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Chapter 6
Emulating the Raman Physics
in the Spatial Domain with the Help
of the Zakharov’s Systems

Evgeny M. Gromov and Boris A. Malomed

Abstract Dynamics of solitons is considered in the framework of the extended
nonlinear Schrödinger equation (NLSE), which is derived from a system of the
Zakharov’s type for the interaction between high- and low-frequency (HF and LF)
waves, in which the LF field is subject to diffusive damping. The model may apply
to the propagation of HF waves in plasmas. The resulting NLSE includes a pseudo-
stimulated-Raman-scattering (pseudo-SRS) term, i.e., a spatial-domain counterpart
of the SRS term which is well known as an ingredient of the temporal-domain
NLSE in optics. Also included is inhomogeneity of the spatial second-order
diffraction (SOD). It is shown that the wavenumber downshift of solitons, caused
by the pseudo-SRS, may be compensated by an upshift provided by the SOD whose
coefficient is a linear function of the coordinate. An analytical solution for solitons
is obtained in an approximate form. Analytical and numerical results agree well,
including the predicted balance between the pseudo-SRS and the linearly inho-
mogeneous SOD.

6.1 Introduction

The great interest to the dynamics of solitons is motivated by their ability to travel
long distances keeping the shape and transferring the energy and information with
no or little loss. Soliton solutions are relevant to nonlinear models in various areas
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of physics which deal with the propagation of intensive wave fields in dispersive
media: optical pulses and beams in fibers and spatial waveguides, electromagnetic
waves in plasma, surface waves (SW) on deep water, etc. [1–7]. Recently, solitons
have also drawn a great deal of interest in plasmonics [8–10].

The propagation of broad high-frequency (HF) wave packets is modeled by the
second-order nonlinear dispersive wave theory. In isotropic media, the basic
equation of the theory is the nonlinear Schrödinger equation (NLSE) [11, 12],
which combines the second-order dispersion (SOD) and the self-phase modulation.
Its soliton solutions provide for the equilibrium of the dispersive dilatation and
nonlinear compression of the wave packets. In particular, permanent-shape solu-
tions for damped solitons were found in the framework of the NLSE including
linear losses of HF waves and spatially-decreasing SOD [4, 13].

In anisotropic media, the copropagation of wave modes with different polar-
izations gives rise to coupled NLSEs [14–17], which include
cross-phase-modulation (XPM) terms. Interactions of vector solitons in the
framework of coupled NLSEs were studied in detail too, see, e.g., [18–20].

The dynamics of narrow HF wave packets is described by the third-order
nonlinear dispersive wave theory [1], which takes into account the nonlinear dis-
persion (self-steeping) [21], stimulated Raman scattering (SRS) [22–24] and
third-order dispersion (TOD). In isotropic media the basic equation of the theory is
the third-order NLSE [24–28]. Soliton solutions in the framework of the third-order
NLSE with TOD and nonlinear dispersion were found in Refs. [29–36]. In Refs.
[37, 38], stationary kink waves were found as solutions of the extended NLSE with
SRS and nonlinear dispersion terms. This solution exists as the equilibrium between
the nonlinear dispersion and SRS. For localized nonlinear wave packets (solitons),
the SRS gives rise to the downshift of the soliton spectrum [22–24] and eventually
to destabilization of the solitons. The use of the balance between the SRS and the
slope of the gain for the stabilization of solitons in long telecom links was proposed
in [25]. The compensation of the SRS by emission of linear radiation fields from the
soliton’s core was considered in [26]. In addition, the compensation of the SRS in
inhomogeneous media was considered in several situations, viz., with periodic SOD
[27, 28], shifted zero-dispersion point of SOD [29], and in dispersion-decreasing
fibers [30].

In anisotropic media the dynamics of narrow vector wave packets is described
by coupled third-order NLSEs, which take into account third-order cross-nonlinear
terms [31–34]. In the framework of this system, which does not include SRS terms,
vector-soliton solutions were found in [32]. Interactions of vector solitons in the
framework of coupled third-order NLSEs were considered in [35].

Intensive short pulses of HF electromagnetic or Langmuir wave in plasmas, as
well as HF SW in deep stratified water, suffer effective induced damping due to
scattering on LF waves, which, in turn, are subject to the action of viscosity.
These LF modes are ion-sound waves in the plasma, and internal waves (IW) in the
stratified fluid. The first model for the damping induced by the interaction with the
LF waves was proposed in [35] (see Sect. 6.2). This model gives rise to an
extended NLSE with the spatial-domain counterpart of the SRS term, that was call a
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pseudo-SRS one (pseudo-Raman). The equation was derived from the system of the
Zakharov’s type equations [37, 38] for the coupled Langmuir and ion-acoustic
waves in plasmas. The pseudo-SRS leads to the self-wavenumber downshift,
similar to what is well known in the temporal domain [1, 21–24] and, eventually, to
destabilization of the solitons. The model elaborated in [36] also included smooth
spatial variation of the SOD, accounted for by a spatially decreasing SOD coeffi-
cient, which leads to an increase of the soliton’s wavenumber, making it possible to
compensate the effect of the pseudo-SRS on the soliton by the spatially inhomo-
geneous SOD, neglecting the direct effect of the LF-wave loss.

The objective of this article is to produce a review of models derived, starting
from systems of the Zakharov’s type, in the form of NLSEs which include the
pseudo-Raman term and other terms which produce soliton pulses as a result of
competition with the pseudo-Raman effect. After reviewing the basic model
equation in Sect. 6.2, in Sect. 6.3 we consider the dynamics of intensive HF wave
packets in dispersive nonlinear media, taking into account the scattering on the
damped LF waves (pseudo-Raman), exponentially decreasing SOD, and linear
losses of HF waves [39].

In Sect. 6.4 the soliton dynamics is considered in the framework of an
higher-order NLSE with a pseudo-Raman effect, decreasing SOD, taking into
account nonlinear dispersion and TOD too [40]. The equilibrium between the
pseudo-SRS and decreasing SOD is considered. The equilibrium state is a stable
focus for negative nonlinear dispersion and positive TOD, and an unstable focus for
positive nonlinear dispersion and negative TOD.

In Sect. 6.5 we address the dynamics of vector solitons in the framework of
coupled extended NLSEs, taking into account pseudo-Raman, cross-pseudo-SRS,
XPM and inhomogeneous SOD [41]. Using analytical and numerical methods, the
compensation of the soliton’s Raman self-wavenumber downshift by the upshift
caused by the decreasing SOD is shown. An analytical vector-soliton solution is
found in the framework of coupled extended NLSEs, representing the equilibrium
of pseudo-SRS and inhomogeneous SOD. The soliton exists with an additional
wavenumber lower than a certain critical value, which is proportional to the
amplitude of the wave packet. By means of direct simulations, we also address
evolution initiated by an input with spatially even and odd components, which
reveals different outcomes, depending on the value of the relative amplitude of the
two components.

