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Abstract. Data mining aims at finding interesting patterns from
datasets, where “interesting” means reflecting intrinsic dependencies in
the domain of interest rather than just in the dataset. Concept stabil-
ity is a popular relevancy measure in FCA. Experimental results of this
paper show that high stability of a concept for a context derived from
the general population suggests that concepts with the same intent in
other samples drawn from the population have also high stability. A
new estimate of stability is introduced and studied. It is experimentally
shown that the introduced estimate gives a better approximation than
the Monte Carlo approach introduced earlier.

Keywords: formal concept analysis, stability, pattern selection, exper-
iment.

1 Introduction

Given a dataset, data mining methods may reveal a huge number of patterns,
so filtering patterns w.r.t. some relevancy measures can be necessary. The ques-
tion of how much a pattern is interesting arises in many areas of data mining,
including those that employ tools of Formal Concept Analysis (FCA). FCA is a
mathematical formalism having many applications in data analysis [1]. It aims
at computing concepts and their lattices from a formal context, a triple (G,M, I)
where G is a set of objects (experiments or elements of a dataset), M is a set
of attributes used to build the description of every object, and I ⊆ G × M is
a relation between objects and attributes. The number of concepts for a given
context can be exponential w.r.t. the size of the context, and thus, a special
procedure for selecting the most relevant concepts is needed. Two options can
be distinguished. The first one is to introduce background knowledge into the
procedure for computing concepts [2–6]. Background knowledge allows one to
sort concepts which are likely to be useful for the current goal. In this case,
although the number of concepts can be significantly reduced, the size of the
lattice can still be huge. The second option is to rank concepts in the lattice
using a relevance measure.

The authors of [7] provide several measures for ranking concepts that stem
from human behavior. Stability is another measure for ranking concepts, intro-
duced in [8] and later revised in [9–11]. Several other methods are considered
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Table 1. A toy formal context

m1 m2 m3 m4 m5 m6

g1 x x
g2 x x
g3 x x
g4 x x
g5 x

({g1} ; ∗)[0.5] ({g2} ; ∗)[0.5] ({g3} ; ∗)[0.5] ({g4} ; ∗)[0.5] ({g5} ; ∗)[0.5]

(∅; ∗)[1.0]

( {g1, g2, g3, g4} ; {m6})[0.69]

({g1, g2, g3, g4, g5} ; ∗)[0.47]

Fig. 1. Concept Lattice for Table 1 with corresponding stability indexes

in [12], where it is shown that stability is more reliable for artificially noised data.
Although there is a number of methods for ranking concepts, there is neither a
reliable comparison nor a deep research on relevancy of the selection methods
mentioned above. In this work we focus on the stability measure and its esti-
mates. The intuition behind stability is the probability of preserving the concept
intent when some objects of the context are removed. In this paper we study the
behavior of stability computed in several datasets coming from the same general
population. It is done by spliting given datasets into two disjoint subsets called
reference and test datasets. The stability behaviour is shown to be similar in
reference and test datasets independently of the general population.

Since computing stability is #P-complete [8, 9] one needs to use estimates or
approximations in order to compute stability over large lattices. Correspondingly,
in the second part of our paper we introduce estimates of stability. It is shown
empirically that their performance is better then the performance of the known
Monte Carlo approximation [13].

The rest of the paper is organized as follows. Section 2 introduces the formal
definition of stability, its estimate and Monte Carlo approximation and discusses
their relation. In Section 3 experiments on relevancy of stability are explained
and discussed. Then Section 4 validates the introduced estimate.

