
Development of a Tank water level & temperature monitoring solution
based on the STM32L476RG Microcontroller

Carrasquel Gámez, Julio César1

1Università degli Studi di Roma La Sapienza
Dipartimento di Ingegneria Informatica, Automatica

e Gestionale Antonio Ruberti (DIAG)
Via Ariosto 25, 00185 Rome, ITALY

carrasquelgamez.1726154@studenti.uniroma1.it

Abstract.- STMicroelectronics provides the STM32L4 family of low-power
microcontrollers based on the ARM Cortex M4 architecture. This project
uses the STM32L476RG microcontroller as the core piece for the
management of a tank water-level & temperature monitoring system. For the
detecting the tank water-level is used the HCSR04 ultra-sonic ranging device
whereas for the temperature is used the water-proof DS18B20 thermometer
which goes immersed below the water. The system also includes an U-Blox
NEO-6M GPS receiver which keeps track of the location where the system is
operating. In order to carry out the development tasks it was used the
STM32CubeMX framework and the System Workbench 4 IDE which
provide an easy & professional environment. It was taken into advantage the
several microcontroller capabilities such as the different clock sources, the
UART interfaces and the management of different general input/output
ports among others in order to make a correct system configuration. The
first section of this work makes a description of the microcontroller & the
project general structure. The second section describes the GPS module. The
third section explains the temperature module. The fourth section addresses
the water-level module, and finally the fifth section describes the
implementation of a system terminal for interacting with the user.

1 Introduction

This introductory section of the project is organized in the following way: Section 1.1 gives a general
introduction about the STM32L476RG microcontroller and the ARM Cortex M4 architecture in which is
based the microcontroller. Section 1.2 introduces the software development tools used for the development of
the system. Section 1.3 presents an schematic diagram showing the connection between the microcontroller
board and the sensor devices. Section 1.4 describes the procedure done in the STM32CubeMX framework
for initializing the microcontroller settings according to the required needs of the project (e.g. peripherals
configuration, clock sources). Later on, Section 1.5 describes the project files structure. Finally, on Section
1.6 it is explained the main flow of the system program.

1.1 The Microcontroller

The STM32L476RG microcontroller [1] belongs to the STM32L4 family of low-power microcontrollers
developed by STMicroelectronics. It is based on the ARM Cortex-M4 architecture. It has a 1 MB ROM
FLASH Memory and a 128Kb SRAM data memory. It can work up to a clock frequency of 80 MHz. The
microcontroller is embedded within the Nucleo-64 development board which provides a set of Arduino
compatible pins plus a set of expansion pins, a 32 kHz crystal for low-power management, and a debugging
unit controlled by the ST-link debugger chip provided with an USB interface for development & debugging
purposes. The following figure introduces the development board with the microcontroller.

1

Figure 1. The Nucleo development board with the STM32L476RG MCU.

1.1.1 The ARM Cortex M-4 Architecture

ARM refers to a family of Reduced Instruction Set Computing (RISC) architectures. An ARM architecture is
a set of specifications regarding the instruction set, the execution model, the memory organization and the
instruction cycle among other features which describes precisely a machine implementing that architecture.
Cortex-M is a range of scalable, energy efficient and ready to use processors designed for embedded
technologies. They have been conceived for applications such as Internet of Things, automotive, industrial
control systems, medical instruments, etc. They are 32-bits based Harvard architectures. In particular, the
Cortex M-4 is described on the ARM architecture revision ARMv7-M. The architecture uses the Thumb-2
instruction set which is a mix of 16-bit and 32-bit instructions. Among its registers the Cortex M-4 has R0 –
R12 general purpose registers, a stack pointer register SP, a link register LP -which is the return link from
exception handling-, a program counter PC -loaded with reset handler start address on reset-, and a program
status register APSR which handles several flags such as negative, carry bit, zero flag, etc.

What respects to the memory space it has an address space of 4 GB which in fact is standardized between all
Cortex-M cores. This space is organized in several sub-regions with different logical functionalities. The
following figure provides a map of the address memory space.

Figure 2. Cortex-M fixed address memory space.

2

USER
BUTTON

USER
LED

STM32L476RG
MCU

32 kHz
External
Crystal

Arduino
Compatible

pins

Expansion
pins

RESET
BUTTON

Debugger

USB
Connector

St-link
debugger

The first 512MB are dedicated to the code area starting at the address 0x0000 0000 (32-bit addresses). This
area also includes the pointer to the beginning of the stack and the vector table. It includes as well a system
memory area which is a ROM region reserved to boot-loaders (used to load code from several peripherals,
including USARTs, USB, etc). Other section which this area includes is the options bytes section region
which contains a series of bit flags which can be used to configure several aspects of the MCU (flash read
protection, boot mode, etc). The next region of the 4 GB space is the SRAM area which starts at address
0x2000 0000, and it is extended up to the effective amount of the internal SRAM of the microcontroller.
Then, the next memory region of 512 MB is dedicated to the peripheral mapping (timers, USARTs, etc.), and
this area is organized according to the microcontroller specific features. The next memory address region
belongs to a 2 GB address conceived for external memory management. Finally, the last 512 MB memory
portion corresponds to the internal Cortex processor peripherals plus a reserved area for future enhancements
to Cortex processors.

A fundamental feature of the ARM architecture is the interruption & exception management -handling of
asynchronous events that alter the program flow-. Whenever an interruption/exception happens, the current
task is suspended and its context is saved -using the stack pointer-, and then it is executed a routine that can
be either an exception handler or an interrupt service routine (ISR). This procedure is managed by the Nested
Vectored Interrupt Controller (NVIC) which provides between its characteristics a flexible exception and
interrupt management: it processes signals/requests coming from peripherals and exceptions coming from the
processor core allowing to enable or disable them by software. In addition, the NVIC unit provides a sorting
on the interrupts according to a programmable priority level based on the particular program needs. A
particular feature of the NVIC is the system timer -also known as the SysTick-. It is a 24-bit decrement timer
which is fed from a referenced on-chip clock source. It has its own exception handler. It is used in order to
execute precise delays. In ST microcontrollers, the SysTick can be invoked at the software level through the
use of the Hardware Abstraction Layer (HAL) library.

1.1.2 STM32L476RG microcontroller overview

Having introduced most of the fundamental characteristics of the ARM Cortex M-4 architecture which are
implemented within the microcontroller, this part provides some additional characteristics that are specific to
the microcontroller used in this project.

• Clock sources: The different clock sources that can be configured for the microcontroller unit are the
listed ones below. For this project has been configured the internal multi-speed oscillator MSI
adjusting it into a frequency of 48 MHz. The MSI provides a good compromise in terms of power-
consumption, speed & wake-up time.

• External 4 – 48 MHz crystal oscillator (HSE).
• Internal 16 MHz factory-trimmed RC (HSI16).
• Internal 32 Khz low power RC (LSI)
• External 32 kHz crystal for RTC (LSE).
• Internal multispeed 100 kHz – 48 MHz oscillator (MSI)
• System PLL (uses HSE, HSI16 or MSI) up to 80Mhz.

• Peripherals: The following items presents some of the peripherals that are integrated within the
microcontroller unit. A complete list of all available peripherals can be found on [2]:

• 16 x Timers: Including low-power timers, generic ones, and the Systick timer.
• 1 x RTC: A real-time clock unit providing time-of-day clock/calendar plus alarm interrupts.
• 3 x I2C: Interfaces for handling the communication between the MCU and I2C buses.
• 6 x USART (2 x Low-power): Universal synchronous/asynchronous interfaces handlers.
• 114 x GPIO: General purpose configurable I/O ports.

