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1. INTRODUCTION
We recall the definition introduced in [1, Def. 2.1].

Definition 1. Given a group G, let
Ja = supmin [F : A],
Fr A

where F' runs over all finite subgroups of G and A runs over all normal Abelian subgroups of F. If
Jg # oo, then G is called a Jordan group, and Jg is called the Jordan constant of G. In this case, we
also say that G has the Jordan property.

Informally, the Jordan property of G means that all finite subgroups of G are “almost Abelian” in the
sense that they are extensions of Abelian groups by groups from a finite list. Definition 1 is inspired
by the classical theorem of Jordan [2] claiming that Jgy,, (s) # oo holds for every n and every field £ of
characteristic zero. If £ is algebraically closed, then, for every fixed n, the constant Jqr,,, (¢ is independent
of £, and we denote it simply by J(n). It has been computed in [3]; in particular,

J(n)=(n+1)!  foralln>71andn = 63,65,67, 69.

For more examples of Jordan groups, see [4].

In what follows, by a variety we mean an algebraic variety over a fixed algebraically closed field & of
characteristic zero; in particular, any algebraic group is defined over k. If G is either an algebraic group
or a topological group, G° denotes the identity component of G.

The following problem was posed seven years ago in[1, Sec. 2] (see also [4, Sec. 2]); since then, it has
been explored by a number of researchers (see the most recent brief survey and references in [5, Sec. 1]).

Problem. Describe varieties X for which the group Aut(X) is Jordan.

At present (April 2018), it is still unknown whether there are varieties X such that the group Aut(X)
is non-Jordan (note that complex manifolds whose automorphism groups are non-Jordan do exist; see
Remark 2 below). On the other hand, for many types of varieties X, it has been shown that the group
Aut(X) is Jordan. In particular, Sheng Meng and De-Qi Zhang have recently proved the following
theorem.

*The article was submitted by the author for the English version of the journal.
" E-mail: popovvl@mi.ras.ru
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Theorem 1 ([6, Therem 1.6]). For every projective variety X, the group Aut(X) is Jordan.

Given a variety X, by Aut(X)® we denote the identity component of Aut(X) in the sense of [7]; see
also [8]. According to [7, Cor. 1], if X is complete, then Aut(X)? is a connected (not necessarily affine)
algebraic group. Jordan’s theorem cited above implies that every affine algebraic group is Jordan; see 4,
Theorem 2]. The key ingredient of the proof of Theorem 1 given in [6] is the proof that the extension
of this claim to all (i.e., not necessarily affine) algebraic groups holds true. The latter proof is rather
involved.

In the present note, we obtain a general result (with a very short proof), from which the
above-mentioned extension immediately follows (see Theorem 4 below). Namely, we prove that
every finite-dimensional connected real Lie group is Jordan (more precise and general statements are
formulated in Theorems 2 and 3 and Corollary 3 below). Then, in Secs. 5—7, we apply this result to
show that certain transformation groups of complex spaces and Riemannian manifolds are Jordan (see
Theorems 5, 7—9, and 10 below).

2. LIE GROUPS

We now explore the Jordan property for finite-dimensional real Lie groups G. Note that non-Jordan
groups of this type do exist, because every discrete group is a 0-dimensional real Lie group and there are
non-Jordan discrete groups (see [4, 1.2.5]). Therefore, G can be expected to be Jordan only under some
restriction on the component group G/G°.

To formulate this restriction, we recall the following definition introduced in[1, Def. 2.9].

Definition 2. Given a group H, we set

by = sup|F,
F
where F' runs over all finite subgroups of H. If b;; # oo, then the group H is said to be bounded.

In particular, every finite group H is bounded, and b, = |H|.

In Theorems 2 and 3 and Corollary 1 below, we consider the class of finite-dimensional real Lie groups
G whose component group G/G° is bounded. Note that every compact Lie group K belongs to this
class, because K /K9 is finite.

Theorem 2. Let G be a finite-dimensional real Lie group whose component group G/G° is
bounded. Then G is Jordan.

