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CLOSED POLYNOMIALS AND SATURATED SUBALGEBRAS
OF POLYNOMIAL ALGEBRAS

I. V. Arzhantsev1 and A. P. Petravchuk2 UDC 512.745

The behavior of closed polynomials, i.e., polynomials f ∈ k[x1, . . . , xn] \ k such that the subalge-
bra k[f ] is integrally closed in k[x1, . . . , xn], is studied under extensions of the ground field. Us-
ing some properties of closed polynomials, we prove that, after shifting by constants, every polynomial
f ∈ k[x1, . . . , xn] \ k can be factorized into a product of irreducible polynomials of the same degree.
We consider some types of saturated subalgebras A ⊂ k[x1, . . . , xn], i.e., subalgebras such that, for any
f ∈ A \ k, a generative polynomial of f is contained in A.

1. Introduction

Recall that a polynomial f ∈ k[x1, . . . , xn] \ k is called closed if the subalgebra k[f ] is integrally closed
in k[x1, . . . , xn]. It turns out that a polynomial f is closed if and only if f is noncomposite, i.e., f cannot
be represented in the form f = F (g) for some g ∈ k[x1, . . . , xn] and F (t) ∈ k[t], deg(F ) > 1. Since any
polynomial in n variables can be obtained from a closed polynomial by taking a polynomial in one variable from
it, the problem of studying closed polynomials is of interest. Furthermore, closed polynomials in two variables
appear in a natural way as generators of rings of constants of nonzero derivations.

Let us go briefly through the content of the paper. In Sec. 2, we collect numerous characterizations of closed
polynomials (Theorem 1). A major part of these characterizations is contained in [1–4], etc., but some results seem
to be new. In particular, the implication (i) ⇒ (iv) in Theorem 1 over any perfect field and Proposition 1 solve a
problem stated in [1] (Sec. 8).

We define a generative polynomial h of a polynomial f ∈ k[x1, . . . , xn] \ k as a closed polynomial such
that f = F (h) for some F ∈ k[t]. Clearly, a generative polynomial exists for any f. Moreover, a generative
polynomial is unique up to affine transformations (Corollary 1).

The abovementioned results allow us to prove that, over an algebraically closed field k, for any f ∈
k[x1, . . . , xn] \ k and all but finitely many μ ∈ k, the polynomial f + μ can be decomposed into a product
f + μ = α · f1μ · f2μ . . . fkμ, α ∈ k×, k ≥ 1, of irreducible polynomials fiμ of the same degree d independent
of μ and such that fiμ − fjμ ∈ k, i, j = 1, . . . , k (Corollary 2). This result may be considered as an analog of
the fundamental theorem of algebra for polynomials in many variables.

Moreover, the Stein–Lorenzini–Najib inequality (Theorem 2) implies that the number of “exceptional” values
of μ is less then deg(f). The same inequality gives an estimate for the number of irreducible factors in f +μ for
exceptional μ (see Theorem 3).

Section 4 is devoted to saturated A ⊂ k[x1, . . . , xn], i.e., subalgebras such that, for any f ∈ A \ k, a gener-
ative polynomial of f is contained in A. Clearly, any subalgebra integrally closed in k[x1, . . . , xn] is saturated.
On the other hand, it is known that, for monomial subalgebras, these two conditions are equivalent. In Theo-
rem 4, we characterize subalgebras of invariants A = k[x1, . . . , xn]G, where G is a finite group acting linearly on
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k[x1, . . . , xn], with A being saturated. This result provides many examples of saturated homogeneous subalgebras
that are not integrally closed in k[x1, . . . , xn].

2. Characterizations of Closed Polynomials

Let k be an arbitrary field.

Proposition 1. Let f ∈ k[x1, . . . , xn]\k and let k ⊂ L be a separable extension of fields. Then f is closed
over k if and only if f is closed over L.

Proof. If f = F (h) over k, then the same decomposition holds over L.

Now assume that f is closed over k. Consider an element g ∈ L[x1, . . . , xn] integral over L[f ]. We prove
that g ∈ L[f ]. Since the number of nonzero coefficients of g is finite, we may assume that L is a finitely
generated extension of k. Then there exists a finite separable transcendence basis of L over k, i.e., a finite set
{ξ1, . . . , ξm} of elements in L that are algebraically independent over k and such that L is a finite separable
algebraic extension of L1 = k(ξ1, . . . ξm).

