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Preface

The workshop “Algebraic Varieties and Automorphism Groups” was
held at the Research Institute of Mathematical Sciences (RIMS), Kyoto
University during July 7-11, 2014. There were over eighty participants
including twenty people from overseas ~ Canada, France, Germany, In-
dia, Korea, Poland, Russia, Singapore, Switzerland, and USA.

Recently, there have been remarkable developments in algebraic ge-
ometry and related fields, especially, in the area of (birational) automor-
phism groups and algebraic group actions.

The purpose of this workshop was to provide the experts and young
researchers with the opportunities to interact in the fields of affine and
complete algebraic geometry, group actions and commutative algebra
related to the topics listed below as well as to publicize the new results.
We are confident that these purposes were achieved by the endeavors of
the participants.

The main topics of the workshop were the following:

(1) Algebraic varieties containing A”-cylinders:

(2) Algebraic varieties with fibrations;

(3) Algebraic group actions and orbit stratifications on algebraic
varieties;

(4) Automorphism groups and birational automorphism groups of
algebraic varieties.

There were 19 talks on the above and related topics by experts from
the viewpoints of (affine) algebraic geometry, transformation groups, and
commutative algebra. Inspired by the talks, there were active discussions
and communication among participants during and after the worksho p.

The present volume is the proceedings of the workshop and contains
15 articles on the workshop topics. We hope that this volume will con-
tribute to the progress in the theories of algebraic varieties and their
automorphism groups.

The workshop was financially supported by the RIMS and Grant-
in-Aid for Scientific Research (B) 24340006, JSPS. We wish to thank all
those who supported us in organizing the workshop and preparing this
volume.

June, 2016

Kayo Masuda
Takashi Kishimoto
Hideo Kojima
Masayoshi Miyanishi
Mikhail Zaidenberg

All papers in this volume have been refereed and are in final form.
No version of any of them will be submitted for publication elsewhere.
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Bass’ triangulability problem

Vladimir L. Popov

Abstract.

Exploring Bass’ Triangulability Problem on unipotent algebraic
subgroups of the affine Cremona groups, we prove a triangulability
criterion, the existence of nontriangulable connected solvable affine al-
gebraic subgroups of the Cremona groups, and stable triangulability
of such subgroups; in particular, in the stable range we answer Bass’
Triangulability Problem in the affirmative. To this end we prove a the-
orem on invariant subfields of 1-extensions. We also obtain a general
construction of all rationally triangulable subgroups of the Cremona
groups and, as an application, classify rationally triangulable connected
one-dimensional unipotent affine algebraic subgroups of the Cremona
groups up to conjugacy.

61. Introduction

We assume given an algebraically closed field k£ of arbitrary char-
acteristic which serves as domain of definition for each of the varieties
considered below. In this paper, “variety” means “algebraic variety” and
it is identified with its set of k-rational points.

Recall that the Cremona group (over k) of rank n is the group

Cn = Autk k‘(An)7

and Auty k[A"] is the affine Cremona group (over k) of rank n. The
group Bir A" of rational self-maps of A™ (resp.the group Aut A") is
identified with C,, (resp. Auty k[A™]) by means of the isomorphism ¢
(")t For n > 1, we identify k(A"~!) with the subfield of k(A™)
by means of the natural embedding k(A" !) < k(A") determined by
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the projection A® — A"~ (aq,...,a,) — (a1,...,0,_1). This makes
k[A"~] the subalgebra of k[A"]. We put k(A") = k[A"] := k.
Let z;: A" — k, (a1,...,q,) — 4, be the ith standard coordinate

function. We have
(1) E(AY) = k(a1 ..., 2n), E[A"] = K[z1,. .., 2]

The group C,,—; is identified with the subgroup of C, by means of
the embedding

(2) Ch—1—=Chn, p— @, where ¢(x;) :=@(x;) for i <n and @(x,,) :=x,.

This makes Auty k[A"~!] the subgroup of Auty, k[A"].

