, we can write
n, (W) — n,(0) = N,u. For the magnetic charge carriers,
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Fig. 1. (Color online) Chemical potential p versus doping

x for the homogeneous SDW phase at 7/Aj = 0.1 and
n = 0 [solid (red) line]. The horizontal dashed line shows

the Maxwell construction, with the shaded areas | = 5,
(Fig. 3 from [13]).

we have n, (L) = 2Zk f(E (k). After straightfor-
ward calculations, we derive

X _n
Xy A
- e ®)
+I_Jdn[f(e—u+Q1”|)—f(€+H—Q‘1)],
OAO—I

where x, = 4A,N,,andn=N,/2N,,.

The phase diagram of the model can be con-
structed by the numerical solution of Egs. (7) and (8).

First, one can calculate the Néel temperature
Tx(x) for the homogeneous AFM state of the system
and the transition temperature 7, between the com-
mensurate and incommensurate AFM states. Then,
we can determine the region of the inhomogeneous
state analyzing the dependence of the grand potential

Q or chemical potential i versus the doping level x
[13].

As an illustration, a typical dependence of the
chemical potential on doping for the model under
study is shown in Fig. 1. It is seen in this figure that the
function p(x) has a descending part, which means a
negative compressibility and, hence, instability of the
homogeneous AFM phase. In the inhomogeneous
state, the system is segregated into two phases with dif-
ferent doping levels x, and x,. The values x, and x,
can be found using the Maxwell construction: the hor-
izontal dashed line in Fig. 1 is drawn in such a manner

that the areas of the shaded regions S, and S, are
equal.
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Fig. 2. (Color online) Phase diagram of the model in the
(x,T) plane (Fig. 4 from [13]) for » = (a) 0 (no electrons in
nonmagnetic pockets), (b) 1, and (c) 3. The solid (black)

curves represent the Néel temperature 7y (x), which sepa-
rates the paramagnetic and AFM phases. The dotted
(blue) curves correspond to the boundary between the
commensurate and incommensurate homogeneous AFM
phases, Tp(x). The dashed (red) curve, Tpg(x), is the
boundary between the uniform and phase-separated
(shaded areas) states.

In Fig. 2, Tpg(x) is a boundary between the homo-
geneous and phase-separated states in the (x,7’) plane
shown by the dashed (red) curve. The phase with lower
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doping x, is the commensurate AFM phase (Q = 0),
whereas the phase with higher doping x, is the incom-
mensurate AFM one (Q # 0). Thus, the phase separa-
tion occurs owing to the competition between two
AFM states with different structures.

Above, we have mentioned the mapping between
the Rice model and the FFLO superconductor.
Indeed, the Zeeman field in the FFLO superconduc-
tor corresponds to doping in the Rice model. How-
ever, the magnetic field, being an intense thermody-
namic quantity, does not allow for phase separation.
However, for cold atoms in an optical trap (where an
analog of the FFLO is predicted), it may be possible to
control not the field, but the polarization, which is an
extensive quantity. In this case, phase separation is
possible [24]. Note that the FFLO phase is quite sen-
sitive to the disorder [25]. It is natural to expect that
the incommensurate AFM order should also be sus-
ceptible to the existence of defects.

3. MAGNETIC FIELD EFFECT
ON THE PHASE SEPARATION

Naturally, the magnetically ordered system under
discussion is especially sensitive to the applied mag-
netic field. To take into account the magnetic field B,
we should first replace the momentum operator p by
the gauge invariant combination p + (e/c)A, where A
is the vector potential of the magnetic field. Second, it
is necessary to add the Zeeman term g,c%®, to the
one-electron Hamiltonian, where g, is the Landé g-
factor and w, = eB/cm, is the cyclotron frequency of
a charge carrier with the mass m,. The energy spec-
trum of the model is now characterized by two single-
particle energy scales: the Fermi energy e and the dis-
tance 7, between the Landau levels. The energy
scale related to the electron—hole interaction is char-
acterized by the AFM band gap A,. The Landau quan-
tization is of importance in the high-field range
hw, > A,, whereas at low fields, 7®, < A, it can be
neglected. Here, we limit ourselves to the regime of
low magnetic fields, neglecting any corrections of the
order of 1o, /er < 1.