3

1.2 Software development tools

The STM32L476RG microcontroller has been programmed using the following development tools: The
STM32CubeMX framework which provides an environment for making an initial configuration of the MCU,
and the System Workbench which is an Eclipse-based IDE for developing programs for the ST
microcontrollers. The following parts of this section make an overall description for each of these used tools.

1.2.1 STM32CubeMX framework

The STM32CubeMX framework [3] is a development tool for making an initial configuration of the
microcontroller features including those external elements which are embedded in the microcontroller board
(e.g. external crystals, user leds, etc). The configuration procedure using this software consists in the
following steps: First, select the microcontroller board that is going to be used. Secondly, it is proceeded to
the microcontroller configuration step in which it can be done the MCU peripheral configuration (e.g. GPIO,
USART), a pinout-conflict resolution, and the clock sources configuration among other settings. Finally, it is
generated the C code for the selected microcontroller configuration. The generated code then can be used for
programming on different several integrative environments (for instance, the System Workbench IDE 4).

Figure 3. Microcontroller board selection on STM32CubeMX.

The figure presented above corresponds to the interface in which is selected the microcontroller board which
is going to be used. For each different type of ST microcontroller that is used it is needed to download the
necessary firmware through a wizard provided by the STM32CubeMX. Section 1.4 presents the following
steps for the MCU general configuration and the C code generation applying them for case of this project.

1.2.2 System Workbench IDE 4

The System Workbench IDE 4 [4] is a software tool for developing programs for ST microcontrollers. It. The
provides to the user a development environment based on Eclipse. Hence, it provides as well debugging
capabilities which eases the development task. Whenever it is generated the project code from the
STM32CubeMX with the desired MCU configuration it can be later imported as a project to the System
Workbench in order to start working over it. Thus, the program code can be installed though the

4

microcontroller board through a USB connection between the microcontroller development board and the
computer.

Figure 4. User interface of the System Workbench IDE 4.

1.3 System schematic diagram

This section presents a simplified schematic diagram of the hardware system configuration. It shows the
wiring connection between the microcontroller board Nucleo-STM32L476RG and the different sensors
included in the system. Not used pins were omitted in this figure in order to ease the diagram readability.

Figure 5. Connection between the MCU board and the different sensors used by the system.

5

5V

GND

NUCLEO-
STM32L476RG

Debugger

USB Connection

USART2

3V3

D2

D6

D9

D10

U-Blox NEO-6M
 GPS Receiver

VCC

TXD

RXD

PPS

GND

3V3USART1

water-proof
DS18B20

 thermometer GND

DQ

VCC3V3

1-Wire Bus

VCC

Trig

Echo

GND

5V

 Ultra-sonic
HC-SR04

 Ranging device

rx tx

The MCU port D2 is used for communicating with the U-Blox GPS Receiver. It is configured as an input pin
since it receives the data from the GPS module. This line is managed by means of an UART interface -see
Section 2-. The port D6 serves for connecting the microcontroller with the water-proof DS18B20 device in
order to receive the temperature measurements. This line is managed by the 1-Wire protocol -see Section 3-.
Finally, it is connected the MCU with the HC-SR04 device which calculates the distance between the top of
the tank and the water surface. It is used the port D10 for sending a trigger signal to the device, and the port
D9 for receiving an echo response pulse from the device. Later the microcontroller makes a calculation in
order to get which is the current level of water -see Section 4-.

In the presented diagram, it is shown as well the debugging unit of the microcontroller board. Through this
debugger is possible to interact with a computer using the USB interface. This is important for installing the
system program and for debugging purposes. Through this channel the system can also be provided with the
necessary power supply. Moreover, taking advantage of this channel it was developed a system console by
which the user can interact in order to configure the system main variables and for printing the sensor
measurements -see Section 5-.

1.4 Microcontroller settings configuration in STM32CubeMX

Having introduced the STM32CubeMX tool on Section 1.2, and having given a high-level view of the
system through the schematic diagram, this part now proceeds to present the microcontroller settings
configuration that was done through the STM32CubeMX tool. First of all, the first step of configuration
required is to go to the pin-out tool section in which it can be managed the microcontroller peripherals. The
following figure presents the resulted setting for the case of this project.

Figure 6. Microcontroller pinout configuration.

The presented view in the image refers to the microcontroller pin configuration. The most important assigned
ports are the the following ones: The ports PA2 and PA3 that refer to the UART connection that goes towards
to the computer through the USB cable for connecting it with the system terminal. The port PA5 is connected
to the LED2 embedded in the Nucleo-STM32L476RG board. Ports PA9 and P10 are used by other UART
interface which makes the connection with the GPS module. The port PB10 has been configured as a general
purpose input/output port which will be used as the channel for connecting the MCU with the temperature

6

sensor. Ports PB6 and PC7 respectively serve for the connection of the Trigger and Echo lines for the ultra-
sonic ranging device which is used for calculating the tank water level. There as well several Vss and Vdd
ports on the microcontroller which respectively are the channels for the positive and negative voltage supply.

Having done the needed pin-out configuration the next step is to specify the system clock sources (through
the clock tool tab) for this case the selected clock source is the internal multi-speed oscillator (MSI RC)
configuring it into a frequency of 48000 kHz. As it can be seen in the next figure, it is selected this source in
the system clock multiplexer. Hence, the microcontroller features such as timers or UART peripherals will
operate at this frequency since it is also used as the peripheral clock.

Figure 7. System clock configured to operate at 48 MHz.

Through this phase using the STM32CubeMX tool there is a core element that is configured which is the
microcontroller timer TIM6. The STM32L476RG microcontroller provides several timers in order to carry
out different tasks. For accomplishing some particular delay handling on the temperature and the water-level
modules of this project -see Sections 3 and 4 respectively- is required a timer providing delays at a precision
level of microseconds, and the system timer Systick only provides a resolution of milliseconds).

For achieving the required precision, it has been configured the MCU 16-bit timer TIM6 configuring it using
the following strategy: Since the system clock source is using the MSI RC at 48 MHz which feeds this timer,
then it is used a prescaler with a value of 48 which converts the clock signal source coming from the system
clock into a frequency of 1 MHz which is 1 million of cycles per second. In this way, this timer can be used
later in the project code to provide a delay function with a precision of microseconds. In particular, since this
a 16 bit timer it will be able to count until a max value of 65535 microseconds, and then it will reset to 0. The
counter mode has been configured to be count incrementally. The figure shown below presents the interface
in which it was configured the timer.

Figure 8. Configuration of a 16-bit timer.

7

At this point the microcontroller initial settings are completed. Thus, it is generated through the
STM32CubeMX framework the associated C code which matches with the peripheral configuration done.

1.5 System modules and project files structure

The system project is abstractly organized in the following modules: A main procedure which has the
program control, and it carries out the initialization of the system clock and the configured peripherals. It is
in charge as well of the initializing the sensor handlers and to take the data from them. The next modules
correspond to the GPS, the temperature, and the water-level handlers whose implementation are detailedly
addressed in Sections 2, 3 and 4 respectively. The system comprises as well a system command line -see
Section 5- for interacting with the user. All these modules are supported by the different features of the
microcontroller such as the general peripherals for input/output, the UART interfaces, and the used clock
sources. The following figure presents the described logical organization of the project modules.

Figure 9. A logical view of the project organization.