In Sect. 6.6 dynamics of solitons is considered in the framework of an extended
nonlinear NLSE, which is derived from a Zakharov-type model for wind-driven
HF SW in the ocean, coupled to damped LF IW [42]. The drive gives rise to a
convective (but not absolute) instability in the system. The resulting NLSE includes
a pseudo-SRS term, which is a spatial-domain counterpart of the SRS term.
Analysis of the field-momentum balance and direct simulations demonstrate that
wavenumber downshift by the pseudo-SRS may be compensated by the upshift
induced by the wind traction, thus maintaining robust bright solitons in both sta-
tionary and oscillatory forms; in particular, they are not destroyed by the underlying
convective instability.
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6.2 Soliton Dynamics in an Extended Nonlinear
Schrödinger Equation with a Pseudo-Raman Effect
and Inhomogeneous Dispersion

We consider the evolution of slowly varying envelope U ξ, tð Þ of the intense HF
wave field in the nonlinear medium with inhomogeneous SOD, taking into account
the interaction with LF variations of the medium’s parameter n ξ, tð Þ (such as the
refractive index in optics), which suffers the action of effective diffusion. The
unidirectional propagation of the fields along coordinate ξ is described by the
system of the Zakharov’s type [37, 38]:

2i
∂U
∂t

+
∂

∂ξ
q ξð Þ ∂U

∂ξ

� �
− nU =0, ð6:1Þ

∂n
∂t

+
∂n
∂ξ

− μ
∂
2n

∂ξ2
= −

∂ Uj j2
∂ξ

, ð6:2Þ

where μ is the diffusion coefficient. In particular, this system may describe intense
electromagnetic or Langmuir waves in plasmas, taking into account the scattering
on ion-acoustic waves, which are subject to the viscous damping. In the third-order
approximation of the theory (for short HF wave packets, with kΔ ≪ μ, where k and
Δ are the spatial extension and characteristic wave number of the wave packet),
Eq. (6.2) may approximated by the nonlinear response of the medium,

n= − Uj j2 − μ∂ Uj j2
� �

̸∂ξ, which leads to the following extended NLSE for the HF

amplitude:

2i
∂U
∂t

+
∂

∂ξ
q ξð Þ ∂U

∂ξ

� �
+2αU Uj j2 + μU

∂ Uj j2
� �
∂ξ

=0, ð6:3Þ

where α = 1 ̸2. Below, we fix α=1 by means of obvious scaling. The last term in
Eq. (6.3) represents the above-mentioned pseudo-Raman effect in the spatial
domain.

Equation (6.3) with zero boundary conditions at infinity, Ujξ→±∞ → 0, gives rise
to the following integral relations for field moments, which will be used below:

dN
dt

≡
d
dt

Z+∞

−∞

Uj j2dξ=0, ð6:4Þ
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2
d
dt

Z+∞

−∞

K Uj j2dξ= − μ

Z∞
−∞

∂ Uj j2
� �
∂ξ

2
4

3
5
2

dξ−
Z∞
−∞

dq
dξ

∂U
∂ξ

����
����
2

dξ, ð6:5Þ

d
dt

Z+∞

−∞

ξ Uj j2dξ=
Z+∞

−∞

qK Uj j2dξ, ð6:6Þ

where the complex field is represented as U ≡ Uj j exp iϕð Þ, and K ≡ ∂ϕ ̸∂ξ is the
local wavenumber.

For the analytical consideration of the wave-packet dynamics, we assume that
scale of the inhomogeneity of the SOD term is much larger than the spatial width of
the wave-packet envelope, Dq ≫ D Uj j. Then, a solution of system (6.5)–(6.6) may
be obtained in the adiabatic approximation, based on the use of the sech-like ansatz:

U ξ, tð Þ=A tð Þsech ξ− ξ tð Þ
Δ tð Þ

� �
exp ik tð Þξ− i

Z
Ω tð Þdt

� �
, ð6:7Þ

where Δ tð Þ=
ffiffiffiffiffiffiffiffiffi
q ξ

 �q

̸A tð Þ,Ω tð Þ=A2 tð Þ ̸2,A2 tð ÞΔ tð Þ= const, ξ tð Þ=N − 1
R+∞

−∞
ξ Uj j2dξ. Substi-

tuting (6.7) in (6.5)–(6.6) we derive a system of evolution equations the system for
free parameters k and ξ:

2
dk
dt

= −
8
15

μA4
0q

2
0

q3 ξ

 � −

q′ ξ

 �

A2
0q0

3q2 ξ

 � − q′ ξ


 �
k2,

dξ
dt

= kq ξ

 �

, ð6:8Þ

where initial values areq0 ≡ q ξ t=0ð Þ
 �
,A0 ≡A t=0ð Þ, which obey the above-mention

relation, A2 tð Þq ξ tð Þ
 �
=A2 t=0ð Þq ξ t=0ð Þ
 �

≡A2
0q0, and q′ ξ


 �
≡ dq ̸dξjξ= ξ is the

derivative (slope) of the SOD coefficient at the soliton’s center. Equation (6.8) give
rise to an obvious equilibrium state (alias a fixed point, FP):

8μq0A2
0 = − 5q′ ξ*


 �
q ξ*

 �

, k* = 0, ð6:9Þ

where ξ* is the equilibrium position of the soliton. For μ= μ* ≡ − 5 ̸8ð Þq′ ξ0

 �

̸A2
0

the equilibrium position of the soliton coincides with its initial position,
ξ* = ξ0 ≡ ξ t=0ð Þ. For μ≠ μ* soliton’s parameters are time-varying. To analyze the
evolution around the FP, we assume linearly decreasing SOD, q′ = const < 0, and
rescale the variables by defining τ ≡ − tq′A0 ̸

ffiffiffiffiffiffiffi
3q0

p
,
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y τð Þ≡ k τð Þ
ffiffiffiffiffiffiffi
3q0

p
̸A0, n τð Þ= q ξ τð Þ
 �

̸q0. ð6:10Þ

Then system (6.8) is reduced to

2
dy
dτ

= −
λ

n3
+

1
n2

+ y2,
dn
dτ

= − ny, ð6:11Þ

where λ ≡ − 8μA2
0 ̸ 5q′

 �

≡ μ ̸μ*. The first integral of Eq. (6.11) is

2y2n3 − 2y20 + λ− 2

 �

n2 − 2n+ λ=0, ð6:12Þ

where y0 = y τ=0ð Þ. Dynamical invariant (6.12) is drawn in the plane of y, nð Þ in
Fig. 6.1a, for y0 = 0 and different values of λ. Trajectories in the plot are closed for
0< λ<2, and open otherwise.

Further, at y20 > 0 straightforward analysis of Eq. (6.11) demonstrates that the
closed trajectories, which are shown in Fig. 6.1a for y20 = 0, stretch in both positive
and negative vertical directions (along the axis of nÞ. In the same case, the critical
value of the pseudo-SRS coefficient, which leads to the destruction of the soliton,
decreases to λcr = 2 1− y20


 �
, the destruction being signaled by the disappearance of

closed trajectories. Thus, the solitons do not exist at y20 > 1; in other words, they
exist with the wavenumber smaller than a critical value, k2 <A2

0α ̸ 3q0ð Þ. Contours
of dynamical invariant (6.12) are plotted in the plane of y, nð Þ in Fig. 6.1b, for
0< y20 < 1 and several values of λ.