Proof. Inview of [1, Lemma 2.11] (or [4, Therem 5]), we may (and shall) assume that G is connected.
This assumption implies the existence of a compact Lie subgroup K of G such that every compact
subgroup of G is conjugate to that of K (see, e.g.,[10, Chap. XV, Theorem 3.1(iii)]). In particular, every
finite subgroup of G is conjugate to that of K. This and Definition 1 show that G is Jordan if and only if
sois K, and if they are, then

Jo = Jk. (1)

Being compact, the group K admits a faithful finite-dimensional representation, i.e., is isomorphic to
a subgroup of GL,,,(R) for some m (see, e.g.,[11, Chap. 5, Sec. 2, Theorem 10]). Since the latter group
is Jordan, K is Jordan as well (see [4, Theorem 3(i)]. This completes the proof. O

Corollary 1. For every finite-dimensional real Lie group G whose component group G/G° is
bounded, the set of isomorphism classes of all finite simple subgroups of G is finite.

We now dwell on estimating the Jordan constants of Lie groups whose component group is finite,
with a view to proving that the class of such groups has a property stronger than that all of its members
are Jordan (see Corollary 3 below). Seeking only this goal, we did not seek to improve the estimates
obtained.
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Lemma 1. Let S be a simply connected simple affine algebraic group. Then the minimum rdim S
of dimensions of faithful linear algebraic representations of S is given by the following table:

D

¢
>4, ¢ even

Ay
>1

By
>2

Cy

>2

Dy
¢>3, ¢ odd

rdim S Hé+1‘2f‘2e‘ 2t-1 ‘2é+22—1‘27‘56‘248‘26‘7

type of § E6 E7 Eg F4 G2

Remark 1. In the proof of Lemma 1 below, a faithiul representation of S of dimension rdim S is explicitly
specified for each type of S.

Proof of Lemma 1. By Leischetz’s principle (see, e.g., [12, VI.6]), we may (and shall) assume that
k is C. We fix a maximal torus 7" of S. Let ai,...,ap € (LieT)*, wy,...,wy € (LieT)*, and
af,...,a) € LieT be, respectively, the systems of simple roots, fundamental weights, and simple
coroots of Lie T" with respect to a fixed Borel subalgebra of Lie S containing Lie T"; we number them
asin[11].

The center Z of S'is a finite subgroup of T'. Fix a subset Z of Lie T" whose image under the exponential
map LieT — T is the set of all nonidentity elements of Z.

For every dominant weight A € (Lie T")*, let R(\) be an irreducible representation of Lie S with the
highest weight A. The dimension of R(w;) for every i is specified in [11, Ref. Chap., Sec. 2, Table 5, pp.
299—305]. Note that Weyl’s dimension formula implies

dim R(Zle )\sz) > dim R(Zle ,uiwi) if A, > )27 for every i. (2)

Since S is simply connected, R()\) is the differential of a finite-dimensional linear algebraic repre-
sentation R(A) of S. Since S is simple, for every finite set D of nonzero dominant weights and
R(D) := oplusyepR(N), we have ker R(D) C Z. Hence

R(D) is faithful <= forevery z € Z, thereis a A € D with A\(z) ¢ Z. (3)

As is well known, dim R(w) is the minimal dimension of nonzero finite-dimensional algebraic
representations of S (see[11, pp. 299—305]).

[f S is of type Eg, F4, or Gy, then Z is trivial; hence, in this case, R(w) is faithful and, therefore, we
have the equality
rdim S = dim R(w1), (4)

which proves Lemma | for these types.

If S is of type Ay or Cy, then S is SLyyq or Spyy, respectively. For these groups, R(zwq) is the
tautological faithful representation; therefore, in this case, (4) holds as well, which proves Lemma 1
for these types.

For the other types, we apply (3) to the set Z taken from [11, Ref. Chap., Sec. 2, Table 3, p. 298]. In
what follows, we use the fact that, for any A;, p; € k,

the value of Zle Niwo; € (LieT)* in Zle wiey € LieT is Zle Nifi- (5)

If S is of type E7, then Z consists of only one element ¢ := (o) + ay + a¥)/2. By (5), we have
w1(¢) = 1/2 ¢ Z, so that R(w) is faithful. Therefore, in this case, (4) holds too, which proves Lemma 1
for this type.

If S is of type Eg, then Z consists of the two elements ¢ := (o) — ay + af — ay)/3 and 2¢. Since
w1(z) =1/3 ¢ Z and wy(2z) = 2/3 ¢ 7Z, in this case, R(wo1) is again faithiul, which implies (4). This
proves Lemma 1 for this type.