Having presented the logical modules of the project, it is presented the project directory in which are
described the most important files.

root
 ├ Drivers
 | ├ CMSIS
 | └ STM32L4xx_HAL_Driver
 |
 ├ Inc
 | ├ gps
 | | ├ gps_handler.h
 | | └ minmea.h
 | |
 | ├ temperature
 | | ├ temperature_handler.h
 | | ├ tm_stm32f4_ds18b20.h
 | | └ tm_stm32f4_onewire.h
 | |
 | ├ water-level
 | | ├ waterlevel_handler.h
 | | └ tm_stm32f4_hcsr04.h
 | |
 | ├ gpio.h
 | ├ main.h
 | ├ sensor_variables.h
 | ├ stm32l4x_hal_conf.h
 | ├ stm32l4xx_it.h

8

GPS HANDLER

NMEA Parser
Library

1-Wire
Library

DS18B20
Library

TEMPERATURE HANDLER WATER-LEVEL HANDLER

HCSR04
Library

USART1 TIM

GPIO (General-purpose I/O)

USART2

System
Console

MAIN PROCEDURE

System clock configuration

Peripherals initialization

Handlers initialization

Receive data from sensors

 | ├ syscalls.h
 | ├ tim.h
 | └ usart.h
 |
 ├ Src
 | ├ gps
 | | ├ gps_handler.c
 | | └ minmea.c
 | |
 | ├ temperature
 | | ├ temperature_handler.c
 | | ├ tm_stm32f4_ds18b20.c
 | | └ tm_stm32f4_onewire.c
 | |
 | ├ water-level
 | | ├ waterlevel_handler.c
 | | └ tm_stm32f4_hcsr04.c
 | |
 | ├ gpio.c
 | ├ main.c
 | ├ stm32l4xx_hal_msp.c
 | ├ stm32l4xx_it.c
 | ├ system_stm32l4xx.c
 | ├ tim.c
 | └ usart.c
 |
 ├ startup
 | └ tm_stm32f4_onewire.c
 ├ Debug
 └ STM32L476RGTx_FLASH.Id

The project directory includes the Drivers folder in which are placed two main subdirectories: First, it is
located the CMSIS folder. Then, the second subdirectory is the STM32L4xx_HAL_Driver in which are
located all the necessary files that make the the linking between the specified microcontroller model and the
HAL (Hardware Abstraction Layer) library drivers procedures in order to encapsulate the particular
microcontroller hardware structure for easing to the developer the coding task.

On the other hand, the Inc folder contains the project header files. Here it has been organized the sensors
handlers modules (GPS, temperature, water-level) including the third-party libraries that they use in order to
implement the necessary handling. On the other side, there as well the header files which the defines the
methods for managing the microcontroller features that were previously configured in the STM32CubeMX
such as the USART interfaces (usart.h), the timers (tim.h) and the initialized GPIO ports (gpio.h). This
directory includes the header files for the system management such as the stm32l4xx_it.h which takes
care of the interruptions handling. It is located as well the main.h header file which is the header definition
for the main procedure in which are called the functions for initializing the system clock, peripherals and the
sensors modules. Finally, the sensors_variables.h header file declares some variables which are used
by the different modules. Those variables are initialized whenever the system starts, and they can be
configured by the user through the configured system terminal -see Section 5-.

12 // *** SYSTEM SENSORS VARIABLES *********
13 uint8_t GPS_MODULE_ON;
14 uint8_t TEMPERATURE_MODULE_ON;
15 uint8_t WATERLEVEL_MODULE_ON;
16 uint16_t SAMPLING_PERIOD;
17 float_t WATERTANK_HEIGHT;
18 float_t TEMPERATURE_MAX_THRESHOLD;
19 float_t TEMPERATURE_MIN_THRESHOLD;
20 float_t WATERLEVEL_MAX_THRESHOLD;
21 float_t WATERLEVEL_MIN_THRESHOLD;

Figure 10. Extract from the sensor_variables.h header file.

9

The Src directory includes the files where are implemented most of the methods that are specified in the
header files located in the Inc folder. For instance, all methods defined for the different sensors modules
header files are implemented within this directory. In particular, it is implemented the main procedure file
main.c. In this directory is located also the system_stm32l4xx.c file which implements the system
initialization function for clock and vector table initialization plus other clock utilities. From the root
directory it can be also found the startup folder which includes the startup_stm32l476xx.s file
which is written in assembly, and it holds the reset handler (the first code to be executed) and the vector
table. In addition, there is located the linker script where it can be found the program and data memory
(RAM/RAM2, FLASH) with respect to the linear memory map of the microcontroller.

1.6 System program main flow

In this part of the section it is done a general description of the main flow in order to introduce the sequence
of procedures that are executed in order to carry out the sensors monitoring. The following code corresponds
to the main procedure in the main.c file which handles the system main control.

92 int main(void){
93 /* MCU Configuration-----------------------*/
94 /* Reset peripherals, Initializes the Flash interface & the Systick.*/
95 HAL_Init();
96 /* Configure the system clock */
97 SystemClock_Config();
98 /* Initialize all configured peripherals */
99 MX_GPIO_Init();
100 MX_USART2_UART_Init();
101 MX_USART1_UART_Init();
102 MX_TIM6_Init();
103
104 /* USER CODE BEGIN 2 */
105 HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
106 HAL_NVIC_EnableIRQ(USART2_IRQn);
107 HAL_TIM_Base_Start(&htim6);
108 INITIALIZE_SENSOR_VARIABLES();
109 /* USER CODE END 2 */
110 /* Infinite loop */
111 /* USER CODE BEGIN WHILE */
112 while(1){
113 DISPLAY_MENU();
114 INITIALIZE_SENSOR_HANDLERS();
115 uint8_t esc = 0x00;
116 while(1){
117 HAL_UART_Receive_IT(&huart2, &esc, 1);
118 if(interrupt_flag){
119 interrupt_flag = RESET;
120 if(ESCAPE_CHARACTER(esc)){
121 HAL_UART_Abort_IT(&huart2);
122 break;
123 }
124 }
125 RECEIVE_DATA_FROM_SENSORS();
126
127

 }
 }

128 /* USER CODE END WHILE */
129 }

Figure 11. Main procedure in the main.c file.

10

In ll. 92 – 102 is carried out the MCU system initialization configuring the hardware abstraction layer library,
the system clock, and the initialization of the chosen peripherals for using in this project (the UART
interfaces, the initialization of the configured general input/output ports, and the initialization of the timer
selected that will be used within the temperature and water-level modules). In ll. 105 – 106 is configured the
interruption management of the USART2 interface.

Later, in l. 108 is called the function INITIALIZE_SENSOR_VARIABLES() which basically will set default
values over the system sensors variables that are declared in the sensors_variables.h header file. By
default, all modules (GPS, temperature, and water-level) will be turned on, the sampling period will have a
default value of 1000 milliseconds, but the water-tank height and the thresholds will remain uninitialized.
Later, inside the outer while statement it is executed the DISPLAY_MENU()routine on l. 113. This function
will proceed to connect with the system terminal -see Section 5- through the UART channel for reading he
system sensor variables that the system user may configure. Once that this routine finishes, and the sensor
variables are configured according to those read values, it is called the INITIALIZE_SENSOR_HANDLERS()
method. In that routine, it will be turned on or off the sensors handler modules in base to the options received
by the previous function. If the methods are turned on they will be calibrated with the passed options (e.g.
water-tank height, thresholds levels, etc).

Then, on the inner while statement at ll. 116 – 126 the system will start to receive the data from the sensors
and it will forward this data towards the system terminal. This will be done according to the sampling period
that was previously configured. On the other hand, whenever it may be received an interruption signal -by
the means of a key pressed from the user- the system will stop to receive & print data from the sensors, and
the program control will go back to the outer loop displaying again the console main menu.