Adding Zeeman terms, we obtain instead of
Egs. (2)

€l(k) = hvp(k — kp) — U + g,0h0,, ©
eo(k +Qq) = —hvi(k — kp) — L+ g,6hw,,

The magnetic field lifts the degeneracy with respect to
spin (Fig. 3). Therefore, we have to introduce a two-
component order parameter corresponding to the
nesting vectors shown by the arrows in Fig. 3. For sim-
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Fig. 3. (Color online) Band structure of the system in an
applied magnetic field. The magnetic field lifts the degen-
eracy of the energy bands with respect to spin. The red
arrows indicate the interband coupling giving rise to the
order parameters (Fig. 1 from [26]).

plicity, we do not consider the incommensurate SDW
ordering. Then, the components of the order parame-
ter can be represented in the form [26]

Ay =V Aajrboy), Ay =V (al br).  (10)
k k

The case where the electron and hole bands are per-
fectly symmetric is the simplest one. In such a situa-
tion, however, the applied magnetic field produces no
effect on the electron spectrum. Thus, some elec-
tron—hole asymmetry is necessary to obtain a nontriv-
ial result.

Let the effective masses of electrons and holes be
equal, m, =m, =m, and hence ®,=®, = Oy,
whereas g, # g,. Following the procedure described
in the previous section, now we can find the eigenen-
ergies of the Hamiltonian and calculate the grand
potential Q. Minimization of Q yields the following
equation for the gap A [26]:

lnﬁ

. ’ 1
_ jdgfmz +8 + 1) + f(AL +E —Ho). (an
g VAL +8
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Fig. 4. (Color online) Phase diagram of the system at

T = 0. In this diagram, we see the homogeneous SDW
phase AF1 (definition is given in the main text), two
regions with uniform paramagnetic (PM) phase, and
phase separated states PS1 (mixture of two SDW phases,
see the text) and PS2 (mixture of AF1 and PM phases)

(Fig. 3b from [26]).

where W, =W —-0(g, — g,)hwy/2. Neglecting the
existence of the nonmagnetic parts of the Fermi sur-
face, we obtain similar to Eq. (8)

X

X
- (12)

= YA E - sl E )|

The phase diagram of the model on the (B, x) plane at
T =0 is shown in Fig. 4 [26], where b =
lg, — g,Jhm, /2A, < B. The homogeneous paramag-
netic state exists in the system at a high doping level
(x> 2b—x/§) or at a high applied magnetic field

b > 1/\/5 + x/2x,). In the low doping range and at a
low magnetic field, the ground state of the system cor-
responds to the phase separation. The inhomogeneous
phase PS1 (see Fig. 4) is a mixture of the two AFM
phases. The first phase corresponds to SDW with zero
doping and Ay = A; = A,. In the second phase with

nonzero doping, we have A = A, and A| = 0. This
phase is referred to as AF1. The PS1 phase is the

ground state of the model if |b|< 1/¥2 and

Ix/x,| < 1/2. The homogeneous AF1 phase is stable
within the range of intermediate magnetic fields

x/2xy — W2<b< x/2x, + 2v2. The inhomoge-
neous state is stable in the regions between the homo-
geneous paramagnetic (PM) and AF1 phases. The
phase-separated PS2 state consists of the mixture of
the SDW AF1 phase and the PM phase. Thus, we see
that the magnetic field lifts the spin-projection degen-

RAKHMANOV et al.

1
--

i

- "D

Electron doping

Parent

Fig. 5. (Color online) Schematic illustration of the Fermi
surface of iron pnictides in the (a) unfolded and (b) folded
Brillouin zone. We have three hole pockets located near
the center of the folded Brillouin zone [shown by (blue)
solid curves]. In the unfolded Brillouin zone, one of the
hole pockets moves to the corner of the Brillouin zone. For
the unfolded Brillouin zone (a), the electron pockets are
elliptic [(red) dashed curves| and located near the (0,7t/a)
and (m/a,0) points, while in the folded Brillouin zone,
they are represented by overlapping ellipses located at the
corners. Arrows show the possible nesting vectors between
hole and electron pockets, which give rise to the SDW
order. (c) Schematic illustration of the possible nesting at

different doping levels (Fig. 1 from [14]).

eracy of the SDW order parameter. As a result, the
number of possible homogeneous states increases,
which, in turn, drastically affects the picture of the
electronic phase separation.