Let us show that f is closed over L1. The subalgebra k[f ][ξ1, . . . , ξm] is integrally closed in
k[x1, . . . , xn][ξ1, . . . , ξm] [5] (Chap. V.1, Proposition 12). Let T be the set of all nonzero elements of
k[ξ1, . . . , ξm]. Then the localization T−1k[f ][ξ1, . . . , ξm] is integrally closed in T−1k[x1, . . . , xn][ξ1, . . . ξm] [5]
(Chap. V.1, Proposition 16). This proves that L1[f ] is integrally closed in L1[x1, . . . , xn].

We fix a basis {ω1, . . . , ωk} of L over L1. With any element l ∈ L one may associate an L1-linear
operator M(l) : L → L, M(l)(ω) = lω. Let tr(l) be the trace of this operator. It is known that there exists
a basis {ω�

1, . . . , ω
�
k} of L over L1 such that tr(ωiω

�
j ) = δij [5] (Chap. V.1.6). Assume that g =

∑
i
ωiai,

where ai ∈ L1[x1, . . . , xn]. Any ω�
j is integral over L1 and, thus, over L1[f ]. This shows that gω�

j is integral
over L1[f ]. We set K = L1(x1, . . . , xn). The element gω�

j determines a K-linear map L ⊗K K → L ⊗K K,

b → gω�
j b. Since gω�

j is integral over L1[f ], the trace of this K-linear operator is also integral over L1[f ] [5]

(Chap. V.1.6). Note that tr(gω�
j ) =

∑
i
ai tr(ωiω

�
j ). On the other hand, the elements {ω1 ⊗ 1, . . . , ωk ⊗ 1} form

a basis of L ⊗K K over K. Hence, tr (ωiω
�
j ) = δij and tr (gω�

j ) = aj is integral over L1[f ]. This shows that
aj ∈ L1[f ] for any j and, thus, g ∈ L[f ].

The proposition is proved.

Let M be the set of all subalgebras k[f ], f ∈ k[x1, . . . , xn] \ k, partially ordered by inclusion.
In the theorem below, various characterizations of closed polynomials are collected (see [1–4], etc.). A new

result here is the implication (i) ⇒ (iv).

Theorem 1. The following conditions on a polynomial f ∈ k[x1, . . . , xn] \ k are equivalent:

(i) f is noncomposite;

(ii) k[f ] is a maximal element of M;

(iii) f is closed;

(iv)
(
k is a perfect field

)
f + λ is irreducible over k for all but finitely many λ ∈ k;

(v)
(
k is a perfect field

)
there exists λ ∈ k such that f + λ is irreducible over k;

(vi)
(
char k = 0

)
there exists a (finite) family of derivations {Di} of the algebra k[x1, . . . , xn] such that

k[f ] = ∩iKer Di.
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Proof. (i) ⇒ (iv). Assume that k = k. Consider a morphism φ : kn → k1, φ(x1, . . . , xn) = f(x1, . . . , xn).
We should prove that all fibers of this morphism except finitely many are irreducible. But this follows from the first
Bertini theorem (see, e.g., [6, p. 139]).

If a perfect field k is nonclosed, then Proposition 1 shows that f ∈ k[x1, . . . , xn] is closed over k, which
implies that f is closed over k.

The theorem is proved.

Example 1 [1]. If the field k is not perfect, then we cannot guarantee that a polynomial f closed over k is
closed over k as well. Indeed, let F = k(η), where η /∈ k, ηp ∈ k. The polynomial f(x1, x2) = xp

1 + ηpxp
2

is closed over k. However, one has a decomposition f = (x1 + ηx2)p over F. The same example works for
(i) 	⇒ (iv) in this case.

We are now going to show that a generative polynomial is unique up to affine transformations. Here, we need
two auxiliary lemmas.

Lemma 1. For any f ∈ k[x1, . . . , xn] \ k, the integral closure A of k[f ] in k[x1, . . . , xn] has the form
A = k[h] for some closed h ∈ k[x1, . . . , xn].

Proof. Since tr.degk Q(A) = 1, by virtue of the theorem of Gordan (see, e.g., [4, p. 15]) we have Q(A) =
k(h) for some rational function h. The subfield Q(A) contains nonconstant polynomials. Therefore, by virtue
of the theorem of E. Noether (see, e.g., [4, p. 16]), the generator h of the subfield Q(A) can be chosen as a
polynomial. Note that k(h)∩k[x1, . . . , xn] = k[h] because any rational (but polynomial) function of a nonconstant
polynomial cannot be a polynomial. Therefore, A ⊆ k[h]. Since the element h is integral over A and A is
integrally closed in k[x1, . . . , xn], we have h ∈ A and A = k[h].