2 Stability of a Formal Concept

2.1 The Definition of Stability

Stability is a relevancy measure of a formal concept introduced in [8] and later
revised in [9–11].
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Function FindStabilityLimits
Data: A context K = (G,M, I), A concept C.
Result: < Left,Right >, a pair of left and right limits for the stability.
Left ← 1;
Right ← 1;
children ← FindChildren(K, C) ; /* O(|N | · |M |2 */

minDiffSize ← ∞;
foreach ch ∈ children do /* O(|M |) iterations at most */

diffSize ← |Ext(C) \ Ext(ch)|;
minDiffSize ← min(minDiffSize, diffSize);

Left ← Left− 2−diffSize;

Right ← 1− 2−minDiffSize;
return < Left,Right >;

Algorithm 1: An algorithm computing stability bounds according to (2)

Function FindStabilityLimitsPlusMC
Input: Context K = (G,M, I); concept C; precision ε and error rate δ for

Monte-Carlo.
Output: < Left,Right >, a pair of left and right limits for the stability.
< Left, Right >← FindStabilityLimits(K, C);
if Right− Left > 2 · ε then

stabilityMC ← FindStabilityByMonteCarlo(K, C, ε, δ);
Left ← max(Left, stabilityMC − ε);
Right ← min(Right, stabilityMC + ε);

return < Left,Right >;

Algorithm 2: An algorithm based on combination of (2) and Monte-Carlo
approach.

Definition 1. Given a concept c, concept stability Stab(c) is defined as

Stab(c) :=
|{s ∈ ℘(Ext(c)) | s′ = Int(c)}|

2|Ext(c)| (1)

i.e. the relative number of subsets of the concept extent (denoted by Ext(c)),
whose description (i.e. the result of (·)′) is equal to the concept intent (denoted
by Int(c)) where ℘(P ) is the power set of P .

Example 1. Figure 1 shows a lattice for the context in Table 1, for simplicity
some intents are not given. The extent of the highlighted concept c is Ext(c) =
{g1, g2, g3, g4}, thus, its power set contains 24 elements. The descriptions of 5
subsets of Ext(c) ({g1} , . . . , {g4} and ∅) are different from Int(c) = {m6}, while
all other subsets of Ext(c) have a description equal to {m6}. So, Stab(c) =
24−5
24 = 0.69.
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Stability measures the dependence of a concept intent on objects of the con-
cept extent. More precisely this intuition behind stability can be described by
the following proposition originally introduced in [11, 14].

Proposition 1. Let K = (G,M, I) be a formal context and c a formal concept
of K. For a set H ⊆ G, let IH = I ∩H ×M and KH = (H,M, IH). Then,

Stab(c) =
|{KH | H ⊆ G and Int(c) is closed in KH}

2|G|

The proposition says that stability of a concept c is the relative number of
subcontexts where there exists the concept c with intent Int(c). A stable concept
can be found in many such subcontexts, and therefore is likely to be found in
an unrelated context built from the population under study. This “likely” was
never studied and one of the goals of this paper is to check if stability is useful
to find significant patterns within the whole population.

It was shown that, given a context and a concept, the computation of con-
cept stability is #P-complete [8, 9]. One of the fastest algorithm for processing
concept stability using a concept lattice L is proposed in [11], with a worst-case
complexity of O(L2), where L is the size of the concept lattice. This theoretical
complexity bound is significantly higher than that of algorithms computing all
formal concepts and in practice computing stability may take much more time
than lattice building algorithms [15]. Moreover, this algorithm needs the lattice
structure to be computed, requiring additional computations and memory us-
age. Thus, finding a good estimate of concept stability is an important question.
Here we present an efficient way for such an estimate.

2.2 Estimation of Stability

Given a concept c and its descendant d, we have (∀s ⊆ Ext(d))(s′′ ⊆ Ext(d) ∧
s′ ⊇ Int(d) ⊃ Int(c)) i.e. s′ 
= Int(c). Thus, we can exclude all subsets of the
extent of a descendant while computing the numerator of stability in (1). On
the other hand only subsets of the extents of descendants should be excluded
from the numerator in (1). Thus, if we exclude the subsets of the extents of
all immediate descendants, we exclude everything that is needed but probably
some subsets can be excluded several times. Hence we obtain a lower bound for
stability:

1−
∑

d∈DD(c)

1

2Δ(c,d)
≤ Stab(c) ≤ 1− max

d∈DD(c)

1

2Δ(c,d)
, (2)

where DD(c) is a set of all direct descendants of c in the lattice and Δ(c, d) is
the size of the set-difference between extent of c and extent of d, i.e. Δ(c, d) =
|Ext(c) \ Ext(d)|. The pseudo-code for computing this estimate is shown in
Algorithm 1. The time complexity of this approach for a concept is equal to the
complexity of finding immediate descendants of the concept, i.e. O(n ·m2).