4. PHASE SEPARATION
IN SUPERCONDUCTING PNICTIDES

Superconducting iron-based pnictides form
another system with imperfect nesting. The phase dia-
gram in iron pnictides is very rich and contains the
regions corresponding to spin and charge inhomoge-
neities [27—32]. Note that the electron—electron
interaction in pnictides is usually considered to be
weak (see, e.g., Section III A in review [33]). The
phase separation is also observed in superconducting
iron chalcogenides [34, 35]. In these compounds,
however, it seems to be related to another mechanism
since it is usually assumed that the Fermi surface nest-
ing is absent in chalcogenides.

The Fermi surface of iron pnictides is typically
described using two related representations. In Fig. 5a,
we plot the Fermi surface within the so-called
unfolded Brillouin zone, which corresponds to the
square lattice of iron atoms, with one Fe atom per unit
cell and having the lattice constant a. In this represen-
tation, two quasi-two-dimensional nearly circular
hole pockets are centered at the I'(0,0) point and one
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even more circular hole pocket is located near the
I"'(m, ) point. Two elliptical electron pockets are cen-
tered at the points M(0,mt/a) and M(m/a,0). The
actual unit cell in pnictides contains two Fe atoms
located at nonequivalent positions.

The folded Brillouin zone corresponding to this
unit cell is obtained by folding the Brillouin zone
shown in Fig. 5a by dashed lines and consequent rota-
tion by an angle of m/4. The Fermi surface in the
folded Brillouin zone is shown in Fig. 5b. In this fig-
ure, all three hole pockets are located near the point
1°(0,0), while electron pockets represented by overlap-
ping ellipses are located near the points M (xn/a,nt/a)
witha = a/x/i . Here, we make several simplifications.
First, we neglect the effects associated with nonequiv-
alent positions of the Fe atoms. Consequently, the use
of the unfolded Brillouin zone is sufficient. Second,
we will neglect the three-dimensional structure of the
material and study only the two-dimensional model.

Following [14], the Hamiltonian of the model can
be written as A = ﬁo + F[im, where

A~ ht e ;1
Ho= Z‘Euakxcakm + Zeskbkscbksc'

k\oc kso

(13)

Here, alkc, s (bljm, by, ) are the creation and annihi-
lation operators for charge carriers in the holelike
(electronlike) bands, A =1,2,3 (s =1,2), with the

energies efk (e%0)- Assuming that the bands have qua-
dratic dispersion laws near the Fermi level, for the
holelike bands with the cylindrical Fermi surface, we
have

_hvek® —kg)

eflk = % W,
F
vk -k
¢ = _—VzF(zk DA, -y, (14)
F
hvi(k? — ki
€§k+(2 =- 3F(2k —ke) _ Ay -1,
F

where hvy and #hv,;: are the Fermi velocities,

Q = (n/a,m/a), and A,; determine the difference in
the radii of pockets.

The electronlike components of the Fermi surface
are elliptic and can be represented as follows [14]:

e _ e
€1k+Q, — €Ik+Qq

15)

e 2 2 e
kg kg
where Q, = (/a,0) and Q, = (0,7/a), and vy is the
Fermi velocity in electron bands. The parameter o
defines the ellipticity of the electron pockets. The
JETP LETTERS Vol 105
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major axes of the ellipses are directed toward the point
I" at oo > 0 and perpendicular to this direction when
a<0.

The interaction Hamiltonian f7, , includes a num-
ber of contributions. However, since we are interested
in the SDW order and the phase separation, the elec-
tron—electron and hole—hole interactions can be
ignored. It is well known [27] that the local magnetic
moment in pnictides oscillates along one of the crystal
axes. To reproduce this stripy magnetic structure, it is
sufficient to consider the coupling of one electron
band and one hole band. For the sake of definiteness,

we assume that these are ef’ and €. Then, we have

Hin=V Z aI+K10aklcblzr‘—ch'bk'lc" (16)

kk'K,c,6'

The described model for pnictides is a generalization
of the Rice model. As in the latter case, two bands par-
ticipate in the magnetic transition, and there is a “res-
ervoir” (nonmagnetic bands). However, the perfect
nesting is impossible for pnictides since the form of the
hole and electron pockets is different for any doping
level.