If S is of type By, then Z consists of only one element )/ /2. This and (3), (5) imply that R(D) is

faithful if and only if D contains Zle Aiw; with odd Ap. Using (2), from this we infer that R(wy) is
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the faithful representation of minimal dimension. Hence rdim S = dim R(wy). This proves Lemma 1 for
this type.

If S'is of type Dy, £ > 3, £ odd, then 7 consists of three elements

Ci=(af + o+ +al )24+ (a1 —a))/4, 2¢, 3¢ (6)

From (3), (5), and (6) we infer that R(D) is faithful if and only if D contains Zle Aiw; such that 4
is coprime to either Ap_1 or Ap. This and (2) show that R(wy) is a faithiul representation of minimal
dimension. Hence rdim S = dim R(zy), which proves Lemma 1 for this type.

If S is of type Dy for even £ > 4, then Z consists of the three elements
Q= (of +oy + o) )/2, Q= (o +0f)/2, G+ (7)

Hence if R(D) is faithful, then D contains Zle Ajo; with odd Ap or Ap_q and Zle wiwo; with odd g
for some odd i # ¢ — 1. On the other hand, since Z is not cyclic in this case, Schur’s lemma implies
|D| > 2. From this it is not difficult to deduce that R(w) ® R(wy) is a faithful representation of

minimal dimension. Hence rdim S = dim R(w) + dim R(wwy) = 2¢ + 2°~1. This completes the proof
of Lemma 1. O

Corollary 2. Every simply connected simple affine algebraic group of rank ¢ admits a faithful
linear algebraic representation of dimension at most 2¢ + 10.

Proof. Clearly, if an algebraic group admits a faithful linear algebraic representation, then it admits a
faithful linear algebraic representation of any bigger dimension. In view of this, the claim follows from

the inequality rdim S < 2¢ + 10, which, in turn, follows from Lemma 1: indeed, the latter shows that
rdim S < 2¢ if the type of S differs from F4 and Gy, and that rdim S = 2¢ 4 10 and 2¢ + 3, respectively,
for the types F4 and Gs. O

Theorem 3. Let G be an n-dimensional real Lie group whose component group G /G is bounded.
Then

Ja < baygod (n(2" +10))"e/6°. (8)

Proof. According to [1, Lemma 2.11] (or [4, Theorem 5]), we may (and shall) assume that G is
connected; in particular,

bG/GO — 1 (9)

We use the notation of the proof of Theorem 2. Since G is connected, it follows that K is connected,
too; see[10, Chap. XV, Theorem 3.1(ii)]. Hence (see[13, Sec. 1, Proposition 4]) there are

(i) compact simply connected simple Lie groups K1, ..., Kg;
(ii) a compact torus S;
(iii) a group epimorphism with finite kernel
K=K x - xKyx8— K. (10)
Using Theorem 3 (ii) of [4], from (iii) we infer
Ik < Jz. (11)

Every K; is a real form of the corresponding simply connected simple complex affine algebraic
group. The rank ¢; of the latter is equal to that of K;. In view of Corollary 2, we conclude that K;

admits an embedding in GLye,, 1((C). Since ¢; < dim K = dim K < n, this, in turn, implies that K
admits an embedding in GLany10(C). Clearly, S admits an embedding in GLgin, s(C), and therefore,
since dim S < dim K, in GLgn419(C). This and the definition of K (see (10)) show that K admits an
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embedding in the direct product of d + 1 copies of GLan119(C) and hence in GL(441)(2n410)(C). Since
d+1 < dim K in view of (10), it follows that K admits an embedding in GLy, (27 110)(C); hence

Tz < J(n(2" 4 10)). (12)

Now, collecting (1), (11),(12), and (9) together, we complete the proof. O

We recall the following definition from [6].

Definition 3. A family F of groups is said to be uniformly Jordan if every group in F is Jordan and
there is an integer Jr such that Jg < Jr forevery G € F.

Corollary 3. Fix an integer n > 0. Let L,, be the family of all connected n-dimensional real Lie
groups. Then

(i) the family L, is uniformly Jordan,

(ii) one can take J, = J(n(2"™ + 10)).

Proof. This assertion follows from (8), because b /o = 1 for every G € L,,. O

Corollary 4. For every integer n > 0, the set of isomorphism classes of finite simple groups
embeddable in n-dimensional connected real Lie groups is finite.