We look for stationary solutions to Eq. (6.3), where the SOD with linear spatial
profile is adopted, in the form of a stationary wave profile, U ξ, tð Þ=ψ ξð Þ exp iΩtð Þ:

Fig. 6.1 Contour plots of dynamical invariant (6.12) in the plane of y, nð Þ of the soliton’s rescaled
dispersion and wavenumber (see Eq. (6.10)) for y0 = 0 (a) and 0< y20 < 1 (b), and different values
of constant λ
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q0 + q′ξ

 � d2ψ

dξ2
+ q′

dψ
dξ

+2ψ3 − 2Ωψ + μψ
d ψ2ð Þ
dξ

=0. ð6:13Þ

Next, with regard to the underlying assumption that the soliton’s width is much
smaller than the scale of the spatial inhomogeneity for the SOD, a solution to
Eq. (6.13) is found in the form of ψ =ψ0 +ψ1, where ψ1 is a small correction
produced by terms ∼ q′ and ∼ μ in Eq. (6.13). In this approximation, we obtain

q0
d2ψ0

dξ2
+ 2ψ3

0 − 2Ωψ0 = 0, ð6:14Þ

q0
d2ψ1

dξ2
+ 6ψ2

0 − 2Ω

 �

ψ1 = − q′
d2ψ0

dξ2
ξ−

2
3
μ
d ψ3

0


 �
dξ

− q′
dψ0

dξ
. ð6:15Þ

Equation (6.14) gives rise to the classical soliton solution, ψ0 =A0sech ξ ̸Δð Þ,
whereΔ≡ ffiffiffiffiffi

q0
p ̸A0 andΩ≡A2

0 ̸2. Then substitutions η= ξ ̸Δ andΨ=ψ1q0 ̸ A0q′η
� �

cast Eq. (6.15) in the form of

d2Ψ
dη2

+
6

cosh2 η
− 1

� �
Ψ=

η

cosh η
−

2η
cosh3 η

−
5
4
μ

μ*

sinh η
cosh4 η

+
sinh η
cosh2 η

, ð6:16Þ

where the equilibrium value of the pseudo-SRS coefficient is μ* ≡ − 5q′ ̸ 8A0ð Þ. For
μ= μ* Eq. (6.16) has an exact localized solution for the correction to the standard
sech soliton,

Ψ ηð Þ= 1 ̸4ð Þ tanh η sechηð Þ η2 − ln cosh ηð Þ� 

, ð6:17Þ

cf. a similar solution reported by [43]. It satisfies boundary conditions
Ψ η→±∞ð Þ→ 0. This spatially antisymmetric solution exists due to the balance
between the pseudo-SRS term and linearly decreasing SOD.

6.3 Damped Solitons in an Extended Nonlinear
Schrödinger Equation with a Pseudo-Raman Effect
and Exponentially Decreasing Dispersion

We consider the evolution of a slowly varying envelope, U ξ, tð Þ, of the intensive
HF wave field in the nonlinear medium with inhomogeneous SOD, taking into
account the interaction with the damped LF wave, which is represented by the local
perturbation of the effective refractive index, n ξ, tð Þ. The respective system of the
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Zakharov’s type for the unidirectional propagation of the HF and LF waves is [37,
38]

2i
∂U
∂t

+V
∂U
∂x

� �
+

∂

∂x
q xð Þ ∂U

∂x

� �
− nU + iνU =0, ð6:18Þ

∂n
∂t

+VS
∂n
∂x

− δ
∂
2n
∂x2

= −
∂ Uj j2
� �
∂x

, ð6:19Þ

where ν is the linear-losses coefficient of the HF waves, δ is the viscosity of the LF
waves, V is the HF group velocity, and VS is the velocity of LF waves. As men-
tioned above, this system may describe intensive Langmuir waves in isotropic
plasmas coupled to ion-sound waves, which are subject to the viscous damping.

In the third-order approximation of the theory (see Sect. 6.2) system (6.18)–
(6.19) leads to the following evolution equation for the HF envelope amplitude:

2i
∂U
∂t

+
∂

∂ξ
q ξ+Vtð Þ ∂U

∂ξ

� �
+2αU Uj j2 + μU

∂ Uj j2
� �
∂ξ

+ iνU =0, ð6:20Þ

where ξ= x−Vt, term μU∂ Uj j2
� �

̸∂ξ, with μ≡ δ VS −Vð Þ− 2, is, as above, the

spatial counterpart of the SRS effect in the temporal domain, and
α≡ ð1 ̸2Þ VS −Vð Þ− 1. Below, we fix α=1 by means of obvious scaling. After the
substitution of U ≡W exp − νt ̸2ð Þ, Eq. (6.3) takes the form of

2i
∂W
∂t

+
∂

∂ξ
q ξ+Vtð Þ ∂W

∂ξ

� �
+2W Wj j2exp − νtð Þ+ μW

∂ Wj j2
� �
∂ξ

exp − νtð Þ=0.

ð6:21Þ

Equation (6.21) with zero boundary conditions at infinity, W jξ→±∞ → 0, gives
rise to the following integral relations for the field moments:

dN
dt

≡
d
dt

Z+∞

−∞

Wj j2dξ=0, ð6:22Þ

2
d
dt

Z+∞

−∞

K Wj j2dξ= − μ exp − νtð Þ
Z∞
−∞

∂ Wj j2
� �
∂ξ

2
4

3
5
2

dξ−
Z∞
−∞

∂q
∂ξ

∂W
∂ξ

����
����
2

dξ,

ð6:23Þ
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d
dt

Z∞
−∞

ξ Wj j2dξ=
Z+∞

−∞

qK Wj j2dξ. ð6:24Þ

For the analytical consideration of the wave-packet dynamics, we again assume
that the scale of the inhomogeneity of the SOD term is much larger than the spatial
width of the wave-packet envelope, Dq ≫ DWj j.