Since the Coulomb interaction in iron pnictides is

weak, V/ep <1, where ep = (vi + vi)kg/2 is the
Fermi energy, the problem can be solved in the mean-
field approximation [14]. We will search for the order
parameter in form (3). The magnetization corre-
sponding to the chosen AFM order lies in the xy
plane. For the commensurate SDW case, the magne-
tization direction remains unchanged when one moves
along the direction normal to Q,. When one moves
parallel to Q,, the magnetization reverses its direction
from one iron atom to the next iron atom. For incom-
mensurate SDW, this “stripy” pattern slowly rotates in
the xy plane [14].

In the approximation under study, the energy spec-
trum of Hamiltonian (16) is similar to that given by (4)
and the grand potential has form (5), where energies
e”’ involved in expression (4) for E, should be
replaced by €“". The minimization of the grand poten-
tial Q gives the equations for A and Q similar to
Egs. (7) [14]. Within the weak coupling scheme, the
SDW order arises only if the deviation from the perfect
nesting is small, i.e., o0 < 1. We also assume that A/ep,
lql/kr < 1. Then, the equation for the order parameter

at T = 0 can be written as [14]

21
nl= jd—‘pRe{cosh" [‘M}}, (17)
o 7 o o
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where

Vo(p,®) = p,cosQ+ p,sin@ —%cos 2¢,

h

azocKeF’ KzngFVF’ (18)
A() VF +VF
A u Kv
8:—, AV =——, :—F .
A, A, P oAt

Similarly, for the nesting vector, we have Q = Q, +
2A,p/ VX, where

2n .
Px| _ d_(p sin @ .
(PJ - '([27: (cos (pjsgn[\’o(p, ®) — V]

x Rey[vo(p,¢) — VI* - &2

The relation between the chemical potential and the
electron density can be found in the same way as above
(see Eq. (8) and the text before it). As a result, we
obtain [14]

19)

2n

. d
X =jiv - I—‘psgn[vo(p, ¢®) — V]
X . 21

x Rey[vo(p, @) - VI - &%,
where

Xy = 2kaleO = (ng)—l + (V;ZF)_1 + (V]e:)_1 (20)
VE) " + (V)

TKE R
v, is the unit cell volume, and 7 is the electron density
in nonmagnetic bands. Since x; ~ Ay/er <K 1, the
phases arising in the system at x ~ x,, correspond to the
low-doping regime.

The behavior of the functions A(x) and g(x) is illus-
trated in Figs. 6a and 6b for 7i = ¥ = 1 at two different
values of or. The numerical analysis demonstrates that
the SDW state arises if |0 < 2. If [x| < xj*, the charge
carriers introduced by doping go to the nonmagnetic
bands. As a result, the order parameter is independent

of x, and g(x) = 0. At |x| > x;*, electrons (holes)
appear in the band £, (£,). The SDW order becomes
incommensurate, g # 0. The spin configurations for

the incommensurate SDW are schematically shown in
Figs. 6¢ and 6d.

The chemical potential W(x) computed in [14] is
plotted in Fig. 7 for three different values of the ellip-
ticity @ and at 7=k =1. If @ is not large, then the
function u(x) is nonmonotonic and multivalued near

X = xf< (see Fig. 7a). At a larger ellipticity, the mul-
tivaluedness of W(x) disappears (see Fig. 7b); then, at
even larger & values, the nonmonotonic behavior also
disappears (see Fig. 7c). Thus, if the ellipticity is not
too large, there are finite ranges of doping where

(@) x=-xi. ,xX'/x,=0.896
1.0 1 0 d1.0
0.5
| <O
0 1 > 08
=
x)/x,=0.7 1 &
— ql.2
—0.6
| | L | h
0 1 2 0
) vy (d

Fig. 6. (Color online) A and |q| versus x at 7i=x=1:

(a) & = 0.1, the transition from the commensurate to
incommensurate SDW state is of the first order; dashed

lines depict the functions A(x) and |q(x)| corresponding to
metastable states; (b) o = 0.6, the transition from com-
mensurate to incommensurate SDW state is of the second
order. Panels (c) and (d) show the schematics of the
incommensurate SDW spin structure. If o > 0, then panel
(c) corresponds to the hole doping (x < 0) and panel (d)
corresponds to the electron doping (x > 0). If o < 0, then
panel (c) corresponds to the electron doping, while panel
(d) corresponds to the hole doping (Fig. 2 from [14]).