Although the groups C,, and Auty k[A"] are infinite-dimensional for
n > 1 (see [Ra1964], [Po2014]), the analogies between them and al-
gebraic groups catch the eye: they have the Zariski topology, algebraic
subgroups, tori, roots, the Weyl groups, ... (see [P02013;], [P02013]
and references therein). The de Jonquieres subgroup

TIn = {p € Auty k[A"] | p(x;) = auxi + hyy oy €K h; € k[A’;l]}

is viewed by some authors as an analog of Borel subgroup for Auty, k[A"]
(see, e.g., [Ba1984]). Supporting this viewpoint, [Po2013;, Thm.3.1]
implies that every algebraic subgroup of 7, is affine solvable. Having
in mind conjugacy of Borel subgroups in every finite dimensional affine
algebraic group, one leads to the question whether it is true that every
connected solvable affine algebraic subgroup G of Auty, k[A”] is conjugate
in Auty k[A"] to a subgroup of 7,,. In particular, Problem III in [Ba 1984]
asks whether it is true for unipotent G. In [Ba1984] Bass answered the
latter question in the negative for chark = 0, n = 3, and G = k™, the
one-dimensional additive group. In [Po 1987] was then elaborated a sim-
ple general method yielding negative answers for chark = 0, G = kT,
and all n > 2 (this method, in the form of usage of so called replicas,
became the crucial instrument in the recent studies on infinite transi-
tivity of automorphism groups of algebraic varieties [Ka2012]). Given
these developments, Bass formulated for char k = 0 the following

Bass’ Triangulability Problem ([Ba 1984, Question 4]). “If a unipo-
tent group G acts on A", can the action be rationally triangularized,
ie., can we write k(z1,...,2,) = k(y1,...,yn) so that each subfield
k(y1,...,y:) is G-invariant?”

Here we explore this problem in the broader context of connected
solvable affine algebraic groups GG and arbitrary char k. To formulate our
results we first introduce two definitions.
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Definition 1 (1-extensions). If a field K is a purely transcendental
extension of a field L of the transcendence degree 1, then, for brevity,
we say that K is a 1-extension of L.

Definition 2 (Rationally triangulable subgroups). A subgroup G
of C, is called rationally triangulable if there is a flag

(3) k‘(An)::KnDKn,1D"'DKlDKQZ:kZ

of G-stable subfields of k(A™) such that K;/K; 1 is a l-extension for
every ¢ > 0. A rational action of an algebraic group on A” is called ra-
tionally triangulable if the image of this group under the homomorphism
to C,, determined by this action is rationally triangulable.

Now we shall formulate our results.
We start with proving the following Theorem 1; it, in turn, yields
Theorem 2 that is heavily used in the proofs of our next results.

Theorem 1 (Invariant subfields of 1-extensions). Let Q) be a finitely
generated field extension of k and let P be a 1-extension of Q. Let G be a
one-dimensional connected solvable affine algebraic subgroup of Auty(P)
such that QQ is G-stable.

() If QY =Q, then P¢ = QC.
(i) If Q¥ ¢ Q, then PC is a 1-extension of Q©.

Theorem 2 (Purity of invariant field extensions). Let Q) be a finitely
generated field extension of k and let P be a 1-extension of Q. Let G be
a connected solvable affine algebraic subgroup of Auty(P) such that Q is
G-stable. Then one of the following holds:

() P -q%;

(ii) P% is a 1-extension of QC.

Using Theorem 2, we obtain the following triangulability criterion:

Theorem 3 (Triangulability criterion). The following properties of
a connected solvable affine algebraic subgroup G of the Cremona group
C, are equivalent:

(i)  k(AMC is purely transcendental over k;
(il) G is rationally triangulable.

Theorem 3 generalizes [DF 1991, Thm. 3.1], where the claim is proved
for one-dimensional unipotent algebraic subgroups of Aut;A”™ in the case
chark = 0.