Example 2. If we want to compute stable concepts (with stability more than
0.97), then according to the upper bound in (2) we should compute for each
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concept c in the lattice Δmin(c) = min
d∈DD(c)

Δ(c, d) and select concepts obeying

Δmin(c) ≥ − log(1− 0.97) = 5.06.

The upper bound of the equation can be found in [11], while the lower bound
has not been studied yet. We know that given a context (G,M, I), the number
of children for any concept is limited by cardinality of M . Every summand in the
lower bound of stability in (2) is smaller than 2−Δmin(c). This gives the following
estimate.

1− |M | · 2−Δmin(c) ≤ 1−
∑

d∈DD(c)

2−Δ(c,d) ≤ Stab(c) (3)

This suggests that stability can have an exponential behavior w.r.t. the size
of the context and, thus, most of the concepts have stability close to 1 when
the size of the context increases. This behavior of stability is also noticed by
authors of [16] for their dataset. So, to use stability for large datasets it is worth
computing logarithmic stability for every concept c:

LStab(c) = − log2(1− Stab(c)) (4)

Taking into account the bounds in (2) and in (3), we have the following:

Δmin(c)− log2(|M |) ≤ − log2(
∑

d∈DD(c)

2−Δ(c,d)) ≤ LStab(c) ≤ Δmin(c) (5)

This approach is referred as the bounding method. It can efficiently bound sta-
bility for any concept of the lattice. However, the tightness of this bound cannot
be ensured.

In [13] the authors suggest a method for approximating concept stability based
on a Monte Carlo approach. Given a concept c, the idea is to randomly count the
number of “good” subsets s ⊆ Ext(c) of the extent of c such that s′ = Int(c).
Then knowing the number of iterations N and the number of “good” subsets
Ngood, stability can be calculated as the relation between them: Stab(c) =

Ngood

N .
In their paper authors provide the following approximation of the number of
iterations:

N >
1

2ε2
ln

2

δ
(6)

where ε is the precision of the approximation and δ is the error rate, i.e. if one
have computed stability approximation s, then the exact value of stability is
within the interval [s− ε; s+ ε] with the probability 1− δ. This method will be
later referred as the Monte Carlo method.

Example 3. In order to approximate stability with precision ε = 0.01 and error
rate δ = 0.01, it is necessary to make at least N = 2.65 · 104 iterations.

Example 3 shows that the number of iterations for one concept can be huge
and, thus, the Monte Carlo method should be less efficient than the bounding
method. Nevertheless the Monte Carlo method can ensure a certain level of
tightness. Consequently the bounding method and the Monte Carlo method
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Table 2. Datasets used in the experiments. Column ‘Shortcut’ refers to the short name
of the dataset used in the rest of the paper; ’Size’ is the number of objects in the dataset;
‘Max. Size’ is the maximal number of objects in a random subset of the dataset the
lattice structure can be computed for; ‘Max. Lat. Size’ is the size of the corresponding
lattice; ‘Lat. Time’ is the time in seconds for computing this lattice; ‘Stab. Time’ is
the time in seconds to compute stability for every concept in the maximal lattice.

Dataset Shortcut Size Max. Size Max. Lat. Size Lat. Time Stab. Time

Mushrooms1 Mush 8124 8124 2.3 · 105 324 57
Plants2 Plants 34781 1000 2 · 106 45 104

Chess3 Chess 3198 100 2 · 106 30 7.4 · 103
Solar Flare (II)4 Flare 1066 1066 2988 0 0

Nursery5 Nurs 12960 12960 1.2 · 105 245 5

can be used in a complementary way as follows. First, the stability bounds are
computed. Second, if the tightness of the bounding method is worse than the
tightness of the Monte Carlo method, the latter should be applied. The pseudo-
code of this approach is shown in Algorithm 2. In this paper it is referred as the
combined method.