We take the HF wave packet as

W ξ, tð Þ=A tð Þsech ξ− ξ tð Þ
Δ tð Þ

� �
exp ik tð Þξ− i

Z
Ω tð Þdt

� �
, ð6:25Þ

cf. Eq. (6.7), where Δ tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q ξ+Vt

 �q

̸ A tð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp − νtð Þp
 �

,Ω tð Þ=A2 tð Þ

exp − νtð Þ ̸2,A2 tð ÞΔ tð Þ= const, ξ tð Þ=N − 1
R+∞

−∞
ξ Uj j2dξ. Substituting (6.25) in

(6.23)–(6.24), we derive the dynamical system:

2
dk
dt

= −
8
15

μA4
0 exp − 4νtð Þq20
q3 ξ+Vt

 � −

q′ ξ+Vt

 �

A2
0 exp − 2νtð Þq0

3q2 ξ+Vt

 � − q′ ξ+Vt


 �
k2,

dξ
dt

= kq ξ+Vt

 �

, ð6:26Þ

where A0 =A 0ð Þ. We now select the spatial variation of SOD in the form corre-
sponding to an exponentially decreasing profile of the SOD,

q= q0 exp − νx ̸Vð Þ. ð6:27Þ

In particular, the realization of fibers with exponentially decreasing profiles of
the SOD was demonstrated experimentally in [44]. Such profiles are created by
variation of the fiber’s diameter. Then system (6.14)–(6.18), with the time,
wavenumber and the soliton’s coordinate redefined as θ≡ νt,
y≡ k

ffiffiffiffiffiffiffi
3q0

p
̸A0, η≡ νξ ̸V , is reduced to

2σ exp θ
dy
dθ

= − λ exp 3ηð Þ+ y2 exp − ηð Þ+ exp ηð Þ, ð6:28Þ

σ exp θ
dη
dθ

= y exp − ηð Þ, ð6:29Þ

where new constants are defined as σ ≡V
ffiffiffi
3

p
̸ A0

ffiffiffiffiffi
q0

p
 �
, y0 = y 0ð Þ, λ≡ 8 ̸5ð ÞμA2

0V ̸ν.
An equilibrium state of Eqs. (6.25)–(6.26) is achieved under conditions
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k* = 0, η* = − 1 ̸2ð Þ ln λ. ð6:30Þ

In the equilibrium regime, the wave packet W propagates with the integral
moment, N, keeping their initial value, N, and zero wavenumber. Therefore, the
field moments for original wave packet, U =W exp − θ ̸2ð Þ decay exponentially,
NU θð Þ=N exp − θð Þ, that θ≡ νt. The first integral of these equations is

3y2 exp − ηð Þ+ λ exp 3ηð Þ− 1½ �+3 1− exp ηð Þ½ �=3y20. ð6:31Þ

In Fig. 6.2a, first integral (6.31) is drawn in the plane of y, ηð Þ for y0 = 0 and
different values of λ. Trajectories in the plot are closed for 0< λ<3, and open
otherwise. In Fig. 6.2b, first integral (6.31) is drawn in the plane of y, ηð Þ for
0< y20 < 1 and different values of λ. Trajectories in the plot are closed for
0< λ< λcr ≡ 3 1− y20


 �
, and open otherwise, cf. Fig. 6.1. The temporal evolution

y θð Þ following from Eqs. (6.28)–(6.29) is shown in Fig. 6.3 for initial condition
y0 = 0 with different σ and λ.

Fig. 6.2 First integral (6.31) in the plane y, ηð Þ of the soliton’s rescaled wavenumber and
coordinate for y0 = 0 (a) and 0< y20 < 1 (b), and different values of constant λ

Fig. 6.3 Time evolution y θð Þ obtained from Eqs. (6.28)–(6.29) for initial condition y0 = 0 with
different values of σ [a: σ =1 ̸10, b: σ =1], and different λ
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6.4 Soliton in a Higher-Order Nonlinear Schrödinger
Equation with Pseudo-Raman Effect
and Inhomogeneous Second-Order Diffraction

Here we consider the dynamics of the HF wave, field U ξ, tð Þ exp − iωt+ iκξð Þ, in
the framework of inhomogeneous higher-order NLSE with pseudo-Raman,
nonlinear-dispersion, TOD and inhomogeneous-SOD terms:

2i
∂U
∂t

+
∂

∂ξ
q ξð Þ ∂U

∂ξ

� �
+2U Uj j2 + 2iχ

∂ U Uj j2
� �

∂ξ
+ iγ

∂
3U

∂ξ3
+ μU

∂ Uj j2
� �
∂ξ

=0,

ð6:32Þ

where the following notation is used: μ is, as above, the pseudo-SRS strength, χ is
the nonlinear dispersion, and γ is the TOD. Equation (6.1) with zero boundary
conditions on infinity, Ujξ→±∞ → 0, gives rise to the following evolution equations
for integral moments:

dN
dt

≡
d
dt

Z+∞

−∞

Uj j2dξ=0, ð6:33Þ

2
d
dt

Z+∞

−∞

K Uj j2dξ= − μ

Z∞
−∞

∂ Uj j2
� �
∂ξ

2
4

3
5
2

dξ−
Z∞
−∞

dq
dξ

∂U
∂ξ

����
����
2

dξ, ð6:34Þ

N
dξ
dt

≡
d
dt

Z∞
−∞

ξ Uj j2dξ=
Z+∞

−∞

qK Uj j2dξ+ 3
2
χ

Z+∞

−∞

Uj j4dξ− 3
2
γ

Z∞
−∞

∂U
∂ξ

����
����
2

dξ.

ð6:35Þ

For analytical consideration of the system (6.33)–(6.35), we assume that values
of nonlinear dispersion, TOD, and wavenumber are small, χ, γ,K ∼ ε ≪ 1. In this
case, from the imaginary part of (6.32), where terms of order ε2 are neglected, we
derive equation

∂ Uj j2
� �
∂t

+
∂

∂ξ
qK Uj j2 + 3

2
χ Uj j4

� �
+ γ Uj j ∂

3 Uj jð Þ
∂ξ3

= 0. ð6:36Þ

Assuming that wave packets move keeping their shapes,

∂ Uj j2
� �

̸∂t≈ −V∂ Uj j2
� �

̸∂ξ, where V is the velocity of the packet, we obtained

from Eq. (6.36)
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∂

∂ξ
−V Uj j2 + qK Uj j2 + 3

2
χ Uj j4

� �
+ γ Uj j ∂

3 Uj jð Þ
∂ξ3

= 0. ð6:37Þ

Integrating (6.37) for localized wave packets, Uj jξ→ −∞ → 0, and assuming (as
above) that the scale of the inhomogeneity of SOD is much larger than the inho-
mogeneity scale of the wave-packet envelope, D ≫ D Uj j, gives rise to a relation for
the wavenumber:

K = k tð Þ− 3χ
2q ξ

 � Uj j2 + 3γ

2q ξ

 �

Uj j2
∂ Uj jð Þ
∂ξ

� �2
−

γ

2q ξ

 �

Uj j2
∂
2 Uj j2
� �
∂ξ2

, ð6:38Þ

where k tð Þ=V ̸q ξ tð Þ
 �
. Solution of the system of Eqs. (6.34) and (6.35) can be

found in the adiabatic approximation, presenting the solution in sech-like form with
wavenumber distribution (6.38):

U ξ, tð Þ=A tð Þsech ξ− ξ

Δ tð Þ
� �

exp i
Z

K ξ, tð Þdξ− i
2

Z
A2 tð Þdt

� �
, ð6:39Þ

K ξ, tð Þ= k tð Þ− 3
2
χA2 tð Þ
q ξ

 � sech2

ξ− ξ

Δ tð Þ
� �

−
3
2

γ

q ξ

 �

Δ2 tð Þ tanh
2 ξ− ξ

Δ tð Þ
� �

+
γ

q ξ

 �

Δ2 tð Þ ,

ð6:40Þ

where Δ tð Þ≡
ffiffiffiffiffiffiffiffiffi
q ξ

 �q

̸A tð Þ and A2 tð ÞΔ tð Þ=const. Solution (6.39)–(6.40) has two

free parameters: an additional wavenumber k tð Þ and a center-of-mass coordinate
ξ tð Þ. Substituting Eqs. (6.39)–(6.40) in (6.34)–(6.35) and keeping terms of order ε,
we derive a system of equations for k and ξ:

2
dk
dt

= −
8q20A

4
0μ

15q3 ξ

 � − q0A2

0q
′ ξ

 �

3q2 ξ

 � +

2q0γA2
0q

′ ξ

 �

k

q3 ξ

 � −

2χA2
0q

′ ξ

 �

k

q2 ξ

 � − q′ ξ


 �
k2,

dξ
dt

= qk, ð6:41Þ

where q0 = q 0ð Þ,A0 =A 0ð Þ, and q′ ξ

 �

= dq ̸dξð Þξ. System (6.41) gives rise to an

obvious equilibrium state (alias a fixed point, FP): 8q0A2
0μ= − 5q′ ξ*


 �
q ξ*

 �

, k* = 0.
In particular, for μ= μ* ≡ − 5q′ 0ð Þ ̸ 8A2

0


 �
the FP corresponds to initial soliton

parameters: ξ=0, k=0. For μ≠ μ* soliton’s parameters are time-varying. To analyze
the evolution around the FP, we assume linearly decreasing SOD, q′ = const < 0, and
rescale the variables by defining τ≡ − tq′A0 ̸

ffiffiffiffiffiffiffi
3q0

p
, y≡ k

ffiffiffiffiffiffiffi
3q0

p
̸A0 and n= q ξ


 �
̸q0.

Then system (6.41) is reduced to
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2
dy
dτ

= −
λ

n3
+

1
n2

+ y2 − υ
y
n3

+ ς
y
n2

,
dn
dτ

= − ny, ð6:42Þ

where λ ≡ − 8μA2
0 ̸ 5q′

 �

≡ μ ̸μ*, υ ≡ 2
ffiffiffi
3

p
γA0 ̸

ffiffiffiffiffi
q30

p
, ς ≡ 2

ffiffiffi
3

p
χA0 ̸

ffiffiffiffiffi
q30

p
. The FP

of Eq. (6.42) in the rescale variables is y* = 0, n* = λ. For I≡ υ− λς>0 the FP is a
stable focus, for I = 0 it is a center, and for I < 0 the FP is an unstable focus.
Trajectories in the y, nð Þ plane, obtained from Eq. (6.42) with initial conditions
y0 = 0, n0 ≡ 1 for λ=5 ̸4, and different values of I = υ− 5 ̸4ð Þς≡ υ− λς, are shown
in Fig. 6.4.

For μ= μ* ≡ 5q′ ̸ 8A2
0


 �
, corresponding to λ=1, the FP’s coordinates coincide

with the initial soliton parameters, n0 ≡ 1, y0 = 0. In this case, the soliton’s param-
eters remain constant in time.

6.5 Vector Solitons in Coupled Nonlinear Equations
with the Pseudo-Raman Effect and Inhomogeneous
Dispersion

We consider dynamics of the two-component (vector) HF wave field
E ⃗ ξ, tð Þ=U1 ξ, tð Þ exp iωt− iκξð Þe1⃗ +U2 ξ, tð Þ exp iωt− iκξð Þe ⃗2, where e ⃗1, 2 are unit
vectors of two orthogonal polarizations, and U1, 2 are the corresponding amplitudes.
The consideration is carried out in the framework of two coupled NLSEs including
pseudo-SRS, cross-pseudo-SRS, XPM and inhomogeneous SOD:

Fig. 6.4 Trajectories (6.42)
in the plane y, nð Þ for λ=5 ̸4,
initial conditions
y0 = 0, n0 ≡ 1, and different
values of
I = υ− 5 ̸4ð Þς≡ υ− λς
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2i
∂U1, 2

∂t
∓ δ

∂U1, 2

∂ξ

� �
+

∂

∂ξ
q ξð Þ ∂U1, 2

∂ξ

� �

+2U1, 2 U1, 2j j2 + U2, 1j j2
� �

+ μU1, 2

∂ U1, 2j j2 + U2, 1j j2
� �

∂ξ
=0,

ð6:43Þ

where δ is the group-velocity mismatch between the components, and μ is, once
again, the pseudo-SRS strength. The substitution of U1, 2 = u1, 2 exp ±iδ

R
dξ ̸q ξð Þ� 


transforms Eq. (6.43) into

2i
∂u1, 2
∂t

+
∂

∂ξ
q ξð Þ ∂u1, 2

∂ξ

� �
+

δ2

q ξð Þ u1, 2 + 2u1, 2 u1, 2j j2 + u2, 1j j2
� �

+ μu1, 2
∂ u1, 2j j2 + u2, 1j j2
� �

∂ξ
=0,

ð6:44Þ

with an effective potential δ2 ̸q ξð Þ (this definition implies that q ξð Þ does not vanish;
it may be interesting too to consider a setting with a zero-dispersion point, at which
q ξð Þ=0, but in that case it necessary to take into regard the third-order-dispersion
term, which is not included here).

6.5.1 Analytical Results

Equation (6.44) with zero boundary conditions at infinity, u1, 2jξ→±∞ → 0, gives
rise to the following exact integral relations for a localized wave packet:

dN1, 2

dt
≡

d
dt

Z+∞

−∞

u1, 2j j2dξ=0, ð6:45Þ

2
d
dt

Z+∞

−∞

k1, 2 u1, 2j j2dξ= − μ

Z∞
−∞

∂ u1, 2j j2
� �

∂ξ

∂ u1, 2j j2 + u2, 1j j2
� �

∂ξ
dξ−

Z∞
−∞

dq
dξ

∂u1, 2
∂ξ

����
����
2

+
δ2

q2
u1, 2j j2

 !
dξ

+2
Z+∞

−∞

u1, 2j j2
∂ u2, 1j j2
� �

∂ξ
dξ,

ð6:46Þ

N1, 2
dξ1, 2
dt

≡
d
dt

Z∞
−∞

ξ u1, 2j j2dξ=
Z+∞

−∞

qk1, 2 u1.2j j2dξ, ð6:47Þ
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where u1, 2 = u1, 2j j exp iφ1, 2


 �
, and k1, 2 = ∂φ1, 2 ̸∂ξ are wavenumbers of wave

packets u1, 2.
To analyze of the wave-packet dynamics, we assume, as above, that the scale of

the spatial inhomogeneity of SOD is much larger than the packet’s width, Dq ≫ Δ.
A solution to system (6.3)–(6.5) is then looked for in the form of a sech ansatz, with
two components proportional to each other:

u1 ξ, tð Þ=A tð Þsech ξ− ξ tð Þ
Δ tð Þ

� �
exp ik tð Þξ− i

Z
Ω tð Þdt

� �
, u2 ξ, tð Þ= σu1 ξ, tð Þ,

ð6:48Þ
where σ is a free real parameter, ξ tð Þ= ξ1, 2 tð Þ is the coordinate of the soliton’s

center 2Ω tð Þ= 1+ σ2ð ÞA2 tð Þ+ δ2 ̸q ξ tð Þ
 �
,Δ tð Þ= 1 ̸A tð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q ξ tð Þ
 �

̸ 1+ σ2ð Þ
q

k tð Þ≡ k1, 2 tð Þ, and it is set A2 tð ÞΔ tð Þ= const, which is the usual relation between the
amplitude and width of sech-shaped solitons. Substituting ansatz (6.48) in
Eqs. (6.46) and (6.47), and taking into account the above condition Δ ≪ Dq, leads
to the following evolution equations:

2
dk
dt

= − μ
8
15

1+ σ2ð Þ2q20A4
0

q3 ξ

 � −

1+ σ2ð Þq0A2
0q

′ ξ

 �

3q2 ξ

 � −

δ2q′ ξ

 �

q2 ξ

 � − q′ ξ


 �
k2,

dξ
dt

= kq ξ

 �

, ð6:49Þ

where initial values areq0 ≡ q ξ t=0ð Þ
 �
,A0 ≡A t=0ð Þ, which obey the above-mention

relation, A2 tð Þq ξ tð Þ
 �
=A2 t=0ð Þq ξ t=0ð Þ
 �

≡A2
0q0, and q′ ξ


 �
≡ dq ̸dξjξ= ξ is the

derivative (slope) of the SOD coefficient at the soliton’s center. Equation (6.49) give
rise to an obvious equilibrium state (alias a fixed point, FP):

8μ 1+ λ2

 �2

q20A
4
0 = − 5q′ ξ*


 �
q ξ*

 �

1+ λ2

 �

q0A2
0 + 3δ2

� 

, k* = 0, ð6:50Þ

where ξ* is the equilibrium position of the soliton. In the particular case of λ= δ=0,
relation (6.50) reduces to its counterpart for the single NLSE derived in [38]. For

μ= μ* ≡ − 5 ̸8ð Þq′ ξ0

 �

1+ σ2ð Þq0A2
0 + 3δ2

� 

̸ 1+ σ2ð Þ2q0A4

0

h i
the equilibrium

position of the soliton coincides with its initial position, ξ* = ξ0 ≡ ξ t=0ð Þ.
To analyze the evolution near the FP, we assume a constant value of

the SOD slope around the FP, q′ = const, and rescale the variables by defining

τ≡ − tq′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0A2

0 1 + σ2ð Þ+3δ2
q

̸
ffiffiffi
3

p
q0


 �
, y τð Þ≡ k τð Þ− tq′

ffiffiffi
3

p
q0 ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0A2

0 1 + σ2ð Þ+3δ2
q

n τð Þ≡
q ξ τð Þ
 �

̸q0, thus deriving a simple mechanical system from Eq. (6.49), coinciding
with Eq. (6.11).
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Here we address steady-state solutions of Eq. (6.44) for a linear profile of the
inhomogeneous SOD, viz., q ξð Þ= q0 + q′ξ, in the form of
U2 ξ, tð Þ= σU1 ξ, tð Þ≡ σψ ξð Þ exp iΩtð Þ:

− 2Ωψ +
δ2

q0 + q′ξ
ψ + q0 + q′ξ


 � d2ψ
dξ2

+ q′
dψ
dξ

+2 1+ σ2

 �

ψ3 + μ 1+ σ2

 �

ψ
d ψ2ð Þ
dξ

=0.

ð6:51Þ

Similar to what was adopted above, we again assume that the wave-packet’s
width is much smaller than the scale of the SOD’s spatial inhomogeneity,
Δ ≪ 1 ̸ q′

�� ��. Introducing the corresponding small parameter, ε∼Δ ⋅ q′ ∼ μ ≪ q0, a
solution to Eq. (6.51) can be looked for as ψ =Φ+ϕ, where ϕ is a correction ∼ ε.
Separating terms of orders ε0 and ε1, we obtain

q0
d2Φ
dξ2

+ 2Φ3 1 + σ2

 �

− 2Ω−
δ2

q0

� �
Φ=0, ð6:52Þ

q0
d2ϕ
dξ2

+ 6 1+ σ2

 �

Φ2 − 2Ω+
δ2

q0

� �
ϕ= q′

δ2

q20
Φξ− q′

d2Φ
dξ2

ξ− q′
dΦ
dξ

−
2
3
μ 1+ σ2

 � d Φ3


 �
dξ

.

ð6:53Þ

Equation (6.52) has the standard sech-soliton solution, Φ=Asech ξ ̸Δð Þ, where
Δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 ̸ 1+ σ2ð Þp

̸A, and 2Ω= 1+ σ2ð ÞA2 + δ2 ̸q0. Then, in terms of rescaled

variables, η≡ ξ ̸Δ and ϕ≡ q′Ψ ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 1 + λ2

 �q

, Eq. (6.53) takes the form of

d2Ψ
dη2

+
6

cosh2 η
− 1

� �
Ψ

=
δ2

q0 1 + σ2ð ÞA2
0
− 1

� �
η

cosh η
+

2η
cosh3 η

+
sinh η
cosh2 η

+
2μ 1+ σ2ð ÞA2

0

q′
sinh η
cosh4 η

.

ð6:54Þ

An essential result is that, at

μ= μ* ≡ − 5 ̸8ð Þq′ 1+ 3Hð Þ ̸ 1+ σ2

 �

A2
0

� 

, ð6:55Þ

where H≡ δ2 ̸ q0 1 + σ2ð ÞA2
0

� 

, Eq. (6.54) has an exact localized solution for the

correction to the standard sech soliton,

Ψ ηð Þ= 1 ̸4ð Þ sechηð Þ 2Hη+ 1−Hð Þη2 tanh η− 1+ 3Hð Þ tanh ηð Þ ln cosh ηð Þ� 

.

ð6:56Þ

134 E. M. Gromov and B. A. Malomed

malomed@post.tau.ac.il



In the particular case of H=0, which corresponds to δ=0, i.e., in the absence of
the group-velocity mismatch between the polarization components, solution (6.56)
carries over into one obtained above in Sect. 6.2, see Eq. (6.17).