3. ALGEBRAIC GROUPS

Now we consider several applications of Theorems 2 and 3. First, we apply them to algebraic groups,
answering Question 1.2 in [6].

Theorem 4. Every (not necessarily affine) n-dimensional algebraic group G over an alge-
braically closed field k of characteristic 0 is Jordan. Moreover,

Jo < [G 1 GOlJ(n(22 4 20))1G:¢°, (13)

Proof. In the case under consideration, G/GY is finite. By Lefschetz’s principle, we may (and shall)
assume that £ is C. Then G has the structure of a 2n-dimensional real Lie group whose identity
component is G°. The required assertion then follows from Theorem 3. O

Statement (i) of the next corollary is one of the main results of [6].

Corollary 5. Fix an integer n > 0. Let A, be the family of all (not necessarily affine) connected
n-dimensional algebraic groups over an algebraically closed field k of characteristic 0. Then

(i) ([6, Theorem 1.3]) the family A, is uniformly Jordan;

(ii) one can take Jyu, = J(n(22"T1 + 20)).

Proof. This follows from (13). O
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4. AUTOMORPHISM GROUPS OF COMPLEX SPACES

The next application is to automorphism groups of complex spaces.

Let C be a (not necessarily reduced) complex space. There exists a topology on Aut(C') with respect
to which Aut(C) is a topological group (see[14, 2.1]).

Theorem 5. For every compact complex space C, the group Aut(C) is Jordan.

Proof. According to [15], the compactness of C' implies that Aut(C) is a complex Lie group. The
required assertion then follows from Theorem 2. O

We do not know whether the statement of Theorem 5 remains true if Aut(C)? is replaced by Aut(C).
According to [5, Theorem 1.5], the answer is affirmative if C' is a connected compact two-dimensional
complex manifold. By Theorem 1, it is also affirmative if C' is a projective variety. On the other hand, we
recall that, by [16], there are connected smooth compact real manifolds whose diffeomorphism groups
are non-Jordan (this disproves Ghys’ conjecture).

Remark 2. There are connected noncompact complex manifolds whose automorphism groups are
non-Jordan. Indeed, according to [17], for any countable group I', there is a noncompact Riemann
surface M such that Aut(M) is isomorphic to T'; this implies the claim because of the existence of
countable non-Jordan groups (see [4, Sec. 1.2.5]).

In fact, using the idea exploited earlier in [ 18], one can prove more than said in Remark 2, showing the
existence of connected complex manifolds with monstrous automorphism groups; namely, the following
theorem is valid.

Theorem 6. There is a 3-dimensional simply connected noncompact complex manifold M such
that

(i) the group Aut(M) contains an isomorphic copy of every finitely presentable (in particular,
every finite) group;

(ii) every such copy is a discrete transformation group of M acting freely.

Proof. It follows (see, e.g., [19, Theorem 12.29]) from Higman’s embedding theorem [20] that there
is a universal finitely presented group, i.e., a finitely presented group U containing, as a subgroup, an
isomorphic copy of every finitely presented group. In turn, according to [21, Corollary 1.66], the finite
presentability of ¢/ implies the existence of a connected 3-dimensional compact complex manifold B

whose fundamental group is isomorphic to . Let 7: B — B be the universal cover. Then B is a simply
connected noncompact 3- dimensional complex manifold, and the deck transiormation 1 group of mis a

subgroup of Aut B isomorphic to U, which acts on B freely. Hence one can take M = B. O

Remark 3. For M from Theorem 6, the group Aut(M ) is non-Jordan, because for every integer n, there
is a finite simple group of order > n (cf. [4, Example 4].

Theorem 7. Fix an integer n > 0. Let C,, be the family of groups Aut(M)°, where M runs over all
connected compact complex manifolds of complex dimension n. Then

(i) the family C,, is uniformly Jordan,
(ii) one can take Jo, = J(2n% + n)(22"*+" 4+ 10)).

Proof. For G := Aut(M)?, let K be as in the proof of Theorem 2. By Montgomery—Zippin’s theorem,
dim K < 2n?% + n. Since, clearly, J(m) is a nondecreasing function of m, the latter inequality, (1), and
Theorem 3 yield Ji < J((2n? + n)(22"*+™ 4 10)). This proves (i) and (ii). O
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5. AUTOMORPHISM GROUPS OF HYPERBOLIC COMPLEX MANIFOLDS

The next application is to complex manifolds hyperbolic in the sense of Kobayashi (in particular, to
bounded domains in C™).

Theorem 8. Fix an integern > 0. Let H,, be the family of groups Aut(M)°, where M runs over all
connected complex manifolds hyperbolic in the sense of Kobayashi and of complex dimension n.
Then

(i) the family H,, is uniformly Jordan;
(ii) one can take Jy, = J((2n +n?)(227+° +10));
(iii) for every point x € M, the Aut(M)-stabilizer Aut(M), of x is Jordan and Jaw(ary, < J(n).

Proof. Let M be a connected complex manifold hyperbolic in the sense of Kobayashi and of complex
dimension n. By [22, Theorems 2.1 and 2.6], Aut(M) is a real Lie group of dimension < 2n + n?; hence
(i) and (ii) follow by Theorems 2 and 3. According to [22, Theorem 2.6], the isotropy representation
of Aut(M), is faithful, and its image is isomorphic to a subgroup of the unitary group U(n), which
implies (iii). O

Remark 4. The group Aut(M)? in the formulation of Theorem 8 cannot be replaced by Aut(M). Indeed,
it follows from the construction in[17] that the Riemann surface M in Remark 2 is hyperbolic in the sense
of Kobayashi. Hence there are connected hyperbolic complex manifolds M such that the group Aut(M)
is not Jordan.

However, as the next theorem shows, for complex hyperbolic manifolds M of a special type, the
Jordan property holds for the whole Aut(M) rather than only for Aut(M)°.

Theorem 9. For every strongly pseudoconvex bounded domain M with smooth boundary in C",
the group Aut(M) of all biholomorphic transformations of M is Jordan.

Proof. If the Lie group Aut(M) is compact, then the claim follows from Theorem 2. If the group
Aut(M) is noncompact, then, by the Rosey—Wong theorem [23], [24], the domain M is biholomorphic
to the unit ball B, in C™. Since Aut(B,) is PU(n, 1) (see [14, Sec. 2.7, Proposition 3]) and the latter
Lie group is connected (see [25, Chap. IX, Lemma 4.4]), so that the required assertion then follows from
Theorem 2. O

Corollary 6. for every strongly pseudoconvex bounded domain M with smooth boundary in C™,
the set of isomorphism classes of all finite simple groups of biholomorphic transformations of M
is finite.

6. ISOMETRY GROUPS OF RIEMANNIAN MANIFOLDS

The last application is to isometry groups Iso(M) of Riemannian manifolds M. They are topological
groups with respect to the compact-open topology [26].

Theorem 10. Fix an integern > 0. Let R,, be the family of groups Iso(M)°, where M runs over all
connected n-dimensional Riemannian manifolds. Then

(i) the family R, is uniformly Jordan;
(ii) one can take Jg, = J((n%+n)(20°tn=2/2 1 5)).
(iii) for every point x € M, the Iso(M)-stabilizer Iso(M),, of x is Jordan;

(iv) if the manifold M is compact, then the group Iso(M) is Jordan.
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Proof. It is known (see, e.g., [26, Chap. II, Theorems 1.2 and 3.1]) that Iso(M) is a real Lie group
of dimension at most n(n + 1)/2, the group Iso(M), is compact for every x, and the group Iso(M) is
compact if the manifold M is compact. The claim then follows by combining these facts with Theorems 2
and 3. O

Remark 5. The group Aut(M)? in the statement of Theorem 10 cannot be replaced by Aut(M). Indeed,
it follows from the construction in [17] that the Riemann surface M in Remark 2 is a two-dimensional
Riemannian manifold and Aut(M) = Iso(M). Hence there are connected Riemannian manifolds M
such that the group Iso(M) is not Jordan.

CONCLUDING REMARKS

1. In view of (1), computing the Jordan constants of connected real Lie groups reduces to that of
such compact groups. For instance, results of [3] can be interpreted as the computation of the Jordan
constants of all unitary groups:

Ju, = J(n) for every n.
Discussion in Sec. 2 leads to the following natural problem.
Problem. Compute the Jordan constants of all simple compact connected real Lie groups.

2. We expect that the topic of this note may be related to that of [18], [27], [28], [5], [29], [30], and [31].
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