Corollary 1 (Low-dimensional quotients). A connected solvable
affine algebraic subgroup G of C, is rationally triangulable in either
of the following cases:
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() trdeg, k(A" < 1
(i) trdeg,k(A™)Y =2 and chark = 0;
(iii) G C Aut A" and
(a) dimG -z >n—1 for some point x € A", or
(b) chark =0 and dim G -z =n — 2 for some point x € A™.

Corollary 2 (3-dimensional affine space). If chark = 0, then ev-
ery connected solvable affine algebraic subgroup of Aut A3 is rationally
triangulable.

Corollary 2 generalizes [DF 1991, Cor. 3.2], where the claim is proved
for one-dimensional unipotent algebraic subgroups of Aut A3 and chark =
0.

Corollary 3 (Tori). The following properties of an affine algebraic
torus T in the Cremona group C, are equivalent:

(i) T is rationally triangulable,
(ii) T is linearizable, i.e., conjugate in C, to a subgroup of GL,,.
(iii) T is conjugate in C, to the diagonal torus of GLg, where d =
dim 7.

Next we show that the nontriangulable connected solvable affine
algebraic subgroups of C,, do exist. In particular, the following theorem
implies that in case (ii) of Corollary 1 it is not possible to replace 2 by
a bigger integer.

Theorem 4 (Nontriangulable subgroups). Let n be an integer > 5
and let char k # 2. Every (n — 3)-dimensional connected solvable affine
algebraic group G is isomorphic to a rationally nontriangulable algebraic
subgroup of the Cremona group C,,.

As far as we do not claim that the subgroup in the formulation of
Theorem 4 lies in Auty k[A"], this theorem does not furnish the nega-
tive answer to Bass’ Triangulability Problem. However, its proof demon-
strates the intimate interrelation between triangulability and Zariski’s
Cancellation Problem: it shows that if there is a nonrational variety Z
such that A™ is isomorphic to A® x Z, then the answer to Bass’ Trian-
gulability Problem is negative (in view of this it is worth to recall that
in positive characteristic Zariski’s Cancellation Problem is solved in the
negative in [Gu2014]); by Theorems 6, 7, described in Section 3, the
converse it true at the birational level.

On the other hand, in the stable range we do answer Bass’ Tri-
angulability Problem in the affirmative. Namely, the following theorem
shows that despite the existence of rationally nontriangulable connected
solvable affine algebraic subgroups of C,, every such subgroup is stably
rationally triangulable. More precisely, the following holds true.
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Theorem 5 (Stable triangulability). Every connected solvable affine
algebraic subgroup G of the Cremona group C, is rationally triangulable
in the Cremona group C,, for every

(4) m > 2n — trdeg, k(A™)C.

Theorem 5 generalizes [DF 1991, Thm. 3.1], where the statement is
proved for one-dimensional unipotent algebraic subgroups of Aut,A”,
assuming char k = 0.

Next we obtain a general construction of all rationally triangulable
subgroups of C,,, see Theorem 7 in Section 3. As an application, it leads
to the classification (given below in Corollary 4) of rationally triangula-
ble one-dimensional connected unipotent algebraic subgroups in C,, up
to conjugacy. In this classification we use the following terminology.

A one-dimensional connected unipotent algebraic subgroup G of C,,,
identified with kT by means of an isomorphism G — kt, is called stan-
dard if x1,...,x,_1 € k[A"}G and, for every ¢t € kT, the following holds:

(i) for char k =0, we have
t(xy) =, + 1

(in this case G is also called the translation);
(ii) for chark = p > 0, we have

tH(an) = fo+crt? 4o+ cat?”,

where all ¢;’s are the nonzero elements of k(x1,...,2,-1), and
11 < --- < igq are the nonnegative integers.

Corollary 4 One-dimensional rationally triangulable unipotent sub-
groups). A one-dimensional connected unipotent algebraic subgroup of
Cy, is rationally triangulable if and only if it is conjugate in C, to a
standard subgroup.