JdU(x)/dx < 0, and the homogeneous state is unstable
with respect to the separation into two phases. The
phase separation range x; < x < X, shrinks if the ellip-
ticity increases and disappears at the critical value
o.=1.15.

In the phase-separated state, there exist two
phases: phase 1 with a lower charge carrier density is
the commensurate one and phase 2 with a higher
charge carrier density corresponds to the incommen-
surate SDW state. The phase diagram of the system
can be constructed following the approach described
in the previous sections. The results obtained are sum-
marized in the phase diagram in the (x,o)) plane
shown in Fig. 8 [14]. This phase diagram is calculated
for 7i=x =1. It remains qualitatively the same if
n# 0. If the nonmagnetic bands are absent, the
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Fig. 7. (Color online) Chemical potential pi(x) calculated
ata = (a) 0.1, (b) 0.5,and (c) 1.2. Here, we have /i = x = 1.
Panels (a) and (b) show that the homogeneous state is
unstable with respect to phase separation if x; < x < x;.

The dashed (red) curve corresponds to the 1, value found
using the Maxwell construction. The shaded areas above

and below | are equal to each other. In panel (c), the
chemical potential increases monotonically with x and no
phase separation appears. The homogeneous commensu-
rate and incommensurate SDW, paramagnetic (PM), and
inhomogeneous commensurate—incommensurate SDW
(PS) states are separated by vertical dashed lines (Fig. 3

from [14]).

homogeneous commensurate SDW phase exists only
when x = 0.

The phase separation in iron-based superconduc-
tors has been observed in several experiments [28—31].
For example, the inhomogeneous state with a com-
mensurate AFM order and nonmagnetic domains
with characteristic sizes about 65 nm was observed in
the hole-doped Ba, _ K Fe,As, compound [28]. The
model described above predicts that the second phase
is an incommensurate SDW phase rather than a non-
magnetic one. However, the thermodynamic poten-

JETP LETTERS Vol 105

No.12 2017

3

x/x,

Fig. 8. (Color online) Phase diagram of the model for
pnictides in the (x, o) plane, for7i = x =1 and o, x > 0. It
is symmetric with respect to the replacement x — —x
and/or o0 — —o.. The boundary between incommensurate
SDW and paramagnetic (PM) states shown by the dashed
(red) curve and by the solid (red) curve corresponds to the
first- and second-order phase transitions, respectively.
Solid (blue) lines indicate the boundaries of the phase-
separated (PS) state. The solid (black) curve (second-
order transition) and dashed (black) curve (first-order
transition) show the boundaries between commensurate
and incommensurate homogeneous SDW phases (Fig. 4
from [14]).

tials of the incommensurate SDW and metastable PM
phases are very close to each other. The incommensu-
rate SDW phase can be destroyed by an additional
mechanism disregarded in the model, e.g., by disor-
der. In this case, the inhomogeneous state can be
treated as a mixture of the commensurate SDW and
paramagnetic phases.

Here, we consider the SDW order parameter in
form (3). As was mentioned above, different order
parameters are also discussed in the literature (see,
e.g., [23]). However, the difference in the free energy
corresponding to different kinds of order parameters is
small. Therefore, the specific form of the order
parameter is determined by the detailed characteristics
of the system under study.

The calculations above show that there are only two
possible equilibrium directions of the vector q charac-
terizing the incommensurate SDW phase. This vector
can be either parallel or perpendicular to the nesting
vector Q,, depending on the type of doping and the
sign of the ellipticity parameter o. It is clear that both
the magnitude and the direction of q are sensitive to
the shape of the Fermi surface. In actual pnictides, the
shape of the hole pockets deviates from perfect circles
and the spectrum of the bands depends on the trans-

verse momentum k_. Nevertheless, the observation of
the incommensurate SDW phase with q perpendicular

to Q, in the electron-doped Ba(Fe, —,Co,),As, com-
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pound was reported in [36—38], whereas the spin fluc-
tuations corresponding to q parallel to Q, have been
observed in the hole-doped Ba,_, K Fe,As, com-
pound. These observations are in agreement with the
prediction of the model.