Following sections of this report provide a detailed information for each of the corresponding sensor
modules: A description of each device, and technical explanation about how the system carries out the
signaling mechanism in order to retrieve the sensors measurements.

2 The GPS module

The system comprises a GPS receiver module that provides geo-location services to the monitoring system.
This section provides information about the device used and the communication standard it uses. It is
explained the configuration for connecting the device with the microcontroller based on an UART channel,
and finally are presented the parser module and the logic structures used at the software level to store the
relevant information of the GPS signals.

2.1 GPS receiver device

The GPS receiver module is a NEO-6M GPS device [5]. It belongs to a family of stand-alone GPS receivers
produced by U-blox. It operates within a supply voltage range between 2.7 V – 3.6 V. It works with the
NMEA 0183 data communication standard -explained in the following section-. The module provides as well
one configurable UART interface for serial communication that it was the interface used in order to connect
it with the microcontroller.

Figure 12. U-blox NEO 6-M GPS receiver module.

11

2.2 NMEA standard

The NMEA standard [6] is an specification which defines the communication between electronic devices
(sonars, autopilots, GPS receivers, etc.). It has been developed by the National Marine Electronics
Association -an US-based marine electronics trade organization-. In particular, the receiver used within this
project uses the NMEA 0183 version which is used as well by other GPS receiver modules. Nevertheless, in
marine applications this version has been slowly phased out in favor of the new version NMEA 2000.

The idea of the NMEA standard is to send a line of data which is called a sentence which it is independent
from other sentences in terms of the localization information it provides. All of the NMEA sentences have a
two letter prefix that defines the device which is transmitting the sentences (in our case, GP since we are
working with the GPS receiver), and it is followed by a three letter sequence that defines the type of the
sentences. The following table enumerates the sentences that are received by the NEO-6M GPS device.

NMEA sentence Definition

GPGGA Essential fix data which provides 3D location and accuracy.

GPGLL Geographic latitude and longitude.

GPGSA DOP and active satellites. It provides the being used satellites status data.

GPGSV Satellites in view. It shows data about the satellites that the module might find.

GPRMC Recommended minimum sentence. Essential position, velocity, and time.

GPTXT Useful information of the receiver (power-up screen, software version, etc).

Table 1. NMEA sentences received from the NEO-6M GPS device.

Thereby, a set composed by several sentences -each of them belonging a particular type- conforms a NMEA
message which is received and transmitted by the GPS receiver device. Each of the sentences are formatted
using the ASCII representation. Each of them begins with the '$' character and concludes with the carriage
return and the new line characters. The sizes of each sentence do not exceed 80 characters, and the data
contained are separated by commas. In addition, each sentence provides a checksum -separated from the rest
of the line by a '*' character- which is a two-digits hexadecimal number whose value represents the operation
of applying a 8-bit exclusive OR between all characters (without including the initial character '$' and the '*'
separator).

The example below is the structure of a GGA sentence plus the description of its fields. Particularly for the
implemented system, this is one of the most important sentences that it is received within a NMEA message
since it gives the coordinates which tracks the current position of the sensoring system.

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
Where:
 GGA Global Positioning System Fix Data
 123519 Fix taken at 12:35:19 UTC
 4807.038,N Latitude 48 deg 07.038' N
 01131.000,E Longitude 11 deg 31.000' E
 1 Fix quality: 0 = invalid, 1 = GPS fix (SPS), … , 7 =

Manual input mode, 8 = Simulation mode
 08 Number of satellites being tracked
 0.9 Horizontal dilution of position
 545.4,M Altitude, Meters, above mean sea level
 46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid
 (empty field) time in seconds since last DGPS update
 (empty field) DGPS station ID number
 *47 the checksum data, always begins with *

12

As it is explained in Section 2.4 of this report, the microcontroller program has a routine which is in charge
of make the corresponding parsing of all sentences that arrive within a NMEA message, and after that it
stores the sentences information within a suitable data structure.

2.3 UART-based communication handling

The GPS receiver provides an UART interface -composed by a pair of input & output ports- used in order to
send the data from the device towards the microcontroller. Note that the input port is not used since there is
no need of communication flowing from the microcontroller towards the GPS device. The UART channel
between the microcontroller and the GPS device is handled by means of the USART1 interface which is
managed in software by the huart1 data structure. This UART channel is configured by connecting a
transmission line between the GPS receiver output pin and the microcontroller PA10 pin for reception. The
following code is an extract of the usart.c file, and it shows the initialization procedure for this channel.
(In that file is also contained the code to initialize the PA10 pin).

49 void MX_USART1_UART_Init(void) {
50 huart1.Instance = USART1;
51 huart1.Init.BaudRate = 9600;
52 huart1.Init.WordLength = UART_WORDLENGTH_8B;
53 huart1.Init.StopBits = UART_STOPBITS_1;
54 huart1.Init.Parity = UART_PARITY_NONE;
55 huart1.Init.Mode = UART_MODE_RX;
56 huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
57 huart1.Init.OverSampling = UART_OVERSAMPLING_16;
58 huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
59 huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
60 if (HAL_UART_Init(&huart1) != HAL_OK) {
61 Error_Handler();
62 }
63 }

Figure 13. Initialization of the USART1 peripheral in the usart.c file.

This UART channel initialization is called within the file main.c. The USART1 is set on 9600 baud, a
word-length of 8 bits -number of bits transmitted in an UART frame-, one stop bit -signaling the end of the
frame-, and no parity bit. Hence, this initialization complies with the NMEA 0183 version and the GPS
device capabilities. The interface is set in receiving mode. The HwFlowCtl attribute is set to none since this
is only useful when there is a RS232 flow control, and the OverSampling attribute which is configured to
UART_OVERSAMPLING_16 means that the handler will perform 16 samples for each frame bit. The NMEA
messages are sent through the channel each second in which it can be received up to 960 characters (given
the configured baud). Since each sentence is composed at most by 82 characters, it can be received at most
11 different sentences in each message. The communication through the UART channel is managed by the
GPS handler module gps_handler which is initialized and used in the file main.c. After the initialization
of this handler, it is called a receive method (GPS_HANDLER_Receive) to get 1 byte sequentially until it has
been received the full message; after that moment, the received information can be processed (e.g. print the
system coordinates). The next flow chart shows a simplified view of the implemented usage of the GPS
handler module.

Figure 14. Usage of the GPS handler in the main procedure.

13

GPS_HANDLER_INIT()

GPS_HANDLER_Receive()

GPS_HANDLER_NMEA_MESSAG
E_Received?

YES

NO

GPS_HANDLER_NMEA_
Print()

WHILE
(TRUE)

The following code illustrates the implemented reception procedure within the GPS software handler for the
NMEA messages through the USART1 interface.

23 void GPS_HANDLER_Receive(){
24 HAL_StatusTypeDef status = HAL_UART_Receive(&huart1, &gps_c, 1, 100);
25 NMEA_MESSAGE_ARRIVED = false;
26 if(status != HAL_BUSY && status != HAL_ERROR){
27 if(status != HAL_TIMEOUT){
28 gps_buffrx[gps_p] = gps_c;
29 gps_p++;
30 }else{
31 if(gps_p > 0) {
32 GPS_HANDLER_Parse_Buffrx();
33 }
34 memset(gps_buffrx, 0, gps_p);
35 gps_p = 0;
36 }
37 }
38 }

Figure 15. GPS data reception procedure through the USART1 interface.