Corollary 4 generalizes [DF 1991, Thm. 2.2], where the claim is
proved for char k = 0.

Corollary 5 (Low-dimensional affine spaces). Let U be a one-
dimensional connected unipotent algebraic subgroup of C,.

(i) Ifn =2, then U is conjugate in Cy to a standard subgroup.

(ii) If chark = 0 and n = 3, then U is conjugate in Cz to the
translation.

By [Re 1968] for char k = 0, and by [Mi1971] for chark > 0, if n = 2

and U C Aut A%, then “in Cy” in Corollary 5(i) may be replaced by “in
Aut A2,
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By [Ka2004], for k = C, n =3, U C Aut A3, if U acts on A? freely,
then U is conjugate in Aut A to the translation. Corollary 5(ii) shows
that, allowing conjugation in Cs, the “if” assumption in this result may
be dropped, i.e., conjugacy to the translastion becomes true for every U
in C3.

The proofs of Theorems 1-5 and Corollaries 1-3 are given in Sec-
tion 2. Theorem 7 is formulated and proved, together with Corollaries
4, 5, in Section 3.

Notation and conventions. We use freely the standard notation and
conventions of [Bo1991], [Sp1998], [PV 1994] and refer to [Ro1956],
[Ro1961], [Ro 1963], [PV 1994], [P0 2013,] regarding the definitions and
basic properties of rational and regular (morphic) actions of algebraic
groups.

Unless otherwise specified, we will assume that every field appearing
below contains k£ and every embedding of fields restricts to the identity
map on k.

Acknowledgements. My thanks go to the referees for their comments.

62. Proofs of Theorems 1-5 and Corollaries 1, 2

Proof of Theorem 1.
1. The assumptions on @ and P imply that there is an irreducible
variety X such that for

Y= A x X,

(5) p:Y =X, (a,2) — z,

we may (and shall) identify P with k(Y):

(6) P =k(Y),

and @ with the image of embedding p*: k(X) < k(Y):
(7) Q = p*(k(X)).

The actions of G on @ and P determine the rational actions of G
on X and Y. The action on Y is faithful (because G C Auty(P)), and
the morphism p is equivariant with respect to these actions.

By Weil’s regularization theorem [We 1955] (see also [Ro 1956, Thm.
1]) there are

— irreducible algebraic varieties X and }N/;
— nonempty open subsets Xy and Yj in, respectively, X and Y;
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— open embeddings ¢1: Xy — )?, Lo: Yy < Y
such that the induced rational actions of G on X and Y are regular
(morphic). The action of G on Y is faithful since that on Y is. We identify
Xo and Y, with the images of, respectively, ¢1 and t5, that yields the
natural identifications

(8) k(X) =k(X), KkY)=k{Y).

By Rosenlicht’s theorem on generic quotients [Ro 1956, Thm. 2], re-
placing )Z', Xo, }7, and Y by the appropriate open subsets, we may (and
shall) assume that for the actions of G on X and Y respectively there
are the geometric quotients

T X = X/G, 7T)~/’G2Y—>Y/G.

In particular, % o and Ty o are equidimensional morphisms, their
fibers are G-orbits, and, in view of (6), (7), (8),

(9)  promh i k(X/G) S QO

X KY/G) = P

YG

Since dim G = 1 and G acts on Y faithfully, every fiber of 5 & is one-

dimensional; in view of (5), this yields
(10) dimY /G = dimY — 1 = dim X.

The morphism p induces a G-equivariant dominant rational map

pY --» X.

Since its domain of definition is G-stable, replacing the varieties again
by the appropriate open subsets we may (and shall) assume that p is a
G-equivariant surjective morphism.

Thus we obtain the following commutative diagram

Yy <“oy, 2y Yl ya
(1) L L lﬁ ,
L3 7X0 L1 )'Z X,G )’Z/G

where po := ply, = plv, and t3, 14 are the identical embeddings. Finally,
replacing X and Y by the appropriate open subsets, we may (and shall)
assume that po(Yp) = Xo.
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Now we shall consider separately two arising possibilities.