Recall that there are three other estimates of stability [8, 9, 11] whose study
is out of the scope of the present paper. Two of these estimates are applicable
incrementally, i.e. when stability is known for a concept from some context and
several objects are added to this context authors estimate the stability of the
corresponding concept in the new lattice. For the third estimate no efficient
computation is known for the moment.

In the next section we present two types of experiments. In Subsection 3.1
an experiment on the predictability of stability is presented. The discussion
continues in Subsection 3.3 with the behaviour of stability thresholds and in
Subsection 3.4 with stability ordering ability.

3 Experiment on Predictability of Stability

The experiments are run on an “Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz”
computer with 8Gb of memory under Ubuntu 12. The algorithms are not paral-
lelized. Public datasets available from the UCI repository [17] are used for the
experimentation. These datasets are shown in Table 2. With their different size
and complexity, these datasets provide a rich experimental basis. Complexity
here stands for the size of the concept lattice given the initial number of objects
in the corresponding context. For example, Chess is the most complex dataset

1 http://archive.ics.uci.edu/ml/datasets/Mushroom
2 http://archive.ics.uci.edu/ml/machine-learning-databases/plants/
3 http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)
4 http://archive.ics.uci.edu/ml/datasets/Solar+Flare
5 http://archive.ics.uci.edu/ml/datasets/Nursery

http://archive.ics.uci.edu/ml/datasets/Mushroom
http://archive.ics.uci.edu/ml/machine-learning-databases/plants/
http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)
http://archive.ics.uci.edu/ml/datasets/Solar+Flare
http://archive.ics.uci.edu/ml/datasets/Nursery
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(a) Mush120 (b) Mush4000

(c) Mush120 logarihtmic scale (d) Mush4000 logarihtmic scale

Fig. 2. Stability in the test dataset w.r.t the reference one

as for only 100 objects in the context there are already 2 · 106 of concepts in the
concept lattice.

3.1 The Experiment Flow

Recall that the stability of a concept c can be considered as the probability for
the intent of c to be preserved in the lattice when some objects are removed.
However, when computing stability, one wants to know if the intent of a stable
concept is a general characteristic rather than an artefact specific for a dataset.
For that it is necessary to evaluate stability w.r.t. a test dataset different from
the reference one. Reference and test datasets are two names of disjoint datasets
on which the stability behaviour is evaluated. In order to do that the following
scheme of experiment is developed:

1. Given a dataset K of size K objects, experiments are performed on dataset
subsets whose size in terms of number of objects is N . This size is required
to be at least half the size of K. For example, for a dataset of size K = 10
the size of it subset can be N = 4.
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Fig. 3. Stability threshold in the test dataset ensuring that 99% of concepts corre-
sponding to stable ones in the reference dataset are stable

2. Two disjoint dataset subsets K1 and K2 of size N (in terms of objects) of
dataset K are generated by sampling, e.g. K1 = {g2, g5, g6, g9} and K2 =
{g3, g7, g8, g10}. Later, K1 is used as a reference dataset for computing sta-
bility, while K2 is a test dataset for evaluating stability computed in K1.

3. The corresponding sets of concepts L1 and L2 with their stability are built
for both datasets K1 and K2.

4. The concepts with the same intents in L1 and L2 are declared as correspond-
ing concepts.

5. Based on this list of corresponding concepts, a list of pairs S = {〈X,Y 〉 , . . . }
is built, where X is the stability of the concept in L1 and Y is the stability
of the corresponding concept in L2. If an intent exists only in one dataset,
its stability is set to zero in the other dataset (following the definition of
stability). Finally, the list LS = {〈Xlog, Ylog〉 , . . . } includes the stability
pairs in S in logarithmic scale as stated in formula (4).