Thus, the discussed model with a simple approxi-
mation of the Fermi surface predicts the existence of
electronic phase separation in pnictides even in the
weak-coupling regime. This is an important finding
for the interpretation of the experimental data on
phase inhomogeneity of iron pnictides: it proves that a
purely electronic model with moderate interaction is
sufficient to explain the observed inhomogeneous
phases.

5. PHASE SEPARATION
IN BILAYER AA GRAPHENE

Graphene is a zero-gap semiconductor exhibiting a
host of unusual electronic characteristics [39]. In
addition to single-layer graphene, bilayer graphene is
also actively studied [40]. Bilayer graphene exists in
three stacking modifications. The most common is the
so-called Bernal, or AB, stacking of bilayer graphene.
In the AB stacking, half of the carbon atoms in the top
layer are located above the hexagon centers in the
lower layer, and another half of the atoms in the top
layer lie above the atoms in the lower layer. A different
layer arrangement in which carbon atoms in the upper
layer are located above the equivalent atoms of the
bottom layer is referred to as AA-stacked bilayer
graphene. The third modification is a twisted bilayer
in which the top graphene layer is rotated by some
angle with respect to the bottom layer. If the angle of
rotation is not large, the twisted bilayer graphene can
be approximately treated as a mixture of AB and AA
stackings.

The unit cell of the bilayer graphene consists of
four carbon atoms which form sublattices A1 and Bl in
the bottom layer and A2 and B2 in the top layer. The
tight-binding analysis shows that the AA bilayer has
four bands (two hole bands and two electron bands)
[40]:

en =t tifil & =1 t4A)
i 3k
fu=1+ exp(MTxao)cos[Tyao ,

where ¢, and ¢ are the hopping amplitudes of electrons
between the nearest carbon atoms in different layers
and within the same layer, respectively, and g, is the
lattice constant.

Band structure (21) is illustrated in Fig. 9. The low-
energy dispersion in the AA bilayer is linear, similar to
that of monolayer graphene. Unlike the latter, how-
ever, the AA bilayer has the Fermi surface including
two valleys located near the Dirac points. An import-

(21)

RAKHMANOV et al.

15

10

882 (eV)

—

M K

Fig. 9. (Color online) (a) Single-particle band structure of

the AA-stacked bilayer graphene. (b) €}, spectrum near the
Dirac point located at the momentum K. Here,

k=K+ Bkyey. The intersection of the bands s = 2 and 3
occurs at zero energy, which corresponds to the Fermi level
of the undoped system. (c) First Brillouin zone (hexagon)
and the reciprocal-lattice unit cell (rhombus) of the AA
bilayer graphene. The circles around points K and K' cor-
respond to the Fermi surfaces of the doped system (Fig. 1
from [16]).

ant feature of the AA bilayer is that the hole and elec-
tron Fermi surfaces coincide in the undoped material;
i.e., there exists a perfect nesting, which becomes
imperfect with doping. Then, even a weak elec-
tron—electron coupling gives rise to the SDW instabil-
ity, to the formation of the AFM commensurate and
incommensurate ordering, and to the phase separation
[16, 40, 41]. Note that these properties are rather
robust in the structures with the AA stacking. They
also survive for the systems with longer-range hop-
pings and with nonequivalent layers [41].

Thus, the existence of two bands with identical
Fermi surfaces makes the AA-stacked bilayer graphene
unstable with respect to spontaneous symmetry break-
ing. This instability can open a gap in the electronic
spectrum, thus decreasing the free energy of the sys-
tem for arbitrarily weak electron—electron interaction.
The studies [15, 16, 41] have demonstrated that, for
parameters characteristic of graphene-based systems,
the ground state is the so-called G-type AFM order
(all nearest neighboring spins in the lattice are antipar-
allel to each other). The AFM phase is mainly con-
trolled by the on-site Coulomb repulsion. Let us ana-
lyze this problem in the framework of the Hubbard
model with the electron—electron interaction term in
the form

.U, | 1
Hin = ? ' Pnioo _5 Mmios _5 ’ (22)
m,i,0,0
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where n,,;,, is the particle number operator at site m,
o = A, B is the index of the sublattice, i =1,2 is the
number of the graphene layer, and G means “not G.”
The intersite Coulomb interactions are neglected. In
this case, it is commonly accepted that, for more ade-
quate description of the actual situation, one should
use a value of U, smaller than that predicted by the ab
initio calculations. The estimate yields U, = 5-7 eV
[40].