It is used a polling strategy in which it is waited for reading a character with a time-out of 100 milliseconds.
Each received byte is stored in a reception buffer (the gps_buffrx variable). If when receiving a byte it is
produced a time-out, then it means that it has finished to read a complete NMEA message, and it can proceed
to parse the reception buffer. There might be the case in which the GPS handler starts to read in the middle of
two NMEA messages, but if that happens the counter of bytes received gps_p would be zero since the
reception buffer is empty, and therefore it will not go to the parsing method.

2.4 NMEA messages parsing and storage

Once a NMEA message is fully received by the microcontroller, it is handled by means of the
GPS_HANDLER_Parse_Buffrx() routine. Within that routine, two important processes are carried out:
The parsing of the NMEA sentences of the message, and their subsequent storage within suitable data
structures.

For the task of the sentences parsing it is used the MINMEA library [7]. It is a light-weight GPS NMEA
0183 parser library written in pure C language -independent of any platform- which is intended for resource-
constrained systems such as microcontrollers. For the second task it has been developed a pair of data
structures in order to store the NMEA sentences. The following code shows the mentioned structures which
are defined inside the gps_handler.h header file.

20 typedef struct {
21 struct minmea_sentence_gga gga;
22 struct minmea_sentence_gsa gsa;
23 struct minmea_sentence_gsv gsv;
24 struct minmea_sentence_gll gll;
25 struct minmea_sentence_rmc rmc;
26 struct minmea_sentence_vtg vtg;
27 struct minmea_sentence_gst gst;
28 } nmea_sentences;
29 nmea_sentences last_valid_nmea_sentences;
...
38 typedef struct {
39 struct minmea_time time;
40 struct minmea_float latitude;
41 struct minmea_float longitude;

14

42 struct minmea_float altitude;
43 char altitude_units;
44 bool valid;
45 } _nmea_preserved_data;
46 _nmea_preserved_data nmea_preserved_data;

Figure 16. Data structures for storing the NMEA sentences.

The structure type nmea_sentences is composed by a set of structures defined by the MINMEA library.
Each structure stores the sentence illustrated by its mnemonic (e.g. all the data of GGA sentence is allocated
in the struct minmea_sentence_gga gga structure). Thus, the complete data structure is instantiated
into the variable last_valid_nmea_sentences whose purpose will be to store sentences that are
received. However, it only stores valid sentences. To check for the validity of the sentences it is used a
verification procedure which includes the use of their checksum. Thereby, whenever a NMEA message
arrives, if the verification procedure finds an invalid sentence, that sentence will not be stored in
last_valid_nmea_sentences.

The data structure _nmea_preserved_data stores the data that it is required to be always available. This
data is the geographic coordinates (latitude, longitude and altitude) and its sampling time. When in a NMEA
message this information arrives (which is searched within the GGA and GLL sentences), it is stored within
the nmea_preserved_data record. Then, the record will be updated whenever the coordinates
information arrives again in a NMEA message. The motivation of having this structure is to keep track of
which was the last valid system position, such that this information will not be lost in future message
receptions which do not provide the coordinates information.

The following flow chart describes the operations that are carried out inside the procedure
GPS_HANDLER_Parse_Buffrx() in order to make the respective parsing (using the MINMEA library) and
the posterior storage of the data (within the described structures).

Figure 17. Sentences parsing and storage procedure.

15

Begin

Reset last_valid_
nmea_sentences structure

Set NMEA_MESSAGE_ARRIVED
flag to TRUE

Is there other
sentence

contained in
the reception

buffer? NO

End

Grab sentence, get its
type and verify it with

its checksum

INVALID?

YES

NO

UNKNOWN?

NO

Store sentence in
 last_valid_nmea_sentences

structure

YES

Is this sentence a
GLL or GGA
sentence?

NO

YES

YES

Store geographic coordinates
in nmea_preserved_data

structure

2.5 A note about formatting the geographic coordinates for printing

The geographic coordinates arriving from the GLL or GGA sentences of a NMEA message come in a
predefined decimal notation. Therefore, the GPS handler procedure GPS_HANDLER_NMEA_Print() makes
a format conversion over the coordinates into a decimal degree notation before printing them on the standard
output. For both cases, latitude and longitude, the conversion procedure goes as follows: given the latitude or
longitude value separate the first (the most significant ones) two-digits of the integer part. Divide the rest of
the number by 60, and then sum the division result to the first two digits that were initially separated. The
following example illustrates the described procedure:

Latitude: 4807.038 → 48 + (07.038)/60 = 48 + 0.1173 → Latitude = 48.1173
Longitude: 1131.000 → 11 + (31.000)/60 = 11 + 0.5167 → Longitude = 11.5167

3 Underwater temperature module

The temperature module aims for monitoring the tank water temperature. For accomplishing this task, it is
used a water-proof DS18B20 temperature sensoring device which goes immersed below the water. This
section makes an introduction about the device; it is introduced the 1-Wire standard which is the protocol
used for communicating the microcontroller with the temperature sensor device. Then, it is described the
connection between the microcontroller and the device having as a support the 1-Wire standard and some
libraries which implement both the 1-Wire as well as the temperature device signaling mechanism.

3.1 The DS18B20 temperature sensor

The device used for measuring the water temperature is a water-proof DS18B20 temperature device [8]. The
device is protected by a stainless steel probe head which makes it suitable for wet or harsh environments. It is
able to measure temperatures between -55 °C up to +125 °C with an accuracy of ± 0.5 °C. It provides a
programmable temperature sampling resolution from 9 to 12 bits.

Figure 18. DS18B20 Water-proof temperature sensor

The device comprises three lines: The power supply voltage -working in a range of 3.0V up to 5.5V-, the
ground line, and the data in/out transmission line. It is managed using the 1-Wire standard which works as a
communication bus system by which many sensor devices can be connected. In each of the DS18B20
devices is stored an unique serial number, so this eases the task of recognizing which device is using the 1-
Wire bus for sending data in a particular moment.

16

Figure 19. Internal DS18B20 components.

The figure showed above presents the organization of the device internal components. It has four main
components: A 64-bit lasered ROM, the temperature sensor unit, non-volatile temperature alarm triggers
(each of them is a 1-byte EEPROM), and a configuration register (used for setting temperature resolution).
The 64-bit ROM stores an identifier which uniquely identifies each possible device. The first 8 bits are the
device family code (DS18B20 is 0x28), and the next 48 bits are an unique code. The last byte is a CRC
computed on the first 56 bits which can be used to determine if the ROM data has been received error-free.

Whenever is triggered the corresponding function for marking a temperature measurement, the result is
placed in the scratch-pad memory module (within a 16-bits area). The result can have a resolution from 9 to
12 bits (programmable through the configuration register). The most significant bits indicate the sign value
whereas the four least significant bits will store the fractional part of the value. Hence, having up to 4 bits for
the fractional part we can have precision equating to resolutions of 0.5, 0.25, 0.125 and 0.0625.

Figure 20. Temperature value bits stored in the scratch, and its representation.

3.2 A general view over the 1-Wire Protocol

The 1-Wire protocol is a communication standard designed by Dallas Semiconductors conceived to work
under a bus system -a single conductor- which is shared by several devices. The aim of having developed a
bus system approach is for providing the opportunity to manage different devices through a common channel
(e.g. a group of temperature sensors over one bus connected towards the microcontroller). As it has been
described in the previous section, it is the standard used to manage the communication between the
microcontroller and the the DS18B20 device.

Within the communication procedure, there is one bus master which is the microcontroller and one or more
slaves which are connected to the sensoring devices connected to the bus. The protocol for accessing the
DS18B20 comprises the following phases: The initialization, the ROM function command, the memory
function command, and the transaction/data.