6. Then sets of pairs S and LS are further used to study the behaviour of
stability on disjoint (independent) datasets coming from the same general
population.

The idea of evaluating stability computed on a reference dataset w.r.t. a test
dataset comes from the supervised classification methods. Moreover, this idea
is often used to evaluate statistical measures for pattern selection and can be
found as a part of pattern selection algorithms with a good performance [18].
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Fig. 4. Stability threshold in the reference dataset ensuring that 99% of concepts in
the test dataset corresponding to stable concepts in the reference dataset are stable
with stability thresholds 1 or 5

3.2 The General Behaviour of Stability

Sets of pairs S and LS can be drawn by matching every point 〈X,Y 〉 to a
point in a 2D-plot. The best case is y = x, i.e. stability for a concept in L1

is equal to stability of the corresponding concept in L2, meaning that stability
is not dependant on the dataset. However, this is hardly the case in real-world
experiments. All relevancy measures depend on the dataset, while any measure
should be able to predict its value independently of the dataset. Figures 2a and 2b
show the corresponding diagrams for the datasets Mush120 and Mush4000.6,7

These figures also highlight the fact that many concepts have stability close to
1, and that the larger is the dataset, the larger is the number of concepts with
stability close to 1. It is in accordance with the work [16] where most of the
concepts have the stability close to 1. However, when the logarithmic set LS is
used, a blurred line y = x can be perceived in Figures 2c and 2d. Moreover,
selecting the concepts which are stable w.r.t. a high threshold, say θr, in the
reference dataset K1, the corresponding concepts in K2 are stable w.r.t. a lower
threshold, say θt. Thus, we can conclude that stability is more tractable in the
logarithmic scale, and then we only consider this logarithmic scale in the rest of
the paper.

6 From here, the name of a dataset followed by a number such as ‘NameN ’ refers to
an experiment based on the dataset Name where K1 and K2 are of the size N .

7 See http://www.loria.fr/~abuzmako/stability-meaning/ for other diagrams.

http://www.loria.fr/~abuzmako/stability-meaning/
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Fig. 5. Local sorting rate for different datasets. The rate is computed for the test
dataset concepts corresponding to the first 1000 stable concepts in the reference dataset
with stability above a given threshold.

3.3 Setting a Stability Threshold

The dependency between two thresholds θr and θt of stability are shown in Fig-
ure 3. The x-axis corresponds to the stability threshold in the reference dataset
K1, while the y-axis corresponds to the stability threshold in the test dataset
K2. The lines correspond to the 99% level, i.e. given the stability in K1, what
should be the stability threshold in the test dataset K2 such that 99% of stable
concepts in K1 are also stable in K2. In this figure one can see that lines begin
to grow from 5 meaning that given stability threshold less than 5 in K1 no sta-
bility threshold in the test dataset K2 can ensure 99% of stable concepts. We
can also see two types of lines. The lines with stairs correspond to the datasets
with small number of stable concepts, while the others behave nearly the same.
This behavior suggests that in order to ensure that a concept remains stable in
another dataset with threshold θlog, its stability in the reference dataset should
be within [θlog + 5, θlog + 10].

Let us consider the behavior of the stability thresholds w.r.t the size of the
dataset. The dependency between the size of the dataset and the difference
between stability thresholds in the reference (K1) and in the test (K2) datasets
is shown in Figure 4. The x-axis corresponds to the size of the dataset, the y-axis
corresponds to the stability threshold in K1 such that 99% of concepts selected
by this threshold are stable in the test dataset K2 with a certain threshold (1
or 5). For example, the line ‘5: Mush’ corresponds to the stability threshold
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Fig. 6. Global sorting rate for different datasets

θ ensuring that all concepts having stability more than θ in K1 correspond to
concepts having stability at least 5 in the test dataset K2. We can see that
for large datasets the stability threshold is independent of the dataset, while
for small datasets the diversity is higher. Here for large datasets the stability
threshold should be set to 5–6 in a reference dataset in order to ensure that
99% of stable concepts have corresponding concepts in another dataset. This
threshold should be set to 12 in order to ensure that 99% of stable concepts
correspond to concepts having stability at least 5 in another dataset.