2. First, consider the case
(12) QY =Q.

By (7), condition (12) is equivalent to triviality of the action of G on X.
From @ C P and (12) we obtain

(13) QCPYcr,

From (6), (8), (10) we infer trdegpcP = 1, and (5), (6), (8) yield
trdeg, P = 1. Whence by (13) we obtain tr deg, P“ = 0. Since P is a 1-
extension of @, by Liiroth’s theorem ([Lii 1876], see also, e.g., [vdW 1971,
§73]) the latter equality implies that PY = Q. Thus, by (12), in the case
under consideration we have P% = Q. This proves claim (i) of Theorem
1.

3. Now consider the case Q¢ ¢ Q, i.e., G acts on X nontrivially.
Every fiber of T o is then a one-dimensional G-orbit; whence

(14) dim X/G = dim X — 1.
In view of (6), (7), (8), (10), (14), we have
(15) trdegoe P9 = 1.

Since G is a connected solvable affine algebraic group, by Rosen-
licht’s cross-section theorem [Ro 1956, Thm. 10] there is a rational sec-
tion

c: X/G - X
of T3 i.e., a rational map such that
(16) Ty oo =ldx.

Since g oo for every element g € G is also a rational section of T o0 We

may (and shall) assume that (X /G) N X, # @. This implies that there
is a locally closed irreducible subvariety S C X, such that

(17) T olst S — X/G is an open embedding.
In view of (9), this means that

(18) E(X)% = k(S), f fls,is a well-defined isomorphsim.
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In particular, in view of (14), we have
(19) dim § = dim X — 1.
From (5) we obtain that
(20) pH(S) = A" x S.
Consider in Y the locally closed irreducible subvariety
(21) Z = p HS)NYy.
From (20) and (21) we infer that
(22) k(Z) is a l-extension of K := p|% (k(S)),
and from (10), (19) that
(23) dim Z = dim X = dim Y /G.
We claim that the morphism
(24) C::W?7G|Z:Z—>}7/G

is dominant. In view of (23), to prove this, it suffices to show that, for ev-
ery point z € Z, the fiber (71({(z)) is finite. Assume the contrary. Since
("1(¢(2)) = ZN O, where O := 7T}§1G(7r}~, (7)) is a certain G-orbit, we
then infer from dim & =1 that 7 7

(25) dim(Z N O) = 1.

Since p is a G-equivariant morphism, &” := p(0) is also a G-orbit. Hence
dim 0" = 1, because all G-orbits in X are one-dimensional. The latter
equality and (25) imply that p(Z N &) is an open subset of &”; in par-
ticular, it is infinite. On the other hand, (21) yields that p(Z N &) lies
in SN &’ Since, by (17), the latter is a single point, we obtain a con-
tradiction. This proves the claim.

__Thus, since ¢ is dominant, it defines an embedding of fields (*:
kE(Y/G) — k(Z). In view of (6), (8), this means that

(26)  7: PY < k(Z), f+ f|z, is a well-defined embedding,
and (7), (8), (18), (22) imply that

(27) 7: QY < K is an isomorphism.
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Thus (26), (27) yield the following commutative diagram

k(7)) <2or(pG) &L K

oI TT:

PG id )QG

In view of (15), (22), this diagram and Liiroth’s theorem imply that P“
is a l-extension of Q. This completes the proof of claim (ii) of Theorem
1. Q.E.D.

Proof of Theorem 2.

We argue by induction on dim G. The statement being clear for triv-
ial G, we need, assuming dim G > 0, to prove the inductive step.

Since G is a connected solvable affine algebraic group, it contains a
closed connected normal subgroup N such that dim G/N = 1, see, e.g.,
[Gr 1956, p. 6-03, Cor. 1]. The group G//N naturally acts on P and QV,
and we have

(28) (PN)G/N _ PG and (QN)G/N — QG.

