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Abstract—A Riccati equation with coefficients expandable into convergent power series in a neighborhood of
infinity is considered. Continuable solutions to equations of this type are studied. Conditions for the expan-
sion of these solutions into convergent series in a neighborhood of infinity are obtained by methods of power
geometry. 
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INTRODUCTION
We consider the Riccati equation

(1)

In [1] Riccati studied the equation

 (2)

It is well known that Eq. (2) admits the separation of
variables and, hence, can be integrated by quadratures
in the case when  , where n is an inte-
ger (see [2]). This equation is also integrable by
quadratures when p = –2. Liouville proved that this
equation is not integrable by quadratures for all other
values of the parameter p [2, 3]. The change of vari-
ables  reduces Eq. (2) to the second-order
equation

(3)
whose solutions can be expressed in terms of cylinder
functions (see, for example, [4]).

The main method traditionally used to study
Eq. (1) lies in transforming it by means of a suitable
change of variables into a form as simple as possible, so
that the equation can be integrated using elementary
methods. However, this approach is restrictive and
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efficiently helps in analysis only in the cases indicated
above.

This study is devoted to an asymptotic analysis of
solutions to Eq. (1) in a neighborhood of the point x =
+∞ based on two-dimensional power geometry meth-
ods [5, 6]. We will determine conditions under which
solutions to this equation are representable in the form
of convergent functional series. We will consider the
case when the functions fi(x) are expandable into con-
vergent power series in a neighborhood of infinity.
Precise definitions are given below. This work is a con-
tinuation of the studies begun in [7], where we pre-
sented the possibilities of using power geometry meth-
ods in analyzing solutions to Eq. (1) of the form

Definition. A solution y(x) to Eq. (1) is called con-
tinuable to the right if it is defined in a neighborhood of
the point x = +∞.

From now on, for brevity, solutions continuable to
the right are referred to as continuable.

We study continuable solutions to Eq. (1) under the
assumption that the functions fi(x), i ∈ {0, 1, 2}, can be
represented as series of the form

(4)

uniformly absolutely convergent in a neighborhood of
x = +∞. We assume that Eq. (1) is nonhomogeneous,
since the homogeneous equation is the Bernoulli
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equation, which is directly integrable. Thus, we
assume in what follows that c01c21 ≠ 0 in (4).

Hereinafter, we use the terminology adopted in
power geometry [5]. The Newton polygon N of Eq. (1)
under condition (4) is the closed convex hull of the points
Q = (–1, 1), Qij = (pij, i), i ∈ {0, 1, 2}, j ∈ {1, 2, …}. In this
study, we consider the case when the point Q belongs
to the right-hand boundary of N, that is, we have the
inequalities

(5)

We will show that continuable solutions to Eq. (1) in
this case can be represented as functional series con-
vergent in a neighborhood of x = +∞. If condition (5)
is violated, we can calculate formal (generally speak-
ing, divergent in the neighborhood of x = +∞) series
for existing continuable solutions to Eq. (1). An anal-
ysis of this situation is beyond the scope of this study.

In what follows, when mentioning solutions to
Eq. (1), we mean continuable solutions to this equa-
tion.

Consider two cases. The first is when the condition

(6)

is satisfied. If condition (6) is satisfied, an important
role in calculating expansions of solutions to Eq. (1) is
played by the two edges, [QQ01] and [QQ21], and the
vertex Q of the polygon N. These edges and the vertex
are associated with truncated equations, whose solu-
tions are the first approximations of solutions to Eq.
(1) as x → +∞.

In the second case when

, (7)

the edge [Q01Q21] is the right-hand boundary of the
polygon N. This edge is also associated with a trun-
cated equation, whose solutions are the first approxi-
mations of solutions to Eq. (1).

Under condition (6), we will prove the existence of
solutions to Eq. (1) in the form of series in powers of x
with coefficients being functions that depend on lnx.
These series uniformly absolutely converge in a neigh-
borhood of the point x = +∞. In case (7), continuable
solutions do not always exist. Using a truncated equa-
tion, we will determine conditions for their existence
and also calculate convergent series that are expan-
sions of these solutions in a neighborhood of the point
x = +∞.

Note that, in this study, when we mention power
series (expansions), the exponents are not necessarily
integers, unlike in traditional power series.

Theorem 1 describes, in the case (6), a series
expansion of a continuable solution to Eq. (1) whose
first approximation is determined by the edge [QQ01]
of the Newton polygon of Eq. (1). The solution has the
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form of a uniformly absolutely convergent series in
powers of x in a neighborhood of the point x = +∞
with coefficients being polynomials in lnx. According
to the terminology adopted in power geometry (see
[5]), the expansion of the solution can be of two types:
a power expansion (the solution is expandable into a
power series with constant coefficients) and a power-
logarithmic expansion (the solution is expandable into
a power series and the coefficients of the terms of the
series are polynomials in lnx). A significant role in
determining the type of the expansion is played by the
presence or absence of critical values of the first
approximation of the solution (see [5]).

Theorem 2 describes a family of solutions whose
first approximations are determined by the vertex Q.
These solutions have the form of uniformly absolutely
convergent power series in a neighborhood of the
point x = +∞ with constant coefficients, that is, the
expansions of solutions of the family are power expan-
sions in this case.