The initialization phase consists in sending a reset pulse (of at least 480us) transmitted by the bus master
followed by the presence pulse transmitted by the slaves. Those presence pulses let the master know that the
slaves devices are on the bus and ready to operate. Once the master has detected this slave device presence, it
can yield a ROM function command such as searching the ROM of the devices, or for the case of having just

17

S S S S

Most significant – sign bit
bits

Least significant
bits

Value in celsius degree
(12-bit resolution)

26 25 24 23 22 21 20 2−1 2−2 2−3 2−4S

one slave in the bus to directly invoke a read ROM operation. After the ROM reading phase, it can be carried
out some memory function commands (read or set conversion resolution, read or set temperature alarms, get
temperature measurement, etc). A detailed view of the memory function commands can be found in [8].

3.3 Communicating with the sensor & temperature monitoring handling

Having introduced the DS18B20 device, and the 1-Wire protocol used for communicating it with the
microcontroller, this section proceeds to present the implemented strategies for interacting with the
temperature device by means of the correct microcontroller hardware configuration, and the corresponding
management at the software level using as well some third-party handlers. At the hardware level, it is
connected the sensor device transmission data line -see Figure 21- to the microcontroller pin PB10 (D6). On
the other hand, the following figure presents the particular file section of gpio.c in which is initialized the
microcontroller pin used.

54 /*Configure GPIO pin : PB10 */
55 GPIO_InitStruct.Pin = GPIO_PIN_10;
56 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
57 GPIO_InitStruct.Pull = GPIO_PULLUP;
58 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

Figure 21. Pin initialization for communication with the temperature sensor.

It is important to take into account that for this configuration it is needed to set the value GPIO_PULLUP for
the Pull attribute. In the scope of electronics logic circuits, pull-up strategies aim to ensure that wires will
be at a defined logic high level for the cases in which logic circuits are inactive. For the particular case of the
1-Wire protocol, it is required to have the control signal pulled high so the master device can pull it low to
ask for data, and the slave device can pull it low to give the data. Moreover, this strategy is one of the
features that allow the possibility of having multiple slaves sharing the same bus. The STM32L476
microcontroller has an internal programmable pull-up resistor giving the benefit of reducing the external
circuitry required. Thereby, the instruction showed above of GPIO_InitStruct.Pull = GPIO_PULLUP
indicates to active the described pull-up internal mechanism for the pin used.

Having done the correct hardware configuration between the microcontroller and the sensor device, and the
corresponding initialization of the microcontroller pin, the following part of this section describes the
procedure of handling the communication at the software level. For that purpose, following the same
approach of the other modules, it has been developed the temperature_handler module. This module
has been supported using a library for handling the 1-Wire protocol [9], and a second library which directly
implements the signaling mechanism with the DS18B20 device [10]. The following figure presents a
simplified view of the module header file in which are presented the main variables and methods.

11 #include "tm_stm32f4_onewire.h"
12 #include "tm_stm32f4_ds18b20.h"
13
14 uint8_t temperature_device[8];
15 float_t temperature_value;
16 TM_OneWire_t OneWire1;
17
18 uint8_t TEMPERATURE_ALARM_MIN_THRESHOLD_REACHED;
19 uint8_t TEMPERATURE_ALARM_MAX_THRESHOLD_REACHED;
20
21 void TEMPERATURE_HANDLER_INIT(void);
22 void TEMPERATURE_HANDLER_Receive(void);
23 void TEMPERATURE_HANDLER_Print(void);

Figure 22. Scheme of the temperature module header file -simplified view-.

18

In ll. 11 – 12 of the presented figure are included the libraries used for developing the module. Later, in ll. 14
– 16 are shown the variables used for the module: The temperature_device variable is used to store the
64-bits identifier of the DS18B20 device. The temperature_value serves as a reception buffer in order to
allocate the last temperature measurement taken from the sensor which is taken as a single precision real
number -following the IEEE754 standard-. The structure OneWire1 is a data structure which manages
several variables related to the communication between the DS18B20 and the microcontroller through the 1-
Wire channel. The module permits to assign thresholds such that whenever a maximum or minimum
temperature level has been reached, the system will dispatch an alarm indicating this event; for this purpose,
in ll. 18 – 19 are declared two flags whose values are either true or false whenever the respective thresholds
are passed. Hence, there are the TEMPERATURE_MAX_THRESHOLD and TEMPERATURE_MIN_THRESHOLD
variables -located in the sensor_variables header file- which are the temperature thresholds levels that may
be configured at the system start-up.

Finally, in ll. 21 – 23 of the presented code are declared the methods implemented for this module: the
initialization routine TEMPERATURE_HANDLER_INIT which is in charge of initializing the OneWire1
structure for starting the communication through the 1-Wire bus, getting the 64-bit identifier from the ROM
memory of the DS18B20 device, and setting the device temperature measurement resolution to work which
is of 12 bits. The TEMPERATURE_HANDLER_Receive procedure which is in charge of receiving a
measurement from the sensor device, and for checking whether or not the current temperature value has
passed any of the configured thresholds. If the latter happens, the corresponding thresholds alarm flags will
be updated. The TEMPERATURE_HANDLER_Print prints to the standard output the last temperature value
read from the sensor device, and dispatch an alarm if any of the thresholds flags are activated.

11 void TEMPERATURE_HANDLER_INIT(void){
12 TM_OneWire_Init(&OneWire1, GPIOB, GPIO_PIN_10);
13 TM_OneWire_First(&OneWire1);
14 TM_OneWire_GetFullROM(&OneWire1, temperature_device);
15 TM_DS18B20_SetResolution(&OneWire1,temperature_device,
16 TM_DS18B20_Resolution_12bits);
17
18 TEMPERATURE_ALARM_MIN_THRESHOLD_REACHED = RESET;
19 TEMPERATURE_ALARM_MAX_THRESHOLD_REACHED = RESET;
20 temperature_value = 0.0;
21 }

Figure 23. Temperature handler initialization routine.

As an example, the previous figure presents the TEMPERATURE_HANDLER_INIT procedure. It can be seen
how the connection mechanisms that were explained in Section 3.2 (e.g. for accessing the sensor memory,
for taking the ROM identifier, assigning the device precision, etc.) is encapsulated by means of the
procedures implemented by the library: First, it makes an initialization of the OneWire1 structure whose
purpose is to serve as a medium for managing the 1-Wire channel. It is given as a parameter the identifiers of
the GPIO port to be used (B10). Later, it is retrieved the 64-bits identifier of the temperature device to be
used, and then it is configured to the precision which is going to work the temperature device that it is going
to be of 12 bits. Finally, the thresholds flags and the temperature_value variable are initialized. Thus,
after having call this procedure the system can use the method TEMPERATURE_HANDLER_Receive for
starting to take the measurements done by the sensor device.

On the other hand, what respects to the third-party libraries used for managing the 1-Wire channel [9] and for
the specific DS18B20 mechanism [10] few changes were done in order to adapt it to the STM32L476
microcontroller since those libraries were based for STM32F4 microcontroller models. The most significant
change that was done in both libraries was to make them work with a system own timer whose counter works
in the order of microseconds. This is needed since as it has been explained in Section 3.2 the 1-Wire bus

19

synchronization mechanisms work at the level of microseconds. In Section 1 it is presented a description of
the configuration done for this timer which is used as well for the water-level monitoring module.