The lemma is proved.

Note that, in the case char k = 0, this lemma follows immediately from the result of Zaks [7].

Lemma 2. Let k be a field. Polynomials f, g ∈ k[x1, . . . , xn] \ k are algebraically dependent
(
over k

)
if

and only if there exists a closed polynomial h ∈ k[x1, . . . , xn] such that f, g ∈ k[h].

Proof. Assume that f and g are algebraically dependent. According to the Noether normalization lemma,
there exists an element r ∈ k[f, g] such that k[r] ⊂ k[f, g] is an integral extension. By virtue of Lemma 1, the
integral closure of k[r] in k[x1, . . . , xn] has the form k[h] for some closed polynomial h.

Conversely, if f, g ∈ k[h], then these polynomials are obviously algebraically dependent.
The lemma is proved.

Corollary 1. Let f ∈ k[x1, . . . , xn] \ k. The integral closure of the subalgebra k[f ] in k[x1, . . . , xn] coin-
cides with k[h], where h is a generative polynomial of f. In particular, a generative polynomial of f exists and
is unique up to affine transformations.

3. Factorization Theorem

In this section, we assume that the ground field k is algebraically closed. Theorem 1 states that, for a closed
polynomial h ∈ k[x1, . . . , xn], the polynomial h + λ may be reducible only for finitely many λ ∈ k. Let E(h)
denote the set of λ ∈ k such that h + λ is reducible and let e(h) be the cardinality of this set. Stein’s inequality
claims that

e(h) < deg h.
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For any λ ∈ k, we now consider the decomposition

h + λ =
n(λ,h)∏
i=1

h
dλ,i

λ,i ,

where hλ,i is irreducible. A more precise version of Stein’s inequality is given in the next theorem.

Theorem 2 [Stein–Lorenzini–Najib inequality]. Let h ∈ k[x1, . . . , xn] be a closed polynomial. Then

∑
λ

(n(λ, h) − 1) < min
λ

(∑
i

deg(hλ,i)

)
.

This inequality has a fairly long history. Stein [8] proved his inequality in characteristic zero for n = 2.
For any n over k = C, this inequality was proved in [9]. In 1993, Lorenzini [10] obtained the inequality as in
Theorem 2 in any characteristic, but only for n = 2 (see also [11] and [12]). Finally, in [13], the proof for an
arbitrary n was reduced to the case n = 2.

We now take arbitrary f ∈ k[x1, . . . , xn] \ k and μ ∈ k and consider the decomposition

f + μ = α ·
n(μ,f)∏
i=1

f
dμ,i

μ,i ,

where α ∈ k× and fμ,i are irreducible.
Let us state the main result of this section.

Theorem 3. Let f ∈ k[x1, . . . , xn] \ k. There exists a finite subset E(f) = {μ1, . . . , μe(f) | μi ∈ k} with
e(f) < deg f such that the following assertions are true:

(1) for any μ /∈ E(f), one has f + μ = α · fμ,1 · fμ,2 . . . fμ,k, where all fμ,i are irreducible and
fμ,i − fμ,j ∈ k;

(2) fμ,i − fν,j ∈ k× for any μ, ν /∈ E(f) such that ν 	= μ; in particular, the degree d = deg(fμ,i) does
not depend on i and μ;

(3) deg(fμ,i) ≤ d for any μ ∈ k;

(4)
∑

μ

(
n(μ, f) − deg(f)

d

)
< min

μ

(∑n(μ,f)

i=1
deg(fμ,i)

)
.

Proof. Let h be the generative polynomial of f and let f = F (h). Then

F (h) + μ = α · (h + λμ,1) . . . (h + λμ,k)

for some λμ,1, . . . , λμ,k ∈ k. Hence, for any μ such that λμ,1, . . . , λμ,k /∈ E(h), we have the decomposition of
f + μ as in (1). Note that λμ,i 	= λν,j for μ 	= ν. This proves (2) with d = deg(h) and gives the inequalities

e(f) ≤ e(h) < deg(h) ≤ deg(f).
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Any fμ,i is a divisor of some h + λ. This yields (3).
Finally, (4) can be obtained as follows:

∑
μ

(
n(μ, f) − deg(f)

d

)
≤

∑
λ

(n(λ, h) − 1) < min
λ

(∑
i

deg(hλ,i)

)
≤ min

μ

⎛
⎝∑

j

deg(fμ,j)

⎞
⎠ .

