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Abstract. We suggest a new model of the fast nondissipative kinematic dynamo which
describes the phenomenon of exponential growth of the magnetic field caused by the motion
of the conducting medium. This phenomenon is known to occur in the evolution of magnetic
fields of astrophysical bodies. In the 1970s A.D. Sakharov and Ya.B. Zeldovich proposed a
“rope” scheme of this process which in terms of the modern theory of dynamical systems can be
described as Smale solenoid. The main disadvantage of this scheme is that it is non-conservative.
Our model is a modification of the Sakharov-Zeldovich’s model. We apply methods of the theory
of dynamical systems to prove that it is free of this fault in the neighborhood of the nonwandering
set.

1. Introduction
One of the fundamental problems of the natural sciences is formation and evolution of magnetic
fields of astrophysical bodies. Particularly, the theory of the kinematic dynamo studies the
evolution of the magnetic fields of electrically conducting fluids [1, 2, 3]. The velocity field ~v of
an incompressible conducting medium (fluid, gas or plasma) is supposed to be given while the

subject of interest being the magnetic field ~H stretched by the fluid flow in the presence of a low
diffusion dissipating the magnetic energy. The kinematic dynamo is described by the following
equations

∂ ~H

∂t
= rot

[
~v ~H

]
+ η4 ~H, div ~H = 0, div~v = 0,

here η is the magnetic diffusivity which is in inverse proportion to Magnetic Reynolds
number Rm = 1

η (see the main notions and definitions in [4, 5, 6]). The literature on the

magnetohydrodynamics often uses ~B to describe the magnetic field, where ~B = µ ~H and µ is
the permeability of the medium (for us the difference between ~H and ~B is irrelevant). One of
the important aspects of the kinematic dynamo is the fast kinematic dynamo when the motion of
the conducting medium causes an exponential growth of the magnetic field for a small magnetic
diffusion.

The discrete (in time) version of this problem studies the growth of the magnetic field at
moments t = 1, 2, . . .. Instead of the transport of the flow and the continuous diffusion of
the magnetic fields one considers the composition of these processes. That is, for a given
conservative (volume preserving) diffeomorphism f : M →M the magnetic field is considered to



be first transported to the field f∗( ~H) and then to be dissipated as the solution of the equation
∂f∗( ~H)
∂t = η4

(
f∗( ~H)

)
.

A kinematic dynamo is said to be dissipative (“realistic”) if η → +0 or nondissipative
(“idealistic”) for η = 0. For the nondissipative dynamo the magnetic field is “frozen” into the
movement of the medium [7] and one usually studies the exponential growth of the energy of this
field. According to [8] a fast nondissipative dynamo occurs if the diffeomophism f has a nonzero
topological entropy (i.e if f chaotic enough). In the 1970s A.D. Sakharov and Ya.B. Zeldovich
proposed a scheme of a so called rope dynamo the idea of which modern 3-dimensional models
of the fast dynamo widely exploit [1, 2]. From the point of view of the modern theory of the
dynamical systems the construction of Sakharov-Zeldovich is an Ω-stable map of the solid torus
into itself suggested by S. Smale [9]. The nonwandering set of this map is a topological solenoid
and an expanding attractor, therefore the nonwandering set in the Smale’s construction is often
called the Smale solenoid or the Smale attractor [10]. Notice that the topological entropy of this
map is positive. The main disadvantage of this scheme for the theory of the kinematic dynamo
is that the suggested map is not conservative (this subject is well discussed in [1], chapter V).
In this paper we suggest a modification of the Sakharov-Zeldovich’s scheme without this fault
in the a neighborhood of the nonwandering set. Notice that the solid torus is naturally foliated
by 2-disks perpendicular to its axis and that the Smale map preserves this disk structure. We
modify the scheme in such a way that the solid torus maps into its neighborhood, the disk
structure is preserved but the intersection of each disk with its image becomes two symmetric
Smale horseshoes [11, 9]. Since there are horseshoes with an arbitrary Jacobian determinant it
is possible to construct a map which is conservative in the neighborhood of the nonwandering
set. This map can be extended to a diffeomorphism of the 3-sphere S3 or of the Euclidean space
R3, though such an extension is not guaranteed to be conservative on the entire manifold.