By the inductive assumption one of the following holds:
(a) PV =QY;
(b) PY is a l-extension of Q.
If (a) is fulfilled, then PY = Q% in view of (28), i.e., (i) holds.
If (b) is fulfilled, then, since G/N is a one-dimensional connected
solvable affine algebraic group, (28) and Theorem 1 imply that either (i)
or (ii) holds. This completes the proof. Q.E.D.

Proof of Theorem 3.
(1)=(ii) Assume that k(A™)% is a purely transcendental field exten-
sion of k. Then there is a flag

(29) EAMYY =, oL, 1 D>---DDIy:=k

of the subfields of k(A")“ such that I;/I; ; is a l-extension for every
i>0.

Since G is a connected solvable affine algebraic group, there is a flag
of its closed connected normal subgroups

(30) G:5G03G13~-'DG5_1DGS::{Q}
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such that dim G;_1/G; = 1 for every i > 0, see [Gr 1956, p. 6-03, Cor. 1].
From (30) we obtain the following flag of G-stable subfields of k(A™):

(31) k(A" ) =K, DK, 1 2--- 2K, D Ky =k(A")®, K, := k(A"
By construction, for every i > 0, we have

(32) Ki—l — k(A’n)G7_1 — (k(An)Gq)G7_1/G1 — KGi—l/Gi.

K2

If the action of G;_1/G; on K; is trivial, then (32) yields K; = K;_;. If it
is nontrivial, then, since G;_1/G; is a one-dimensional connected solv-
able affine algebraic group, we infer from (32) and [Po2015, Thm. 1]
(or [Ma1963, Thm. 1] if chark = 0) that K;/K,_; is a l-extension.
Therefore, once repetitions in flag (31) are eliminated, we obtain a flag

(33) E(A") =1Ly D Lg 1D - DLy D Ly:=k(AMY

of G-stable subfields of k(A™) such that L;/L;_; is a l-extension for
every i > 0. From (33) and (29) we then obtain the flag

E(A"Y) =Ly D Ly1D--DL1DLy=0; DL 1D---DL DIy:=k

of G-stable subfields of k(A™) whose “levels” are 1-extensions. By Defi-
nition 2 the group G is then rationally triangulable.

(ii)=(i) Conversely, assume that the group G is rationally triangu-
lable and consider a flag (3) of G-stable subfields of k(A™). Passing to
the G-invariant subfields, we then obtain the following flag of subfields
of k(A™)Y:

(34) EAMYY =KSDKY | D-- - DKE DK =k

By Theorem 2, for every i = 1,...,n, either K¢ = K& or K is
a l-extension of K< . Therefore, (34) yields that k(A™)% is a purely
transcendental extension of k. This completes the proof. Q.E.D.

Proof of Corollary 1. 1In cases (i) and (ii), the claim follows, in view
of Theorem 3, from, respectively, Liiroth’s theorem and Castelnuovo’s
theorem (see, e.g., [Ha 1977, Chap. V, 6.2.1]). In case (iii), it follows from
(i) and (ii), since, by [Ro 1956, Thm. 2],

trdeg, k(A" =n — max G- a.
acAn

Q.E.D.
Proof of Corollary 2. This follows from Corollary 1. Q.E.D.
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Proof of Corollary 3. In view of Theorem 3, the equivalence (i)< (ii)
follows from Theorem 2.4 of [Po2013;] (the assumption chark = 0
made in [Po2013;] is not used in the proof of this theorem). The equiv-
alence (ii)<(iii) follows from Corollary 4 of [Po2013,] (the assumption
char k = 0 made in [Po20135] is not used in the proof of this corol-
lary). Q.E.D.