The theorem is proved.

Remark 1. It follows from the proof of Theorem 3 that

E(f) =
{−F (−λ) | λ ∈ E(h)

}
;

if f is not closed, then

e(f) <
1
2

deg(f).

Corollary 2. Let f ∈ k[x1, . . . , xn] \ k. Then, for all but finitely many μ ∈ k, the polynomial f + μ can be
decomposed into the product

f + μ = α · f1μ · f2μ . . . fkμ, α ∈ k×, k ≥ 1,

of irreducible polynomials fiμ of the same degree d independent of the number μ and such that fiμ − fjμ ∈ k,

i, j = 1, . . . , k. The number of exceptional μ’s for which such a decomposition does not exist is at most deg f−1.

Example 2. We take

f(x1, x2) = x2
1x

4
2 − 2x2

1x
3
2 + x2

1x
2
2 + 2x1x

3
2 − 2x1x

2
2 + x2

2 + 1.

Here, h = x1x2(x2 − 1) + x2 and F (t) = t2 + 1. It is easy to check that E(h) = {0,−1}, and, thus,
E(f) = {−1,−2}. We have the following decompositions:

μ = −1: f − 1 = x2
2(x1x2 − x1 + 1)2,

μ = −2: f − 2 = (x2 − 1)(x1x2 + 1)(x1x2(x2 − 1) + x2 + 1),

μ 	= −1,−2: f + μ =
(
x1x2(x2 − 1) + x2 + λ

)(
x1x2(x2 − 1) + x2 − λ

)
, λ2 = −1 − μ.

In this case, deg(f) = 6, d = 3, ∑
μ

(n(μ, f) − 2) = 1,

and

min
μ

(∑
i

deg(fμ,i)

)
= min{3, 6, 6} = 3.
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4. Saturated Subalgebras and Invariants of Finite Groups

Let k be a field.

Definition 1. A subalgebra A ⊆ k[x1, . . . , xn] is said to be saturated if, for any f ∈ A \ k, the generative
polynomial of f is contained in A.

It is clear that the intersection of a family of saturated subalgebras in k[x1, . . . , xn] is again a saturated
subalgebra. Therefore, we may define the saturation S(A) of a subalgebra A as the minimal saturated subalgebra
containing A.

If A is integrally closed in k[x1, . . . , xn], then A is saturated. According to Theorem 1, if A = k[f ], then
the converse statement is true. Moreover, the converse is true if A is a monomial subalgebra. In order to prove this,
consider the submonoid P (A) in Zn

≥0 that consists of multidegrees of all monomials in A. Then the monomials
corresponding to elements of the “saturated” semigroup P ′(A) = (Q≥0P (A)) ∩ Zn

≥0 are generative elements
of A. On the other hand, it is a basic fact of toric geometry that the monomial subalgebra corresponding to P ′(A)
is integrally closed in k[x1, . . . , xn], [see, e.g., [14] (Sec. 2.1)].

We now come from monomial to homogeneous saturated subalgebras. The degree of monomials

deg(αxi1
1 . . . xin

n ) = i1 + . . . + in

defines a Z≥0-grading on the polynomial algebra k[x1, . . . , xn]. Recall that a subalgebra A ⊂ k[x1, . . . , xn] is
called homogeneous if, for any element a ∈ A, all its homogeneous components belong to A.

Consider a subgroup G ⊂ GLn(k). The linear action G : k[x1, . . . , xn] → k[x1, . . ., xn] determines the
homogeneous subalgebra k[x1, . . . , xn]G of G-invariant polynomials.

Theorem 4. Let G ⊆ GLn(k) be a finite subgroup. The subalgebra A = k[x1, . . . , xn]G is saturated in
k[x1, . . . , xn] if and only if G admits no nontrivial homomorphisms G → k×.

Proof. Assume that there is a nontrivial homomorphism φ : G → k×. Let Gφ be the kernel of φ and let
Gφ = G/Gφ. Then Gφ is a finite cyclic group of some order k, and it may be identified with a subgroup of k×.

Lemma 3. Let H be a cyclic subgroup of order k in k×. Then any finite-dimensional
(
over k

)
H-module

W is a direct sum of one-dimensional submodules.

Proof. The polynomial Xk − 1 annihilates the linear operator P in GL(W ) corresponding to a generator
of H. By assumption, Xk − 1 is a product of k nonproportional linear factors in k[X]. This shows that the
operator P is diagonalizable.