The example we suggest is of its own interest for the theory of the dynamical systems. To
describe the nonwandering set we give the symbolic model of the restriction of the diffeomorphism
to its wandering set. We show that the nonwandering set is the nontrivial 1-dimensional basic
set (see basic notions of the theory of the dynamical systems in [12, 13]) and it is in the class of
so called solenoidal sets [14].

2. The main construction
Consider the direct product K × [0; 1], where K = [−1; +1] × [−1; +1] is the square on the
plane R2 with the Cartesian coordinates (x, y). Let Rt : R2 → R2 denote the counterclockwise
rotation {

x̄ = x cosπt− y sinπt
ȳ = x sinπt+ y cosπt

of the plane R2 through the angle πt. The set
⋃

0≤t≤1
(t, Rt(K)) is homeomorphic to K × [0; 1]

because Rt is a homeomorphism for each t. Since R1(K) = K, the squares K × {0}, K × {1}
can be naturally identified by id : K ×{1} → K ×{0}. Let B be the body

⋃
0≤t≤1

(t, Rt(K)) with

the squares K × {0} and K × {1} identified by id:⋃
0≤t≤1

(t, Rt(K)) /
(
K × {1} id∼ K × {0}

)
def
= B.

We assume that the identification id reverses the orientation if the initial orientation of the
squares K ×{0}, K ×{1} is induced by an arbitrary orientation of the body

⋃
0≤t≤1 (t, Rt(K)).

The body B is a twisted cylinder shown in Fig. 1, where (a) shows the part of B for the values
0 ≤ t ≤ 1

2 while (b) shows it for 1
2 ≤ t ≤ 1.



(a)

(b)

Figure 1. Two halves of the body B. The body is obtained by gluing the halves by the squares.

It is clear that the set ⋃
0≤t<1

(t, (0, 0))
def
= S1

0

is a circle on which the quotient map [0; 1] → [0; 1]/(0 ∼ 1) = S1 induces the cyclic coordinate
t mod 1. We say the circle S1

0 to be the axis of the body B. We embed B into R3 in such a way
that the axis B has no knots in R3 and we consider B to be identical to its embedding. First we
are going to construct the desired diffeomorphism F : B → f(B) ⊂ R3 of the body B onto its
image in some neighborhood homeomorphic to the solid torus. Notice that the natural projection
K × [0; 1]→ [0; 1] is a trivial bundle and it induces the locally trivial bundle p1 : B → S1

0 with
the fiber K. Let Dt denote the fiber over t ∈ S1

0 , Dt = p−1
1 (t). Evidently Dt can be considered

as Rt(K), i.e. as the result of the rotation Rt of the square K.
To define the diffeomorphism F we need to modify the map introduced by Stephen Smale

known as the Smale horseshoe [11, 9]. Recall that the classic Smale horseshoe is a diffeomorphism
of some disk, containing the square K = D2

0 on the plane R2, into itself. The diffeomorphism
w : D2

0 = D2 → R2 of this square is the composition of a contraction along the axis Ox, an
expansion along the axis Oy, a bend (the direction of the bend is irrelevant) of the resulting
rectangle and, finally, its translation in such a way that the intersection D2 ∩ w(D2) is the
union of two disjoint strips which are symmetric with respect to the axis Oy1 (see Fig. 2(a)).
Clearly, the contraction and the expansion could be chosen in such a way that the Jacobian
determinant J(w) of w on D2 equals 1

2 . From now on we suppose these conditions to be

satisfied. Denote by sh0 : R2 → R2 the translation (x; y) −→ (x + 1
2 ; y) along the axis Ox and

let w0 = sh0 ◦ w : D2 → R2. Let S0 : R2 → R2 denote the inversion with respect to the origin
(0; 0), S0(x; y) = (−x;−y). Again one can pick the contraction, the expansion and the bend
such that the following conditions are satisfied (see Fig. 2 (b) on the right):

(i) the intersection D2 ∩ w0(D2) consists of two disjoint strips;

(ii) the sets w0(D2), S0

(
w0(D2)

)
are disjoint,

1 The horseshoe is sometimes defined as the diffeomorphism of the square which is afterwards extended to the
entire plane. It is known [12, 11] that w can be extended to a map of the entire plane R2 in such a way that this
map is the identity outside some neighborhood of D2.
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Figure 2. The Smale horseshoes w(D2) (a) and w0(D2) = sh0 ◦ w(D2) (b).

w0(D2)
⋂(

S0 ◦ w0(D2)
)

= ∅. (1)

The first condition means that the map sh0 ◦ w
def
= w0 is a Smale horseshoe whose symmetry

line is perpendicular to the axis Ox. The second condition means that the horseshoe w0(D2) is
disjoint from its reflection by S0. Notice that S0 ◦ w0(D2) is a horseshoe as well.