The commensurate AFM order parameter can be
written as

Ay =U, <a::1iTamii>’ Ap =U, <b;1inmfi>’

(23)
Ay =0 =-0y =-Ap =A,
A being a real parameter.
The mean-field band spectra have the form
1,4 2 2
g, = AT+ + 1),
k + ( lf kl 0) (24)

ey’ = FVA” + (il — 1)

To determine A, one has to minimize the correspond-
ing grand potential

2
Qz%—Uo(nz—l)—ZT

0

4
dk L —g
XZIVBZIn{1+exp T }

s=1

(25)

where 7 is the number of electrons per site, x = n —1is
the doping level, Vy, is the volume of the Brillouin
zone, and W' = —Uyx/2. The calculated AFM gap
decreases monotonically with the growth of the dop-
ing level x. The gap vanishes at some x = x(T) [40].

The G-type AFM state has the lowest value of the
thermodynamic potential among states with a com-
mensurate magnetic order. Further optimization of Q
can be achieved if we take into account an incommen-
surate SDW ordering. Following [40], we represent the
complex order parameter for this state in the form

AniA = elaniA’ AniB = elaniB’

(26)

where ¢ describes the spatial variation of the direction

of the AFM vector; S, is the averaged electron spin
per unit cell n in the ith layer located at the sublattice
o; it lies in the (x, y) plane and is related to the order

parameter by S,;, = A, [cosqn,singqn]/U,,.

Then, we should minimize Q with respect to the q
vector. The corresponding calculations are reported in
[16]. The incommensurate AFM ordering exists in a
slightly wider doping range than the commensurate
one.
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Fig. 10. (Color online) Phase diagram of the AA bilayer

graphene calculated for Uy = (a) 5.5 and (b) 6.5 eV. Solid
(red) curves correspond to the transition temperature

Tvig(x) between the AFM and paramagnetic states; (blue)
dashed curves are the temperature 77(x) at which the

transition between the commensurate and incommensu-
rate AFM phases occurs. The dotted (black) curves corre-

spond to the temperature 7 g(x) calculated disregarding
the existence of the incommensurate AFM phase. The
dash-dotted (green) curves are the boundaries of the

phase-separation region (Fig. 32 from review [40]).

The formation of inhomogeneous states turns out
to be an inherent feature of the multiband systems,
especially of those with nesting. In [15, 16], it was pre-
dicted that the AA bilayer graphene at nonzero doping
can become separated into two phases with unequal
charge carrier densities n;, =1+ x;,. It was demon-
strated that a typical doping dependence of the chem-
ical potential of AA graphene bilayer has the form
shown in Fig. 1 for both commensurate and incom-
mensurate AFM ordering if the onsite Coulomb repul-

sion is not too strong, U, < nx/gtz/to. This indicates
that the system is unstable and can undergo the phase
separation into commensurate (q =0, x;, < x) and
incommensurate (q # 0, x, > x) phases. The phase
diagram of the AA graphene bilayer in the (x,7T") plane
is shown in Fig. 10 for two different values of U,. The
region of phase separation is bounded by dash-dotted
(green) curves. Note that the incommensurate order is
known to be sensitive to disorder. Moreover, the grand
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potential difference for incommensurate and com-
mensurate AFM phases is not large. Thus, the phase
separation involving the AFM insulator (x;, = 0) and
the paramagnetic (if U, > 6 eV) or AFM (if U, < 6 eV)
metal is quite possible. Note also that the phase sepa-
ration will be frustrated by the long-range Coulomb
repulsion since the local charge neutrality is broken in
the inhomogeneous phase. The phase separation
region shrinks with the growth of U, on the doping
axis, while the temperature range where the phase sep-

aration is possible increases with U,. However, one
should remember that the mean-field approach is not

a good approximation in the case of large U, values.

6. CONCLUSIONS

Thus, the formation of inhomogeneous electron
states (electronic phase separation) is a rather general
feature of the systems with the imperfect nesting of the
Fermi surface. Among the materials belonging to this
class, we have chromium and its alloys, iron-based
pnictide superconductors, and graphene related mate-
rials, as well as some other materials which we have not
touched upon in this review, such as hexaborides and
organic metals and also other interesting and widely
studied compounds.
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