Theorems 3 and 4 consider the case when condi-
tion (7) holds. Theorem 3 presents conditions for the
existence of continuable solutions to Eq. (1) in this case,
and Theorem 4 describes expansions of these solutions
into convergent series. The first approximations of the
solutions are solutions to the truncated equation cor-
responding to the edge [Q01Q21] of the polygon N and
have a power form. The expansion can be of power or
power-logarithmic type.

A fractional-rational transformation of the variable
y reduces Riccati equation (1) to an equation of the
same type. After applying the power transformation
y = z–1, the edges [QQ01] and [QQ21] are interchanged.
Based on Theorem 1, this makes it possible to obtain
series expansions of the solutions to Eq. (1) whose first
approximations are determined by the edge [QQ21] of
the polygon N. A detailed description of these expan-
sions is left to the reader. We only note that the solu-
tions are expandable into series in powers of x that are
uniformly absolutely convergent in a neighborhood of
the point x = +∞ with coefficients being functions
of lnx. 

Remark 1. Theorem 2 describes families of solu-
tions whose first approximations are solutions to the
truncated equation corresponding to the vertex Q.
Similar families can arise in some other situations. It is
straightforward to obtain corresponding propositions
based on Theorems 1, 2, and 4. To avoid overloading
the presentation, only one of these families is
described in Theorem 5.

STATEMENT OF THE MAIN RESULTS

Theorem 1. It conditions (4) and (6) are satisfied,
then Eq. (1) has the following continuable solution:

(i) If p11 < –1 and p01 ≠ –1, then
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(8)

.

(ii) If p11 < –1 and p01 ≠ –1, then

(9)

(iii) If p11 = –1 and p01 + c11 ≠ –1, then the expan-
sion of the solution has form (8), where

(iv) If p11 = –1 and p01 + c11 ≠ –1, then the solution
has the form

(10)

Here, ai(x) are functions being polynomials in lnx. All the
series uniformly absolutely converge in a neighborhood of
the point x = +∞.

Remark 2. As can be seen from Theorem 1, the
expansions of the solution are power-logarithmic. If
Theorem 1 additionally assumes that p01 < –1 and p11 <
–1, then we have a power expansion

(11)

If Theorem 1 additionally assumes that p11 = –1
and p01 + c11 < –1, then the expansion of the solution
is also a power series of form (11), where s1 = p01 + 1,

a1 = .

Theorem 2. If condition (4) is satisfied and pi1 < –1,
i ∈ {0, 1, 2}, then Eq. (1) has a one-parameter family of
solutions of the form

(12)

if condition (4) is satisfied and p11 = –1, p01 + 1 < –c11 <
–p21 – 1, then Eq. (1) has a one-parameter family of
solutions of the form
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Here, a ≠ 0 is an arbitrary constant. All the series uni-
formly absolutely converge in a neighborhood of the point
x = +∞.

We now consider the case (7). In this case, Eq. (1)
does not always have continuable solutions. We pres-
ent the necessary conditions for the existence of solu-
tions of this type.

Theorem 3. If condition (4) is satisfied and  =

–1, p11 < –1, then Eq. (1) does not have continuable
solutions if 4c01c21 > (p01 + 1)2.

If condition (4) is satisfied and  = p11 = –1,

then Eq. (1) does not have continuable solutions if 4c01c21 >
(p01 + c11 + 1)2.

Remark 3. Condition (4) in Theorem 3 is excessive.
For the theorem to hold, it suffices that the functions
fi(x), i ∈ {0, 1, 2}, have power asymptotics as x → +∞:

Theorem 4. If condition (4) is satisfied,

 = –1, p11 < –1, and 4c01c21 ≤ (p01 + 1)2,

then Eq. (1) has continuable solutions that can be
expanded into series of form (8) that are uniformly abso-
lutely convergent in a neighborhood of the point x = +∞;
here, s1 = p01 + 1 and a1 is any of the roots of the qua-
dratic equation

(14)

If condition (4) is satisfied,  = p11 = –1, and

4c01c21 ≤ (c11 + p01 + 1)2, then Eq. (1) has continuable
solutions that can be expanded into series of form (8) that
are uniformly absolutely convergent in a neighborhood of
the point x = +∞; here, s1 = p01 + 1 and a1 is any of the
roots of the quadratic equation

(15)

It follows from this theorem that the expansions of
solutions in this case are either power expansions or
power-logarithmic expansions.

Theorem 5. Let conditions (4) and (6) be satisfied. If
p01 = –1, p11 < –1, then Eq. (1) has a one-parameter
family of solutions of the form
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(16)

while, if p01 > –1, p11 < –1, then Eq. (1) has a one-
parameter family of solutions of the form

(17)

Here, a ≠ 0 is an arbitrary constant and ai(x) are
functions being polynomials in lnx. All the series uni-
formly absolutely converge in a neighborhood of the point
x = +∞.

We can describe similar families of solutions using
Theorem 1 (cases (iii) and (iv)) and Theorem 2. Fam-
ilies of solutions of this type can also be obtained based
on Theorems 4 and 2.
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