6.5.2 Numerical Results

To check the above analytical results, we here aim to report findings produced
bysimulations of the evolution of initial wave packet u1, 2 ξ, 0ð Þ= 1 ̸

ffiffiffi
2

p
 �
sechξ in

the framework of Eq. (6.44) with a typical linear profile of the inhomogeneous
SOD, q=1− ξ ̸20, δ=1, σ =1 and different values of strength μ of the
pseudo-SMS effect. The respective point (6.50) of the equilibrium between the
pseudo-SRS and inhomogeneous SOD is μ* = 1 ̸8. In the simulations performed
with μ=1 ̸8, at times t>10 the pulse evolves into a stationary localized profile
with zero wavenumber. Figure 6.5 shows the deviation of the absolute value of the
numerically found stationary profile from the sech-soliton input, i.e.,
ϕnumðξÞ= u1, 2ðξÞj j− 1 ̸

ffiffiffi
2

p
 �
sechξ (the solid curve in the figure). The deviation is

very close to the respective analytically predicted correction, given by Eq. (6.56):

ϕ= −
ffiffiffi
2

p
̸80

� �
sechξð Þ ξ− 2 tanh ξ ln cosh ξð Þ½ �, ð6:57Þ

Fig. 6.5 Numerical results: deviation of the absolute value of the numerically found stationary
pulse from the standard soliton shape, ϕnumðξÞ= u1, 2ðξÞj j− 1 ̸

ffiffiffi
2

p
 �
sechξ (the solid curve). The

analytical correction ϕ to the absolute value of the standard soliton solution, given by Eq. (6.57), is
shown by the dashed curve
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as shown by the dashed curve in Fig. 6.5. Change of the pseudo-SMS strength μ
leads to variation of soliton’s wavenumber and amplitude. In particular, Fig. 6.6
shows the simulated spatiotemporal evolution of u1, 2 ξ, tð Þj j for μ= 4 ̸3ð Þμ* ≡ 1 ̸6.
In this case, the soliton performs oscillations without any visible radiation loss, i.e.,
the soliton is dynamically stable in the case, in the oscillatory state.

The above considerations were focused on two-component solitons with similar
shapes of the components. It is an issue of straightforward interest too to consider
the evolution of inputs with opposite parities of the components. For this purpose,
we carried out the simulations initiated by the input with an even profile in one
component, and an odd one in the other:

u1 ξ, 0ð Þ= sechξ, u2 ξ, 0ð Þ=A sech ξ+1ð Þ− sech ξ− 1ð Þ½ �, ð6:58Þ

in the framework of Eq. (6.44) with q=1− x ̸20, δ=0, and different values of A
and μ. Figures 6.7, 6.8, and 6.9 display the resulting spatiotemporal evolution of
u1 ξ, tð Þj j (a) and u2 ξ, tð Þj j (b). For the relative amplitude of the odd component
A=0.8 (with μ=1 ̸10Þ, initial pulse (6.58) transforms into an essentially novel
dynamical mode, in the form of a breather which keeps the opposite parities in its
components (Fig. 6.7). Further, for A=1 (with μ=1 ̸25Þ initial pulse (6.58) splits
into two separating vector solitons of the usual type, with identical parities in the
two components (Fig. 6.8), which is possible as the odd component in Eq. (6.58),
u2 ξ, 0ð Þ, is built as a set of two pulses with opposite signs. Lastly, for A=0.5 (with

Fig. 6.6 Results of the
simulations of the evolution
of the sech-shaped pulse for
μ= 4 ̸3ð Þμ* ≡ 1 ̸6
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μ=1 ̸30Þ the weaker component u2 tends to spread out into a small-amplitude
pedestal, into which a dark soliton is embedded (Fig. 6.9b), while the even com-
ponent u1 shows no essential evolution (Fig. 6.9a). In the latter case, the u2 com-
ponent keeps the spatially odd structure, as dark solitons are odd kink-like
solutions.

Fig. 6.7 The result of simulations of the evolution of the initial pulse (6.58) with opposite parities
of the components, for A=0.8 and μ=1 ̸10: formation of a breather with coupled even and odd
components

Fig. 6.8 The result of simulations of the evolution of the initial pulse (6.58) for A=1 and
μ=1 ̸25: splitting into two vector solitons of the usual type
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6.6 Solitons in a Forced Nonlinear Schrödinger Equation
with the Pseudo-Raman Effect

In this section, we consider the unidirectional copropagating of a slowly varying
envelope, U x, tð Þ, of the complex HF wave field, U x, tð Þ exp ik0x− iω0tð Þ, and its
real LF counterpart, n x, tð Þ (as said above, it may be realized as a local perturbation
of the refractive index, in terms of the optical or quasi-optical propagation). If the
HF and LF fields represent the SW (surface waves) and IW (internal waves),
respectively, in the ocean, the corresponding Zakharov-type system is composed of
the Schrödinger equation for the SW and Boussinesq (Bq) equation for the IW,
coupled by the quadratic terms [45–48]. Although the underlying geometry of the
fluid motion is two-dimensional, the derivation of the coupled system simplifies the
model to the one-dimensional form, as the crucially important geometric elements
which guide the propagating waves, viz., the free surface and interface between the
layers with different densities of water, are one-dimensional. Under the commonly
adopted assumption of the unidirectional wave propagation, the Bq equation may
be reduced to one of the Korteweg–de Vries type. Taking into regard LF viscosity δ
and the linear gain with real coefficient β applied to the SW, which, as said above,
represents the wind forcing in the ocean [49], the system of equations takes the
form of:

2i
∂U
∂t

+V
∂U
∂x

� �
−

∂
2U
∂x2

− β
∂U
∂x

− nU =0, ð6:59Þ

Fig. 6.9 The result of simulations of the evolution of the initial pulse (6.58) for A=0.5 and
μ=1 ̸30: the transformation of the weak odd component into a small-amplitude dark soliton
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∂n
∂t

+VL
∂n
∂x

− δ
∂
2n
∂x2

= −
∂ Uj j2
� �
∂x

, ð6:60Þ

where V and VL are the HF and LF group velocities.
The interplay of the wind, SW and IW is strong enough if the group velocities of

the SW and IW at some (widely different, see below) wavelengths, ΛSW and ΛIW,
are in resonance, and, additionally, the wind’s friction velocity, W , is in resonance
with the SW group velocity [45, 49]. Taking a characteristic value, W ∼ 10 cm/s
[50], the classical dispersion relation for the SW on deep water, ωSW =

ffiffiffiffiffi
gk

p
, and the

characteristic value for the Brunt-Väisälä (buoyancy) frequency, ωBV ∼ 0.01 Hz,
which gives rise to the IW at the interface between the top mixed layer and the
underlying undisturbed one in the ocean (at the depth of a few hundred meters)
[51], one can conclude that the corresponding characteristic HF is ωSW ∼ 50 Hz,
which exceeds the above-mentioned LF, ωBV by three or four orders of magnitude,
thus completely justifying the HF-LF frequency distinction. The difference in the
respective wavelength is dramatic too, the estimate yielding ΛSW ∼ 2 cm and
ΛIW ∼ 10 m.

In the third-order approximation of the theory (see Sect. 6.2) system (6.59)–
(6.60) leads to the following evolution equation for the HF envelope amplitude:

2i
∂U
∂t

=
∂
2U

∂ξ2
+ β

∂U
∂ξ

+2αU Uj j2 − μU
∂ Uj j2
� �
∂ξ

, ð6:61Þ

where ξ≡ x−Vt, α≡ 1 ̸2ð Þ V −VLð Þ− 1, μ≡ δ VL −Vð Þ− 2. Below, we fix α=1 by
means of obvious scaling, as it was done above in a different context.