4 Water-level monitoring module

The water-level module is in charge of monitoring the level of water (measured in centimeters) of the tank by
means of using ultra-sonic waves which are produced by the HC-SR04 device [11]. The sensor is positioned
at the top of the tank, and sends the ultra-sonic waves towards the water surface where immediately are
reflected back to the device. Thus, this mechanism can derive the distance between the device and the water
surface. Therefore, knowing in advance the tank height it can be calculated which is the current tank water
level making a subtraction between the tank height and the measured distance between the device and the
water surface. This section provides a general description of the hardware device, the communication with
the microcontroller, and the implemented handling at the software level.

4.1 Ultra-sonic ranging device

For calculating the distance between the top of the tank and the water surface it is used the HC-SR04 module
(positioned at the top) which provides a non-contact distance measurement function which works between
the range of 2 cm – 400 cm. Its range of accuracy is ± 3 mm. The following figure presents the device with
its respective ports which are managed as follows: Vcc which is the 5V supply, the trigger line (Trgh) which
is the pulse input which is received from the microcontroller, the the echo pulse (Echo) which instead is the
pulse output that goes towards the microcontroller, and finally the 0V ground line.

Figure 24. HCSR04 device for ultra-sonic ranging measurement.

For measuring the distance with respect to an obstacle (for this particular case, the water surface), it is
required to supply through the trigger input line a pulse of 10 microseconds. Then, it will start the ranging
sending out an 8 cycle burst of ultrasound at 40 kHz. Whenever the sensor receives the signal back, it will set
a high pulse through the echo output line whose pulse width will be proportional to the distance between the
sensor and the obstacle. The following timing diagram illustrates the described procedure.

Figure 25. HCSR04 device timing diagram.

20

Finally, for calculating the distance between the module and the obstacle, the echo pulse width (in
microseconds) is divided by 58 which giving the distance in order of centimeters.

4.2 Water-level variables configuration

For managing the device and retrieving the measurements, the project includes at the software level the
waterlevel_handler module. It has been developed using the same strategy of the temperature module:
The module is initialized having received the initial parameters, and then for retrieving the tank water level it
is called the receive procedure according to the sampling period configured by the user.

Nonetheless, for this modules there are different features to be commented: as it was explained, the device
measures the distance between the top and the water surface. Thus, it is needed to know before which is the
tank height in order to make a subtraction between that height value WATERTANK_HEIGHT and the calculated
distance d for getting which is the current water level.

Figure 25. Water tank with its associated levels and thresholds.

In addition to the water tank variable, as it can be seen in the previous figure, other thresholds are managed
such that the system will dispatch an alarm whenever these values are passed. These values are the max level
of water that it is permitted in the tank WATERLEVEL_MAX_THRESHOLD, and the minimum level permitted
WATERLEVEL_MIN_THRESHOLD. The max level threshold must be greater than the min level threshold.

Furthermore, both thresholds must be in a range measurable by the sensor in the following sense: Since the
device HC-SR04 only works in a range between 2 cm and 400 cm, the device will not be able to deduce
whenever water surface is within a distance lower than 2 cm. Analogously, it will not be able to deduce when
the water surface is within a distance greater than 400 cm. Therefore, both thresholds must be situated in a
range between WATERTANK_HEIGHT – 2 cm and WATERTANK_HEIGHT – 400 cm.

The configuration of the water tank height & the respective thresholds is done in the system initialization
phase through the UART-based system console -see Section 5-. In that procedure those values are read by the
user, and for the thresholds it is verified that are in the correct range according to the previous explanation.
As it is commented in the Section 5, it is not mandatory to set a water tank height nor the thresholds. In that
case the handler will work in a dummy mode in which it will be assumed that the tank has an “infinite”
capacity, and it will not be retrieved the current water level but the brute distance between the sensor and the
water surface.

21

water

HC-SR04

WATERLEVEL
(d - WATERTANK_HEIGHT)

d distance
measured by
HC-SR04

WATERTANK_HEIGHT

WATERLEVEL_MAX_THRESHOLD

WATERLEVEL_MIN_THRESHOLD

WATERLEVEL_MAXIMUM_SUPPORTED_THRESHOLD
(WATERTANK_HEIGHT – 2 cm)

WATERLEVEL_MINIMUM_SUPPORTED_THRESHOLD
(WATERTANK_HEIGHT – 400 cm)

4.3 Communicating with the sensor & water-level monitoring operation flow

Once the variables are configured through the initial calibration routine, it is called the initialization
procedure WATERLEVEL_HANDLER_INIT of the waterlevel_handler module. Within this procedure
are set the GPIO pins that are going to be connected at the hardware level with the sensor device. In this case
it has been connected the microcontroller port B6 (D10) with the sensor Trigger port in order to send the
pulse that activates the distance measuring function, and it has been connected the microcontroller port C7
(D9) with the sensor Echo port in order to receive the response signals.

To ease the development, the software handler is supported with a library which implements the signaling
mechanism explained in Section 4.1. The library is available at [12], and it is based on the STM32F4
microcontroller models; as a consequence, minor changes were done in order to adapt it to the STM32L476
microcontroller. The most significant change that was done in the library was to make it work with a system
own timer which is the same one used for the temperature module -See Section 3-. Through this timer, we
can use a counter at the precision level of microseconds to comply the necessary delays for the sensor
signaling procedure. The following code corresponds to the read function of the used library – using the own
system configured timer-.

54 float TM_HCSR04_Read(TM_HCSR04_t* HCSR04) {
55 uint32_t time, timeout;
56 /* Trigger low */
57 HAL_GPIO_WritePin(HCSR04->TRIGGER_GPIOx, HCSR04->TRIGGER_GPIO_Pin, RESET);
58 /* Delay 2 us */
59 TIM6_MicrosecondsDelay(2);
60 /* Trigger high for 10us */
61 HAL_GPIO_WritePin(HCSR04->TRIGGER_GPIOx, HCSR04->TRIGGER_GPIO_Pin, SET);
62 /* Delay 10 us */
63 TIM6_MicrosecondsDelay(10);
64 /* Trigger low */
65 HAL_GPIO_WritePin(HCSR04->TRIGGER_GPIOx, HCSR04->TRIGGER_GPIO_Pin, RESET);
66 /* Give some time for response */
67 timeout = HCSR04_TIMEOUT;
68 while(! HCSR04_READPIN(HCSR04->ECHO_GPIOx, HCSR04->ECHO_GPIO_Pin)){
69 if (timeout-- == 0x00) {
70 return -1;
71 }
72 }
73 time = 0;
74 /* Wait till signal is low */
75 while(HCSR04_READPIN(HCSR04->ECHO_GPIOx, HCSR04->ECHO_GPIO_Pin)){
76 time++; /* Increase time */
77 TIM6_MicrosecondsDelay(1); /* Delay 1us */
78 }
79 /* Convert us to cm */
80 HCSR04->Distance = (float)time * HCSR04_NUMBER;
81 /* Return distance */
82 return HCSR04->Distance;
83 }

Figure 26. Extract of the receive procedure for the HCSR04 Library.

So it can be seen how the procedure implements the required signaling algorithm contemplated in Section
4.1. After having set the trigger signal high (ll. 61 – 63) the HCSR04 device will activate and send the ultra-
sonic waves towards the water surface. In the meantime, at the software level the procedure waits for a
prudential time (ll. 66 – 72) before for starting to receive the sensor response through the Echo line.
Whenever we start to receive the sensor response, it is calculated the echo pulse width (ll. 73 – 78). Finally, it

22

is done a conversion dividing the calculated echo pulse width (in milliseconds) by 58 to get the distance
towards the water surface in centimeters.