Proof of Theorem 4. By [S-B 2004] (where it is assumed that char k
# 2) there exists a nonrational threefold X such that A? x X is bira-
tionally isomorphic to A°. Hence we may (and shall)

(35) fix a birational isomorphism A"~3 x X --» A",

Since the underlying variety of G is rational (see [Gr 1958, p.5-02,
Cor.]), we also may (and shall) fix a birational isomorphism between
it and A3, We then obtain from the action of G on itself by left
translations a faithful rational action of G on A"~ such that

(36) E(A"3)C¢ =k,

In turn, the latter action yields a faithful rational action of G on A"~3 x
X via the first factor. By [Bo 1991, Cor. of Prop. I1.6.6] and (36), for this
action,

(37) k(A" 3 x X)¢ and k(X) are isomorphic.

Thus, given (35), we obtain a faithful rational action of G on A"
such that the field k(A™)¢ is isomorphic to k(X), and hence is not
purely transcendental over k according to the choice of X.

By Theorem 3 we then conclude that the algebraic subgroup of C,
determined by this action is isomorphic to G and rationally nontriangu-
lable. Q.E.D.

Proof of Theorem 5. First, we shall introduce some notation. Given
a rational action of an algebraic group H on an irreducible algebraic va-
riety Z, we denote by Z/H a rational quotient of this action, i.e., an
irreducible variety (uniquely defined up to birational isomorphism) such
that there exists an isomorphism k(Z/H) — k(Z)™, restricting to the
identity map on k. We shall write X ~ Y if X and Y are birationally
isomorphic irreducible varieties.

By [P0o2015, Thm. 1] (or [Ma 1963, Thm. 1] if char k = 0) we have

(38) A" ~ A"/G x A, where s :=n — trdeg, k(A")".
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Take an integer m such that (4) holds and consider G as a subgroup
of C,, via embedding (2). The arising rational action of G on A™ =
A" x A" ™ is that through the first factor. Therefore

A"/G = (A"/G) x A""
(39) :) (An/IG) X AS X Amfnfs

(38)
~ A’n X Am—n—s — Am—S

—

By (39) the field k(A™)% is purely transcendental over k. Hence by
Theorem 3 the group G is rationally triangulable in C,,. Q.E.D.

63. Construction ®

Now we shall give a general construction of all rationally triangulable
subgroups of C,. It is prompted by the following result from [Po2015]
that yields a general construction of all connected solvable affine alge-
braic subgroups of C,:

Theorem 6 (Standard invariant open subsets [Po 2015, Thm. 3]).
Let X be an irreducible variety endowed with a regular action of a con-
nected solvable affine algebraic group S. Then for the restriction of this
action on a certain S-stable nonempty open subset @ of X there exist

—  the geometric quotient Tg o : Q—Q/S;
— an isomorphism ¢: Q — A" x (Q/S), where

A = {(ay,. .., Qpyy) € AT | oy # 0 for every i <r}, >0, u>=0,

such that the natural projection A™* x (Q/S) — Q/S is the geometric
quotient of the reqular action of S on A™" x (Q/S) induced by .

Theorem 6 leads to the following
Construction &

Let S be a connected solvable affine algebraic group and let Z be
an irreducible variety such that, for some nonnegative integers r, u,

(40) the variety Z x A™" is rational.

Consider a map
w: S X Z— Aut A™

that has the following properties:
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(1) ¢ is an algebraic family [Ra1964], [Po2014], i.e.,
SXZxA™— AV (s,z,a) = (s, 2)(a),

is a morphism;
(ii) for every point z € Z, the algebraic family

©.: S = AWA™Y, s (s, 2),

is a homomorphism determining a transitive action of S on A™".

These data determine the regular action of S on Z x A" by the
formula

(41) Sx(ZxA™) = Zx A", (s,(z,a)) — (2,9(s,2)(a)).
By (ii), the orbits of this action are the fibers of the projection
T Zx AN = 7, (z,a) = z,

and, more precisely, for every point z € Z, the variety A™* endowed with
the S-action determined by ¢, is S-isomorphic to the fiber 7=1(2). By
[Bo 1991, Prop. I1.6.6] this implies that k(Z x A"%)% ~ k(Z).