The gain term in Eq. (6.61) may be formally absorbed by a transition into a
reference frame moving with imaginary velocity, i.e., replacement of real coordi-
nate ξ by Ξ≡ ξ− i β ̸2ð Þt, which makes it possible to obtain exact soliton solutions
to Eq. (6.62) that explicitly feature growth effects induced by the gain [49].
However, we prefer to consider Eq. (6.61) in terms of the real coordinate and time.
Then, it is natural to analyze the dispersion relation for small-amplitude excitations,
governed by the linearized versions of Eq. (6.61), by substituting
U ∼ exp iκξ− iωtð Þ, which produces a complex frequency as a function of real
wavenumber κ:

ω= − κ2 ̸2+ i ̸2ð Þβκ.

The same branch of the HF dispersion relation is valid for system (6.59)–(6.60),
as the nonlinear HF-LF coupling does not affect the dispersion relation. The real
part of the frequency gives rise to the group velocity, Vgr ≡ dω ̸dκ= − κ, hence the
excitation traveling at this velocity grows with the distance, − ξ, as
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U ∼ exp Imω ⋅ tð Þ≡ exp Imω ⋅ ξ ̸Vgr

 �

= exp − βξ ̸2ð Þ ð6:62Þ

(note that it does not depend on the wavenumber, κÞ, which represents a typical
manifestation of the convective instability [52]. This type of the instability implies
that (in contrast with the absolute instability, which drives the growth of quiescent
perturbations), the perturbations grow as they travel away, hence they usually do
not destroy the underlying patterns. Namely, if a soliton of size L, maintained by the
balance between the linear gain and pseudo-SRS term, does not move on the
average (see below), it follows from Eq. (6.62) that the soliton is not hurt by the
convective instability, provided that it is narrow enough, L ≪ β− 1.

Equation (6.61) with zero boundary conditions at infinity, Ujξ→±∞ → 0, gives
rise to the following integral relations for field moments:

dN
dt

≡
d
dt

Z+∞

−∞

Uj j2dξ= β

Z+∞

−∞

k Uj j2dξ≡ − βP, ð6:63Þ

dP
dt

= − β

Z+∞

−∞

∂U
∂ξ

����
����
2

dξ+
μ

2

Z+∞

−∞

∂ Uj j2
� �
∂ξ

2
4

3
5
2

dξ, ð6:64Þ

d
dt

Z+∞

−∞

ξ Uj j2dξ=P+ β

Z+∞

−∞

kξ Uj j2dξ, ð6:65Þ

The moments introduced in Eqs. (6.63), (6.64), and (6.65) determine the norm,
N, momentum, P, and center-of-mass coordinate, ξ, of the wave packet.

The system of exact evolution equations for the moments may be used, as done
above in different contexts, for the derivation of approximate evolution equations
for parameters of a soliton, see Refs. [53–56] and references therein. To this end,
we adopt the usual ansatz for the moving soliton, with amplitude A tð Þ, wavenumber
k tð Þ, and coordinate ξ defined above:

U ξ, tð Þ=A tð Þsech A tð Þ ξ− ξ

 �� 


exp ik tð Þξ− i ̸2ð Þ
Z

A2 tð Þdt
� �

. ð6:66Þ

The substitution of the ansatz into Eqs. (6.63)–(6.65) leads to the following
evolution equations:

dk
dt

=
β

3
A2 −

4
15

μA4,
dA
dt

= βAk,
dξ
dt

= − k, ð6:67Þ

which give rise to an obvious equilibrium state (alias fixed point, FP):
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μ* ≡ 5β ̸ 4A2
0


 �
, k* = 0, ð6:68Þ

where A0 is an arbitrary amplitude if the stationary soliton. To analyze the evolution
around the FP, we rescale the variables by defining τ≡ tβA0 ̸ffiffiffi
6

p
, a≡A ̸A0, y≡ k

ffiffiffi
6

p
̸A0, thus deriving a simple mechanical system from

Eq. (6.67):

dy
dτ

=2a2 1− λa2

 �

,
da
dτ

= ay, ð6:69Þ

where λ≡ μ ̸μ*. Obviously, Eq. (6.69) conserves the corresponding Hamiltonian,

y2 + λ a4 − 1

 �

− 2 a2 − 1

 �

= y20, ð6:70Þ

where y0 is the value of y at a=1. Dynamical invariant (6.70) is drawn in the plane
of y, að Þ in Fig. 6.10a, for y0 = 0 and different values of λ. Evidently, at λ<1 (i.e., if
the pseudo-SRS effect is relatively weak), the soliton’s amplitude periodically
oscillates between maximum and minimum values amax ≡Amax ̸A0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− λð Þ ̸λ

p
and amin = 1. These values swap if the pseudo-SRS effect is stronger, viz., 1 < λ<2
(the amplitude remains constant at λ=1Þ. As it follows from Eq. (6.70), oscillations
of the soliton’s amplitude translate into oscillations of its velocity, which are
symmetric with respect to the positive and negative values.

Lastly, if the pseudo-SRS term is too large, with λ≥ 2, it destroys the soliton, as
the evolution leads to the decay of the amplitude to a=0, while the rescaled
wavenumber takes the limit value y∞ ≡

ffiffiffiffiffiffiffiffiffiffi
λ− 2

p
.

Further, at y20 > 0 straightforward analysis of Eq. (6.70) demonstrates that the
loop trajectories, which are seen in Fig. 6.10a for y20 = 0, stretch in both positive and
negative vertical directions (along the axis of aÞ. In the same case, the critical value

Fig. 6.10 Plots of dynamical invariant (6.70) in plane y, að Þ of the soliton’s rescaled wavenumber
and amplitude for y0 = 0 (a) and 0< y20 < 2 (b), and different values of constant λ
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of the pseudo-SRS coefficient, which leads to the destruction of the soliton,
decreases to λcr = 2− y20; thus, the solitons do not exist at all at y20 > 2. Dynamical
invariant (6.70) is schematically drawn in the plane of y, að Þ in Fig. 6.10b, for
0< y20 < 2 and different values of λ.

6.7 Conclusion

In this article we have produced a review of results obtained in modelsbased on the
extended NLSEs (nonlinear Schrödinger equations) which contain the
spatial-domain counterpart of the SRS (stimulated Raman scattering) term, viz., the
pseudo-SRS one). The NLSEs are derived from the systems of the Zakharov’s type
for electromagnetic or Langmuir waves in plasmas and similar media, in which the
LF field is subject to the diffusive damping. We have studied the soliton dynamics
is the framework of the extended NLSEs, which may also include the smooth
spatial variation of the SOD (second-order dispersion) coefficient. The analytical
predictions were produced by integral relations for the field moments, and
numerical results were generated by systematic simulations of the pulse evolution in
the framework of the extended NLSEs. Stable stationary solitons are maintained, in
particular, by the balance between the self-wavenumber downshift, driven by the
pseudo-SRS, and the upshift induced by the linearly decreasing SOD. The ana-
lytical solutions are found to be in close agreement with their numerical
counterparts.
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