The presented procedure is called within the waterlevel_handler module specifically on the
WATERLEVEL_HANDLER_RECEIVE procedure, and as it used as follows: If the water tank height was not
initialized then the variable WATERLEVEL is silly interpreted as the calculated distance. Otherwise, the
WATERLEVEL variable is updated making the subtraction between the water tank height and the calculated
distance. In addition, if the thresholds were initialized for this module, it is checked if the WATERLEVEL has
passed either the WATERLEVEL_MAX_THRESHOLD or the WATERLEVEL_MIN_THRESHOLD bounds. For both
cases, the module provides two flags: WATERLEVEL_ALARM_MIN_THRESHOLD_REACHED and
WATERLEVEL_ALARM_MAX_THRESHOLD_REACHED. Each flag is set to high whenever the water level
passes either the min threshold or the max threshold, according to the respective case.

Finally, the waterlevel_handler module provides the function WATERLEVEL_HANDLER_Print which
is used to the put on the standard output which the current tank water level. In addition, the procedure prints
a corresponding alarm if one of the two mentioned thresholds flags are set on.

5 System console

The monitoring system integrates a module embedded for managing a system terminal. The idea is to provide
a command-line interface for interacting with the user connecting the microcontroller towards the computer
through an UART channel which goes over the USB connection. Hence, through this interface the user can
configure the system main variables (sampling period, turning on/off devices, water-tank height and the
different thresholds), receive the sensor measurements and the corresponding alarms. The microcontroller
program stores the necessary logic to carry out the module management whereas in the computer side is
necessary to have a serial terminal client.

The console is supported having as a channel the microcontroller USART2 interface which is managed by
the structure huart2. This UART channel is initialized in the usart.c project file. Hence, for printing data to
the console it is called the method HAL_UART_Transmit(&huart2, (uint8_t*) &buffer,
strlen(buffer), 0xFFFF) such that buffer stores the string to be printed in the console. As an
alternative, it has been configured the C standard library function printf(const char *format, …) in
such a way that whenever this function is called, the system will understand that the standard output in which
to print the string will be in the UART channel. On the other hand, it was developed an scanning function for
getting the system variables that are entered by the user through the system console. The next figure presents
the _scanf(uint8_t* buffp) function which is the procedure developed for accomplishing this scanning
task.

312 void _scanf(uint8_t* buffp){
313 memset(buffp, 0, SCANF_BUFFR);
314 uint8_t* p = buffp;
315 uint8_t c = 0x00;
316 while(1){
317 HAL_UART_Receive(&huart2, (uint8_t*) &c, 1, HAL_MAX_DELAY);
318 HAL_UART_Transmit(&huart2, (uint8_t*) &c, 1, HAL_MAX_DELAY);
319 *p++ = c == 0x0D ? 0x00 : c;
320 if(c == 0x0D){
321 break;
322 }
323 }
324 HAL_UART_Transmit(&huart2, (uint8_t*)"\r\n", 2, HAL_MAX_DELAY);
325 }

Figure 27. System console scanning function.

23

The variable buffp is the auxiliary variable which is used to read the complete string value inserted by the
user. In ll. 316 – 322 of the presented code it is read one character (stored in the c variable) at a time inside
the loop statement.

Each received character coming from the UART channel is immediately forward back to the UART interface
printing it in the system console for letting the user see the characters he or she is typing. Each received
character is sequentially stored in the buffp variable. Then, when the user presses the enter key -which is
the carriage return character, 0x0D on the ASCII representation- and its received by the routine it will break
the loop finishing the string scanning.

The system console initial view is shown just after the microcontroller does its corresponding initial
configuration (system clock configuration, peripherals initialization, etc.). Internally, it is called the
DISPLAY_MENU() routine (implemented on the main.c file) which prints the system main menu over the
console. The options implemented in the system console are the following ones:

• SETUP: It provides to the user several options for initializing the system: choose the sensors to turn
on/off, set the sensor devices sampling period, set the water-tank height, and configure the alarm
maximum and minimum thresholds for both the temperature module and the water-level module.

Figure 28. System console SETUP option.

• START: It initiates to read data from sensors according to the configuration previously done in the
SETUP command -or with the default configuration-. The sensor measurements of the selected
devices are shown in the console, and if any alarm flag is activated it is notified as well.

24

Figure 29. Starting to capture the sensor measurements through the START option.

• CLEAN: Clear the system console.

Having launched the START command the microcontroller has started to print the sensor measurements to
the system console. In order to stop this execution and going back to the main menu it can be pressed the Q
key. Internally this interruption management was done in the following way: whenever the reading the data
from the sensor begins it is called the HAL_UART_Receive_IT(&huart2, (uint8_t*) &esc,
0xFFFF) command. Hence, whenever a key is pressed the system will be notified by means of a callback
which will verify if the received character is indeed the Q character. If it is true then it will interrupt this
sensor readings procedure, and the program control will go back to the main menu.

6 Download

The project source code is freely available for download at the following repository:
https://github.com/juliocesarcarrasquel/waterlevel-monitoringsystem. It has been developed using the
STM32CubeMX framework in order to configure the microcontroller features, and the System Workbench 4
IDE for the coding development phase.

7 References

[1] ST Microelectronics. STM32L476RG Microcontroller: Ultra-low-power with FPU ARM Cortex-M4
MCU 80 MHz. http://www.st.com/en/microcontrollers/stm32l476rg.html

[2] ST Microelectronics. STM32L476xx Datasheet: Ultra-low power ARM Cortex-M4 32-bit MCU.
Retrieved from: http://www.st.com/resource/en/datasheet/stm32l476rg.pdf

25

[3] ST Microelectronics. STM32CubeMX – STM32Cube initialization code generator.
http://www.st.com/en/development-tools/stm32cubemx.html

[4] OpenSTM32 Community Site. System Workbench for STM32.
http://www.openstm32.org/System+Workbench+for+STM32

[5] NEO-6 U-Blox GPS modules Datasheet. Doc. Number: PS.G6-HW-09005-E. Rev. E. December 2011.

[6] NMEA Data. Retrieved from: http://www.gpsinformation.org/dale/nmea.htm. (April 2017).

[7] MINMEA: A lightweight GPS NMEA 0183 parser library in pure C. Available at:
https://github.com/cloudyourcar/minmea

[8] Dallas Semiconductors Corp. Division of Maxim Integrated Products, Inc. DS18B20 Programmable
Resolution 1-Wire Digital Thermometer Datasheet.

[9] STM32F4 Discovery. Library 12: 1-Wire Library for STM32F4. Available at: https://stm32f4-
discovery.net/2014/05/library-12-onewire-library-for-stm43f4xx/

[10] STM32F4 Discovery. Library 13: Reading temperature with Dallas DS18B20 on STM32F4. Available
at: https://stm32f4-discovery.net/2014/05/13-reading-temperature-with-dallas-ds18b20-on-stm32f429-
discovery-board/

[11] ElecFreaks. Ultrasonic Ranging Module HC–SR04 Datasheet. Retrieved from:
http://www.micropik.com/PDF/HCSR04.pdf (April 2017).

[12] STM32F4 Discovery. Library 30: Measure distance with HC-SR04 and STM32F4. Available at:
https://stm32f4-discovery.net/2014/08/library-30-measure-distance-hc-sr04-stm32f4xx/

8 Acknowledgements

The presented solution in this report has been developed thanks to the support of INTECS Solutions SpA
with headquarters at Rome, Italy. The company provided the facilities, the hardware equipment and the
useful assistance throughout the development of the project. Special thanks to Ugo Maria Colesanti whose
tutorship leaded to the achievement of the proposed goals within this work.

26