3.4 Stability and Ranking

Stability can be used for ranking concepts by decreasing its value. Thus, it is
useful to study the linear order corresponding to the ranking relation. A way to
study an order of an array ar is to compute its sorting rate r, i.e. the relative num-

ber of pairs in the array sorted in the ascending order: r = 2·{(i,j)|i<j and ari≤arj}
|ar|·(|ar|−1) .

A sorting rate equal to 1 means that the array is in the ascending order, while
0 means that it is in the descending order; the value 0.5 means that there is
no order at all. Figure 5 shows local sorting rate (LSR), i.e. given a threshold
the first 1000 stable concepts in K1 are taken and the sorting rate for the array
of stabilities of the corresponding concepts in K2 is computed. This plot shows
that for large datasets, the LSR is high (around 0.8–0.9) only for high stability
thresholds in K1. For the smaller datasets the local sorting rate is around 0.7–0.8
for all thresholds. It means that stability preserves LSR only for the most stable
concepts where the difference in stability between concepts is high enough, i.e.
an error in order is less likely.

Finally, Figure 6 shows the global sorting rate (GSR) for different datasets,
i.e. the sorting rate of stabilities in K2 for all concepts corresponding to the
concepts selected by a threshold in K1. We can see that the GSR for all datasets
is slowly increasing and for small thresholds it is higher than the LSR. It shows
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Table 3. Execution time for different steps on different datasets. Size is the number of
concepts in the lattice; Lattice is the time for lattice computation with its structure;
Stab. is the time for computing exact stability; FCbO is the time for computing the set
of concepts by FCbO; Freq. is the frequency threshold applied for big datasets; Est.
Method is the execution time for computing the estimate of stability by the estimate
method; Comb. Method is the execution time for computing the estmate of stability be
the combined method; the percentage here means that the program has been stopped
after a certain amount of work; MC calls is the number of calls to the Monte-Carlo
routine. All times are given in seconds.

Dataset Size Lattice Stab. FCbO Freq. Est. Method Comb. Method MC calls

Mush8124 2.3 · 105 324 57 0.7 0 2 · 103 6 · 103 6 · 104
Plnt1000 2 · 106 45 104 78 0 181 446 3 · 103
Chss100 2 · 106 46 104 3.5 0 90 192 2.3 · 103
SFlr1066 2988 0 0 0 0 0.7 11 284
Nurs12960 1.2 · 105 245 5 0.2 0 425 1.2 · 103 4 · 104

Chss3196 4.4 · 106 – – 42 1000 2 · 104 3.5·104
(2%)

?

Plnt34781 5.8 · 106 – – 795 1750 4.1 · 105 4.6·105
(4.7%)

?

that stability gives a global ordering of concepts, while the local ordering is not
reliable for small thresholds.

4 Computing an Estimate of Stability

In this section we study the efficiency of computing various estimates of stabil-
ity. Table 3 shows computation times for different methods and datasets. The
lattice structure is built by our implementation of AddIntent [19] and the set
of concepts is computed by FCbO [20]8. The datasets selected for experiments
are the datasets of maximal tractable size (see Table 2) plus Chess and Plants

with all the objects. For the last two datasets the numbers of concepts is huge.
Such datasets can be analyzed by finding only frequent concepts, i.e. concepts
with significantly large extents. Although an incomplete set of concepts without
lattice structure cannot be processed by the algorithm from [11], stability can be
estimated using formula (5), by Monte Carlo approach or their combination. For
the cases where the estimation of stability takes too much time, the percentage
of the processed concepts before termination is shown in the brackets. For the
sake of efficiency, an estimation or an approximation of stability for a concept
is stopped whenever it is clear that the concept is unstable i.e. stability is less
than 3 in the logarithmic scale.