Consider a neighborhood S1 × B2 of the body B homeomorphic to the solid torus; here
B2 ⊂ R2 is a disk large enough containing the square K and S1 is a circle with cyclic coordinate
t mod 1. Below we identify a neighborhood of B with B2 × S1. Without loss of generality one
assumes S1 to coincide with the axis S1

0 of B and that Dt ⊂ {t} × B2 for each t. Recall that
the square Dt is the result of rotation Rt(K) of the square K, therefore we can define a Smale
horseshoe on Dt. Let

w0t = Rt ◦ w0 ◦R−t : Dt → {t} ×B2.

This map forms the horseshoe in the direction of the line y = x · tanπt only when the symmetry
line of the horseshoe w0t(D

2) is perpendicular to the line y = x · tanπt.
Let S1 = [0; 1]/(0 ∼ 1) be a circle with the natural parametrization [0; 1]→ [0; 1]/(0 ∼ 1) =

S1. The map E2 : S1 → S1 of the form t → 2t mod 1 is an expanding endomorphism of the
circle of degree 2 [15]. We now define the map F : B → S1 ×B2 in the following way: for every
t ∈ [0; 1) and every z ∈ Dt let

(t; z) 7−→ (E2(t);Rt ◦ w0t(z)) , t ∈ [0; 1), z ∈ Dt.

Notice that from the definition of F if follows that F (Dt) ⊂ B2t mod 1, (Fig. 3).

Lemma 1 The map F : B → F (B) ⊂ S1 ×B2 is a diffeomorphism onto its image.

Proof Assume F (t1; z1) ∩ F (t2; z2) 6= ∅, then F (Dt1) ∩ F (Dt2) 6= ∅. From the definition of F it
follows that E2(t2) = E2(t1), i.e. 2t1 mod 1 = 2t2. Since the map w0t is a diffeomorphism to
its image one assumes t1 6= t2, therefore t2 = t1 + 1

2 . Then F (Dt1) = R2t1 ◦ w0 ◦R−t1(Dt1),

F (Dt2) = F (Dt1+ 1
2
) = R2t1+1 ◦ w0 ◦R−t1− 1

2
(Dt1) = R1 ◦R2t1 ◦ w0 ◦R−t1− 1

2
(Dt1).

Since R1 is the rotation through π, the horseshoes F (Dt1) and S0 ◦ F (Dt1) must intersect and
this contradicts to (1).�



t

D
t

w
0

R R
-tt

t
2

t2D

Figure 3. Construction of the map F .

Notice that since the Jacobian determinant J(w) of the map w on D2 equals 1
2 , the Jacobian

determinant of F equals J(F ) = J(w) · DE2 = 1
2 · 2 = 1 and therefore, F is a conservative

diffeomorphism to its image. The union R3 ∪ {∞} of the Euclidean space and the point at
infinity {∞} can be identified with the 3-sphere S3 in the standard way.

Lemma 2 The map F : B → F (B) ⊂ S1 × B2 ⊂ R3 can be extended to a diffeomorphism
f : S3 → S3 which is conservative in some neighborhood of B.

Proof By construction the circle S1
0 is the axis of the solid torus S1×B2 and the body B as

well as S1 ×B2 are its tubular neighborhoods. The diffeomorphism of the square in the Smale
horseshoe can be extended to a diffeomorphism of a disk large enough (see [12]), therefore F
can be extended to a diffeomorphism (which we again denote by F ) of the solid torus S1 × B2

which preserves the disk structure. Without loss of generality one assumes that F is conservative
in some neighborhood of B (otherwise one can consider the square K a bit larger). If follows
from the construction that the curves S1

0 and F (S1
0) are knot free in R3. Therefore there is

a deformation of S1
0 to F (S1

0) which can be easily extended to a deformation of their tubular
neighborhoods ϕ0 : S1 × B2 → F (S1 × B2). Clearly ϕ0 can be made conservative. It follows
from [16] that ϕ can be extended to the desired diffeomorphism f : S3 → S3.�

3. The dynamics of the nonwandering set
We say the solid torus B embedded into S3 to be basic and we denote it by B. Let

Ω =
∞⋂

n=−∞
fn(B). (2)

The set Ω is invariant with respect to f ([12] )and it is not empty because it contains in
D0 = {0} × D2 ⊂ B the invariant nontrivial (0-dimensional) set Ω0 of the Smale horseshoe
([12, 11, 9]). Let Diff1(S3) denote the space of diffeomorphisms of the 3-sphere S3 with C1

topology.