Lemma 4. Let H ⊂ G be a proper subgroup. Then k[x1, . . . , xn]H 	= k[x1, . . ., xn]G.

Proof. Let K be a field and let G be a finite group of its automorphisms. By virtue of the Artin the-
orem [15] (Sec. 2.1, Theorem 1.8), KG ⊂ K is a Galois extension and [K : KG] = |G|. This implies that
k(x1, . . . , xn)H 	= k(x1, . . . , xn)G. The implication

f

h
∈ k(x1, . . . , xn)G =⇒ f

∏
g∈G,g �=e g · f

h
∏

g∈G,g �=e g · f ∈ k(x1, . . . , xn)G

shows that k(x1, . . . , xn)G
(
respectively, k(x1, . . . , xn)H

)
is the quotient field of k[x1, . . . , xn]G

(
respectively,

k[x1, . . . , xn]H
)
, and, thus, k[x1, . . . , xn]H 	= k[x1, . . . , xn]G.

The lemma is proved.
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We may now take a finite-dimensional G-submodule W ⊂ k[x1, . . . , xn]Gφ that is not contained in
k[x1, . . . , xn]G. Then W is a Gφ-module. According to Lemma 3, one can find a Gφ-eigenvector h ∈ W,

h /∈ k[x1, . . . , xn]G. Then hk ∈ k[x1, . . . , xn]G and k[x1, . . . , xn]G is not saturated.
Conversely, assume that any homomorphism χ : G → k is trivial. If h is a generative element of a polynomial

f ∈ k[x1, . . . , xn]G, then, for any g ∈ G, the element g · h is also a generative element of f. By virtue
of Corollary 1, the generative element is unique up to affine transformation. Without loss of generality, we can
assume that the constant term of h is zero. Then the element g · h obviously has the zero constant term, and by
virtue of Corollary 1 this element is proportional to h for any g ∈ G. Thus, G acts on the line 〈h〉 via some
character. But any character of G is trivial, whence h ∈ k[x1, . . . , xn]G, and k[x1, . . . , xn]G is saturated.

The theorem is proved.

Remark 2. Since all coefficients of the polynomial

Ff (T ) =
∏
g∈G

(T − g · f)

are in k[x1, . . . , xn]G, any element f ∈ k[x1, . . . , xn] is integral over k[x1, . . . , xn]G. Thus, Theorem 4 provides
many saturated homogeneous subalgebras that are not integrally closed in k[x1, . . . , xn].

Corollary 3. Assume that k is algebraically closed and char k = 0. Then the following assertions are true:

(1) the subalgebra k[x1, . . . , xn]G is saturated in k[x1, . . . , xn] if and only if G coincides with its commu-
tant;

(2) the saturation of k[x1, . . . , xn]G is k[x1 . . . , xn] if and only if G is solvable.

Example 3. In general, the saturation S(A) is not generated by generative elements of elements of A. In-
deed, take any field k that contains a primitive root of unit of degree six. Let G = S3 be the permutation group
acting naturally on k[x1, x2, x3] and let A3 ⊂ S3 be the alternating subgroup. The proof of Theorem 4 shows
that any generative element of an S3-invariant is an S3-semiinvariant and thus belongs to k[x1, x2, x3]A3 . On the
other hand, S(k[x1, x2, x3]S3) = k[x1, x2, x3].

Example 4. It follows from Theorem 4 that the property of a subalgebra to be saturated is not preserved under
field extensions. Let us give an explicit example of this effect.

Let k = R and let G be the cyclic group of order three acting on R2 by rotations. We begin with the
calculation of generators of the algebra of invariants R[x, y]G. Consider the complex polynomial algebra C[x, y] =
R[x, y] ⊕ iR[x, y] with natural G-action. Then

C[x, y]G = R[x, y]G ⊕ iR[x, y]G.

We set z = x + iy, z = x − iy. It is clear that C[x, y] = C[z, z], and G acts on z and z as z → εz and
z → εz, where ε3 = 1. This yields C[z, z]G = C[f1, f2, f3], where f1 = z3, f2 = z3, and f3 = zz. Finally,

R[x, y]G = R [Re(fi), Im(fi); i = 1, 2, 3] = R
[
x3 − 3xy2, y3 − 3x2y, x2 + y2

]
.

By virtue of Theorem 4, the subalgebra R[x, y]G is saturated in R[x, y]. On the other hand, the subalgebra
C

[
x3 − 3xy2, y3 − 3x2y, x2 + y2

]
contains x3 − 3xy2 + i(y3 − 3x2y) = (x − iy)3.
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