We can see that even the combined method is significantly slower than the
bounding method and, hence, there is no reason to only work with the Monte
Carlo method as it is slower and does not provide a better precision. Moreover,

8 The implementation is taken from http://icfca2012.markuskirchberg.net.

http://icfca2012.markuskirchberg.net
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Fig. 7. The mean and the standard deviation of the stability estimate interval

although the number of calls to Monte Carlo routine is small in the combined
method, the computational efficiency of the stability estimate can dramatically
decrease, making the usage of combined method unfeasible. The estimates are
more efficient in terms of computational time for large lattices, i.e. lattices with a
high number of concepts for one object from the context. We can see that in some
cases the estimates for small lattices take much more time than the estimates for
large lattices. This can be explained by the fact that the corresponding contexts
contain many objects and attributes and that the computational efficiency of
the estimates is highly dependent on the size of the context.

The tightness of the estimates is shown in Figure 7. On the x-axis the val-
ues of the upper bound stability threshold are plotted while on the y-axis the
mean difference in the estimate are plotted. The plots are split in area of [0, 10];
the bottom line corresponds to the improvement achieved by additional use of
Monte Carlo in the combined method. According to formula (5) Monte Carlo
can give any improvements only in the case where stability upper bound is less
than 13 (taking into account that for these datasets there are less than 100 at-
tributes, and Monte Carlo parameters are in accordance with Example 3). In
practice, however, this bound is even smaller (less then 10). These plots show
that generally mean and standard deviation of the estimate difference do not
change w.r.t. the upper bound, however they can significantly depend on the
dataset. In our experiments it appears that the well-structured dataset (Mush,
Nurs) has higher mean value then the unstructured ones, while the big datasets
with only frequent concepts have low mean-values and standard deviations.

If we want to rank concepts w.r.t. stability, how many pairs of concepts become
incomparable when we use the estimates? Figure 8 shows the loss rate of the
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Fig. 8. Losing rate of relations for stability estimate

estimates, i.e. the relative number of concept pairs which cannot be compared
by the estimate. Although the loss rate for the interval [0, 10] can be high, it can
be efficiently reduced by using the combined method.

5 Conclusion

In this paper we study concept stability and its estimates on different datasets.
It is shown that stability computed in the logarithmic scale is more easy to in-
terpret. Our experiments show that stability of a concept is correlated with the
probability that the concept intent occurs in another dataset with high stability,
i.e. it is an efficient measure for ranking patterns. However, independently of a
dataset, as found experimentally, a concept should have a value of logarithmic
stability greater than 5 in order to reflect any property of the population. More-
over, if the stability threshold in a reference dataset is θ, then the stability of
the corresponding concept in another dataset is likely to be higher than θ − 10
or even θ − 5. We also remarked that stability is able to sort concepts in two
independent datasets with nearly the same order by selecting concepts with sta-
bility greater than a certain threshold. However, the sorting rate of the first 1000
concepts from two independent datasets with stability above a certain threshold
is high if the threshold is very high.

In the second part of this paper we showed that the introduced estimate is
an efficient way for ranking concepts w.r.t. stability. It can be applied for an
incomplete set of concepts and, hence, has more potential applications than the
exact methods. The introduced approach can be meaningfully combined with a
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Monte Carlo method, providing better precision for weakly stable concepts by
means of additional computational time. The precision and the sorting rate of
the studied approximations are reasonably high and can be efficiently used for
the stability computation.

There are many future research directions. One of them is to study other
approaches for ranking formal concepts with a similar technique. An interesting
question is to adapt the above approach to the comparison of different ranking
methods. Next, the properties of stability suggest that interesting concepts can
be found by resampling, i.e. analyzing many small parts of a large dataset,
thus providing a key to an efficient processing of datasets with Formal Concept
Analysis. Finally, the estimate we have proposed in this paper can be combined
with an efficient realization, e.g., by means of parallel computation.
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