Lemma 3 The set Ω is hyperbolic and the restriction f |Ω of f to Ω is of positive topological
entropy. Moreover, there is a neighborhood U(f) of f in the space Diff1(S3) such that every
diffeomorphism g ∈ U(f) has a hyperbolic invariant set Ωg ⊂ B, the diffeomorphisms f |Ω, g|Ωg

are conjugate and the entropy of the restriction g|Ωg is positive.

Proof By construction the Jacobian determinant of the map f |B : S1 ×D2 → R3 is equal to

J(f) =

(
1
2 0
0 2

)
. Therefore f is hyperbolic (not only on Ω but on B as well) and it follows that



the set Ω is hyperbolic. The restriction f |Ω0 : Ω0 → Ω0 has a positive entropy ([12, 13]). Then
it follows from [17] that the entropy of the restriction f |Ω is positive as well. Since hyperbolic
sets are stable under C1-small perturbations, the desired neighborhood U(f) exists because the
entropy is invariant with respect to conjugacy.�

Now we study the dynamics of the restriction of the diffeomorphism f : S3 → S3 to its
nonwandering set belonging to the basic solid torus B. To do this we construct a symbolic
model of f |Ω on the invariant set Ω. Let t0 ∈ S1, 0 ≤ t0 < 1 be fixed. Consider the intersection
of Ω and the disk Dt0 = {t0} ×B2 ⊂ S1 ×B2.

Following the symbolic model of the classic Smale horseshoe we define two vertical and two
horizontal (in the usual sense) strips in the square Dt0 in the following way. Recall that the
intersection of the square Dt0 with its image with respect to the map of the Smale horseshoe
w0t0 consists of the two vertical strips,

w0t0(Dt0) ∩Dt0 = R0(t0) ∪R1(t0),

where R0(t0) (respectively R1(t0)) is the strip nearest to the center (respectively, the farthest).
It follows from the construction that in Dt0 there are two disjoint horizontal (perpendicular to

R0(t0), R1(t0)) strips (we denote them by R
(−1)
0 (t0) and R

(−1)
1 (t0)) such that

w0t0(R
(−1)
0 (t0)) = R0(t0) and w0t0(R

(−1)
1 (t0)) = R1(t0). (3)

We now show that the intersection f−1(B) ∩ Dt0 ∩ f(B) consists of eight rectangles. By
construction the intersection Dt0 ∩ f(B) ∩ B = Dt0 ∩ f(B) consists of four strips. Indeed, there
are exactly two points t′1 = t0

2 , t′′1 = t0+1
2 ∈ S1 such that t0 = E2(t′1) and t0 = E2(t′′1) and

Dt0 ∩ f(Dµ) = ∅ for every µ 6= t′1, t
′′
1, 0 ≤ µ < 1. Then

Dt0

⋂
f(B) = Dt0

⋂(
f(Dt′1

) ∪ f(Dt′′1
)
)

=
(
Dt0 ∩ f(Dt′1

)
)⋃(

Dt0 ∩ f(Dt′′1
)
)
.

Each intersection Dt0 ∩ f(Dt′1
), Dt0 ∩ f(Dt′′1

) consists of two strips. Notice that Dt0 ∩ f(Dt′1
) =

R0(t0) ∪R1(t0). Then by the definition of f

f(Ri(t0)) = Ri(E2(t0)), i = 1, 2. (4)

Applying (3) with t0 changed to E2(t0) and (4) we get

R
(−1)
0 (t0) ∩R(−1)

1 (t0) = f−1 (R0(E2(t0)) ∪R1(E2(t0))) .

Therefore the intersection f−1(B) ∩Dt0 consists of two horizontal strips R
(−1)
0 (t0) ∩ R(−1)

1 (t0).
Then the intersection f−1(B)∩Dt0 ∩ f(B) consists of 8 rectangles which we say to be rectangles
of the first degree. They are the intersection of four vertical strips and two horizontal strips, see
Fig. 4 (a).

Similar to the standard process of coding for the classic Smale horseshoe we code the
rectangles of first degree in the following way. