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Rotation Number as a Complete Topological

Invariant of a Simple Isotopic Class of Rough

Transformations of a Circle

E. V.Nozdrinova

The problem of the existence of a simple arc connecting two structurally stable systems
on a closed manifold is included in the list of the fifty most important problems of dynamical
systems. This problem was solved by S.Newhouse and M. Peixoto for Morse – Smale flows on an
arbitrary closed manifold in 1980. As follows from the works of Sh.Matsumoto, P. Blanchard,
V. Grines, E.Nozdrinova, and O.Pochinka, for the Morse – Smale cascades, obstructions to the
existence of such an arc exist on closed manifolds of any dimension. In these works, necessary
and sufficient conditions for belonging to the same simple isotopic class for gradient-like diffeo-
morphisms on a surface or a three-dimensional sphere were found. This article is the next step
in this direction. Namely, the author has established that all orientation-reversing diffeomor-
phisms of a circle are in one component of a simple connection, whereas the simple isotopy class
of an orientation-preserving transformation of a circle is completely determined by the Poincaré
rotation number.
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1. Introduction and formulation of results

In the problems of managing processes of different nature of origin, every intermediate
state of the controlled system is important. The control is effective if the transition of dynamics
from one state to another is carried out in the simplest way. In particular, if the initial system
changes its dynamics from one regular state to another, then it is natural to expect regularity
from any intermediate state. The mathematical formulation of the problem of the existence of
such a way is included in the list of the fifty most important problems of dynamical systems,
compiled by J. Palis and C.Pugh [11].

The simplest regular systems are Morse – Smale systems — structurally stable flows and
diffeomorphisms, whose nonwandering set consists of a finite number of orbits. Sh.Newhouse
and M. Peixoto [8] proved that any Morse – Smale vector fields can be connected by a simple
arc. Simplicity means that the arc consists of Morse – Smale systems only, except for a finite set
of points (bifurcations) in which the vector field has (in some sense) the least deviations from
the Morse – Smale system (see Section 2 for exact definitions).

For discrete dynamic systems, a fundamentally different situation is observed. We say that
two isotopic diffeomorphisms belong to the same simple isotopic class if they are connected
by a simple arc. From the works of Sh.Matsumoto [6] and P.Blanchard [2] it follows that
any orientable closed surface admits Morse – Smale isotopic diffeomorphisms that cannot be
connected by a simple arc. In [2] necessary and sufficient conditions (in terms of filtration) for
belonging to the same simple isotopic class for gradient-like diffeomorphisms on an orientable
surface are also established. V. Grines and O.Pochinka [3] found sufficient conditions for the
existence of a simple arc connecting a gradient-like diffeomorphism on a 3-sphere with a “source-
sink” diffeomorphism. E. Nozdrinova and O.Pochinka [10] proved the existence of obstructions
to the existence of a simple arc on nonsimply connected manifolds of any dimension.

In the present work, the following result is established.

Theorem 1. All rough orientation-reversing diffeomorphisms of a circle lie in one compo-
nent of a simple connection, whereas the simple isotopy class of the rough orientation-preserving
transformation of a circle is completely determined by the Poincaré rotation number.

2. Supporting concepts and facts

A. A.Andronov and L. S. Pontryagin [1] introduced the concept of rough systems of differ-
ential equations on the plane in 1937. By definition, such systems do not change the qualitative
behavior with C1 small changes to the right-hand sides of the equations. It turned out that
rough systems have a very concise description: equilibrium states and limit cycles are hyper-
bolic, there is a finite number of them, and there are no trajectories going from saddle to saddle.
The representative of the Gorky school, A.G. Mayer [5] introduced the concept of roughness for
dynamic systems with discrete time (cascades) on a circle. From his results it follows that rough
cascades on a circle, like flows on a plane, are typical and have fairly clear dynamics.

First of all, we recall that the circle S1 is the only closed (compact without boundary)
one-dimensional manifold and is homeomorphic to the standard unit circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

Rough diffeomorphisms f of a circle S1 (we denote the set of them by G) have dynamics which,
from a modern point of view, can be described by the following proposition (see, for example, [4]).
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Proposition 1. Suppose that f ∈ G. Then
1) f has a finite number (not less than two) of periodic points p, that is, points for which

there is a natural number mp such that fmp(p) = p and f j(p) �= p for any integer 0 < j < mp

(we denote by Per(f) the set of periodic points of a diffeomorphism f);
2) in the surrounding area Up of a point p, which is a connected component of the set

S1 \ (Per(f) \ p), the diffeomorphism fmp is topologically conjugated either to the expansion

a±(x) = ±2x : R1 → R1

(in this case point p is called a source, and the neighborhood Up is called its unstable manifold W u
p )

or to the contraction
a−1
± (x) = ±x/2: R1 → R1

(in this case point p is called a sink, and the neighborhood Up is called its stable manifold W s
p ).

The immediate consequence of such a description of a rough transformation of the circle f
is the fact that a set Per(f) contains the same number (we denote this number by r) of sources
and sinks that alternate on a circle, and the phase portrait f , up to periodicity, has the form
shown in Fig. 1, where ω1, . . . , ωr are sinks, and α1, . . . , αr are sources. Connected components
of a set W s

ωi
\ ωi are called stable separatrices of the sink ωi, and connected components of

a set W u
αi

\ αi are called unstable separatrices of the source αi.

Fig. 1. Phase portrait of a rough circle transformation.

We assume that the circle is oriented clockwise and call the orientation on the arc γ ⊂ S1

positive (negative) if it coincides (does not coincide) with the orientation of the circle.
Let us recall that a homeomorphism g : S1 → S1 is called orientation-preserving (orientation-

reversing) if for any points a, b, c ∈ S1 so that the point b lies on a positively oriented arc
[a, c] ⊂ S1 it follows that the point g(b) lies on a positive (negative) oriented arc [g(a), g(c)]).

We divide the set G into two subclasses G+ and G−, which consist of orientation-preserving
and orientation-reversing diffeomorphisms, respectively. By [5] (see also [9]) periodic data of
diffeomorphisms of class G have the following structure.

Proposition 2.
1. For every diffeomorphism f ∈ G+ the set Per(f) consists of 2n, n ∈ N periodic orbits,

each of which has period k.
2. For every diffeomorphism f ∈ G− the set Per(f) consists of 2q, q ∈ N periodic points,

two of which are fixed, while others have period 2.

Renumber the periodic points of the set Per(f): p0, p1, . . . , p2nk−1, p2nk = p0 are renum-
bered starting from an arbitrary periodic point p0 clockwise. Then there is an integer l so that
f(p0) = p2nl and, what is more, l = 0 for k = 1, l ∈ {1, . . . , k − 1} for k > 1 and numbers (k, l)
are mutually simple. It is noticeable that l is independent of the selection of point p0. It is
worth noting that the number l

k
coincides with the Poincaré rotation number in this case.
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It has to be remembered that the Poincaré rotation number for the orientation-preserving
homeomorphism f : S1 → S1 is called the number r(f) ∈ [0, 1) defined as follows. Let us consider
f : R → R is the lift of homeomorphism f . Then for all x ∈ R there is a limit

ρ(f) = lim
n→N

f
n(x) − x
n ,

which (up to a constant multiple 2π) does not depend on the choice of lift f and point x. Then
the number

rf =
ρ(f)
2π ∼ mod 1

is called the Poincaré rotation number.
Note that the rotation number is an invariant of the homeomorphism f with respect to

orientation-preserving topological conjugacy. Let us call the triple (n, k, l) periodic data of
a diffeomorphism f ∈ G+.

For f ∈ G− we assume ν = −1; ν = 0; ν = +1 if its fixed points are sources; sink and
source; sinks, respectively. It has to be observed that ν = 0 if q is odd and ν = ±1 if q is even.
Let us call the pair (q, ν) periodic data of a diffeomorphism f ∈ G−.

According to the results of Mayer [5] (see also [9]), periodic data completely determine the
topological conjugacy class (with respect to orientation-preserving conjugacy) of the diffeomor-
phism f ∈ G.

In this paper, we consider one-parameter families or arcs of diffeomorphisms φt, t ∈ [0, 1],
given on S1. Denote by Q the set of arcs {φt} with the end points at Morse – Smale diffeomor-
phisms and with the following properties:

1) φt has only finitely many orbits in their limit sets for every t ∈ [0, 1];
2) {φt} has only finitely many bifurcation values, say b1, . . . , bm ∈ (0, 1).
In [7] it was proved that an arc {φt} ∈ Q is stable if it is simple, that is, for each 1 � i � s,

φbi has no cycles and has exactly one non-hyperbolic periodic orbit, which is either a flip or
a saddle-node (see Fig. 2).

Fig. 2. A simple arc from the set Q.

Thus, the assertion of Theorem 1 will follow from the following two lemmas, the proof of
which is covered in the next section.

Lemma 1. Diffeomorphisms f , f ′ ∈ G+ can be connected by a simple arc if they have the
same rotation number.

Lemma 2. Any f , f ′ ∈ G− can always be connected by a simple arc.
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3. Construction of a simple arc in the orientable case

In this section we will prove Lemma 1.

Proof. Let (n, k, l) be a triple of integers, so that n ∈ N and l = 0 for k = 1, l ∈ {1, . . . , k − 1}
for k > 1, and numbers (k, l) are coprime. We consider the map on the line Φ, given by the
formula

Φn,k,l(x) = x+ 1
2nkπ

sin(2nkπx) + l
k
.

We assume ri = i
2nk

, i ∈ Z. By construction, ri are fixed points of the map Φ− l
k

(see Fig. 3).

It is notable that arc φt(x) = Φn,k,l

(
x+ t

2nk

)
− t

2nk
, t ∈ [0, 1] connects a diffeomorphism Φn,k,l

with the diffeomorphism Φ−1
n,k,l.

Fig. 3. (a) Map Φn,k,l; (b) map Φn,k,l.

Let us consider projection Π: R → S1 given by the formula Π(x) = e2πix. By the fact that
the map Φ is monotone increasing and periodic of period 1, it can be projected onto a circle by the
diffeomorphism Φn,k,l = ΠΦn,k,lΠ−1 : S1 → S1 (see Fig. 3). Let us call the diffeomorphism Φn,k,l

a canonical diffeomorphism with periodic data (n, k, l). Everywhere below, maps without a dash
are projections onto S1 by means of Π of maps with a dash on R.

Now let f be a diffeomorphism from the set G+ having periodic data (n, k, l), and let
f : R → R be its lifting so that f(0) ∈ [0, 1). Then the map f is monotone increasing and

periodic of period 1, in addition, the map f − l
k

has 2n fixed points p0, . . . , p2n−1 on the half-

open interval [0, 1). Without loss of generality we assume that p0 is a source (otherwise the
diffeomorphism f can be connected to a diffeomorphism with a simple arc Φ−1

n,k,l, and then
connect the arc H−1

Φn,k,l,Φ
−1
n,k,l,t

to the diffeomorphism Φn,k,l).

We will construct a simple arc between the diffeomorphism f and the canonical diffeo-
morphism Φn,k,l. To do this, choose a strictly increasing smooth periodic function of period 1
ϕ : R → R, mapping points ri to points pi (see Fig. 4).

For all t ∈ [0, 1] it is assumed that

ϕt(x) = tϕ(x) + (1 − t)x.
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Fig. 4. Function ϕ.

By construction, ϕt is a smooth isotopy connecting diffeomorphism ϕ with the identical map on
the line. Then the arc

ξt = ϕ−1
t (f − l

k
)ϕt

connects the diffeomorphism f − l
k

with the diffeomorphism ξ1 for which points ri are fixed

(see Fig. 5). Let us assume

ηt = t(Φn,k,l − l
k
) + (1 − t)ξ1.

By construction, the arc

Hf,Φn,k,l,t
= ηt ∗ ξt + l

k

connects the diffeomorphism f with the canonical diffeomorphism Φn,k,l.
To construct an arc connecting diffeomorphisms Φn,k,l and Φn−1,k,l, we consider a map

g : R → R (see Fig. 5) with period 1
k

and given on the segment
[
0, 1
k

]
by the formula

g(x) =

⎧⎪⎨⎪⎩
x+ 3

2nkπ
sin
(

2nkπx
3

)
+ l
k
, 0 � x < 3

2nk
,

Φn,k,l(x), 3
2nk

� x � 1
k
.

Let (see Fig. 6)
ζt = tg + (1 − t)Φn,k,l.

By construction, the arc HΦn,k,l,Φn−1,k,l,t = Hg,Φn−1,k,l,t ∗ ζt connects two canonical diffeomor-
phisms Φn,k,l, Φn−1,k,l and contains a single saddle-node bifurcation point.

Now let us construct a simple arc between arbitrary diffeomorphisms f , f ′ ∈ G+ with the
same rotation numbers. In this case their periodic data (n, k, l) and (n′, k′, l′) may differ only
by the number of periodic orbits, i.e., k = k′ and l = l′. For definiteness we assume n′ � n. The
arc connecting the canonical diffeomorphisms Φn,k,l and Φn′,k,l is defined as follows:

HΦn,k,l,Φn′,k,l,t = HΦn′+1,k,l,Φn′,k,l,t ∗ . . . ∗HΦn,k,l,Φn−1,k,l,t.

Then we define the desired arc by the formula

Hf,f ′,t = H−1
f ′,Φn′,k,l,t

∗HΦn,k,l,Φn′,k,l,t ∗Hf,Φn,k,l,t.
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Fig. 5. Map Φn,k,l − l
k

and ξ1. Fig. 6. Bifurcation saddle-node.

Thus, we have constructed a simple arc with a finite number of saddle-node bifurcations
connecting diffeomorphisms f , f ′ ∈ G+ with the same rotation numbers. Since the rotation
number is a topological invariant of a circle diffeomorphism, continuously dependent on the
parameter of the arc, it follows that any arc connecting diffeomorphisms f , f ′ ∈ G+ with
different rotation numbers is not simple, because it contains a continuum of bifurcations, which
contradicts the definition of the simple arc.

4. Construction of a simple arc in the nonorientable case

In this section, Lemma 2 is to be proven.

Proof. Let us consider a map Ψq, q ∈ N (see Fig. 7) given by the formula

Ψq(x) = −x− 1
2qπ sin(2qπx).

Fig. 7. Map Ψ3.
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Fig. 8. Diffeomorphism Ψ1. Fig. 9. Flipp bifurcation.

Notice that the map Ψ1 (see Fig. 8) is connected by an arc without bifurcations with the
diffeomorphism Ψ−1

1 as follows:

H
Ψ1,Ψ

−1
1 ,t

(x) = Ψ1(x− t
2) + t

2 .

We also notice that the map Ψ2 is connected with the map Ψ1 by the simple arc HΨ2,Ψ1,t
=

= (1 − t)Ψ2 + tΨ1 with one flip bifurcation point (see Fig. 9).
As in the previous section, we will use notation without a dash for projections onto S1 by

means of Π of maps with a dash on R. We call Ψq a canonical diffeomorphism.
Let a diffeomorphism f ∈ G− have periodical data (q, ν). We will show that the diffeo-

morphism f is connected by a simple arc Hf,Ψ1,t with the diffeomorphism Ψ1. Without loss of
generality we will assume that the diffeomorphism f has at least one fixed source (otherwise the
diffeomorphism f can be connected with the diffeomorphism Ψ−1

1 by an algorithm below and
then connected by the arc H−1

Ψ1,Ψ
−1
1 ,t

with the diffeomorphism Ψ1).

A construction similar to that given in the previous section, an arc Hf,Ψq,t without bi-
furcations, can be constructed to connect the diffeomorphism f with the diffeomorphism Ψq.
For q � 3, consider the map h : R → R (see Fig. 10) with the period 1 defined on the segment [0, 1]
by the formula

h(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−x− 3
2qπ sin

(
2qπx

3

)
, 0 � x < 3

2q ,

Ψq(x), 3
2q

� x � 2q − 3
2q

,

−x+ 3
2qπ sin

(
2qπx

3

)
,

2q − 3
2q < x � 1.

Let us assume that �t = th+ (1 − t)Ψq. Then the arc

HΨq,Ψq−2,t = H
1,Ψq−2,t ∗ �t
joins two canonical diffeomorphisms Ψq and Ψq−2 and contains one saddle-node bifurcation
point. Thus, the required arc is given by

Hf,Ψ1,t =
{
HΨ3,Ψ1,t ∗ . . . ∗HΨq,Ψq−2,t ∗Hf,Ψq,t, q = 2k + 1, k ∈ N,

HΨ2,Ψ1,t ∗HΨ4,Ψ2,t ∗ . . . ∗HΨq,Ψq−2,t ∗Hf,Ψq,t, q = 2k + 2, k ∈ N.
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Fig. 10. Saddle-node bifurcation.
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Trois études en dynamique qualitative, Astérisque, vol. 31, Paris: Soc. Math. France, 1976, pp. 15–41.

[9] Pochinka, O.V., Nozdrinova, E. V., and Kolobianina, A. E., Classification of Rough Transformations
of a Circle from a Modern Point of View, Zh. Srednevolzhsk. Mat. Obshch., 2017, vol. 19, no. 1,
pp. 1–10 (Russian).

[10] Pochinka, O., Nozdrinova, E., and Dolgonosova, A., On the Obstructions to the Existence of a Simple
Arc Joining the Multidimensional Morse – Smale Diffeomorphisms, Dinam. Sist., 2017, vol. 7(35),
no. 2, pp. 103–111.

[11] Palis, J. and Pugh, C. C., Fifty Problems in Dynamical Systems, in Dynamical Systems: Proc.
Sympos. Appl. Topology and Dynamical Systems (Univ. Warwick, Coventry, 1973/1974): Presented
to E. C. Zeeman on His Fiftieth Birthday, A. Manning (Ed.), Lecture Notes in Math., vol. 468, Berlin:
Springer, 1975, pp. 345–353.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2018, 14(4), 543–551