In view of (40), for n = dim Z + r + u, we may (and shall) fix a
birational isomorphism

v Zx AP —-» A"

Then v and action (41) determine a rational action of S on A". The
image of the homomorphism S — C,, determined by this rational action
is a connected solvable affine algebraic subgroup G of C,, and for this G
we have

(42) E(AMC ~ k(Z).
We say that G is a subgroup of C,, obtained by Construction ®.

Theorem 6 (combined with Weil’s regularization theorem [We 1955])
implies that this construction is universal, i.e., every connected solvable
affine algebraic subgroup of C,, is obtained by Construction ®.

Example 1 (One-dimensional connected unipotent subgroups of
Cn). Let G be the one-dimensional additive group k. In view of (ii),
we then have r = 0, u = 1, ie., ¢,: G = kT — AutA' for every
2z € Z.Since Aut A’ = T x N, where T is a one-dimensional torus
and N ~ k7T is the subgroup consisting of all translations A! — Al
a v a+t,t € kT, this means that every ¢. may be identified with



Bass’ triangulability problem 439

a surjective homomorphism k™ — k*. What happens next depends on
char k, see [Sp 1998, Lemma 3.3.5].

Namely, a map kT— kT is a homomorphism if and only if it has the
following form:

(i) case chark = 0: ¢+ ct, where c is a fixed element of k,

(ii) case chark =p > 0: t +— aitP 4+ agtP™?, where aq, ..., a4
are the nonzero elements of k and iy, ...,4i4 is an increasing sequence of
nonnegative integers.

Since every one-dimensional connected unipotent algebraic group is
isomorphic to kT (see, e.g., [Sp 1998, Thm. 3.4.9]), this yields the follow-
ing general method of constructing connected one-dimensional unipotent
algebraic subgroups of C,.

Take an irreducible variety Z such that Z x A! and A" are bira-
tionally isomorphic. If chark = 0, fix a nonzero regular function f €
k[Z]. If char k = p > 0, fix a sequence of nonnegative integers iy < ... <
iq and a sequence of nonzero regular functions f1, ..., f4 € k[Z]. Consider
the action of S = k* on Z x A! defined by the formula

Sx(ZxA') = ZxAl,

(z,a+f(2)s) if char k=0,
(z,a+ an:l fm(2)sP™) if char k=p>0.

W) ) H{

Then action (43) and a fixed birational isomorphism v: Z x Al -—-» A"
determine a one-dimensional connected unipotent algebraic subgroup G
of C,, and every such subgroup is obtained this way.

Theorem 7 (Structure theorem). The following properties of a con-
nected solvable affine algebraic subgroup G of the Cremona group C, are
equivalent:

(i) G is rationally triangulable;

(ii) G is obtained by Construction ®, in which the variety Z is ra-
tional.

Proof. This follows from (42) and Theorem 3. Q.E.D.

Proof of Corollary 4. Let G be a rationally triangulable one-dimen-
sional connected unipotent algebraic subgroup of C,,. By Theorem 7 and
Example 1, G is obtained from the action of S = k+ on Z x A! defined
by formulas (43), where Z is a rational variety. Therefore there are func-
tions f1,..., fn € k(A") such that k(f1,..., fa) = k(A"), f1,..., fn_1 €
k(A™)“, and t(f,) for every element ¢ € S is the following function:

(i) if char k = 0, then ¢(f,) = fn + ct, where ¢ € k(f1,..., fa-1),
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(ii) if chark =p > 0, then

H(fn) = fo + 01t?" e+ bgt?™?,

where b; € k(f1,..., fu1), b; # 0 for every j and i1 < --- < 4
are the nonzero integers.

In case (i), replacing f, by f,/c we may (and shall) assume that
c¢=1. Then, conjugating S by means of ¢ € C, such that ¢(f;) = z; for
every i (see (1)), we obtain a standard subgroup.

The converse (that standard subgroups are rationally triangulable)

is clear. Q.E.D.
Proof of Corollary 5. This follows from Corollaries 1, 2, and 4.
Q.E.D.
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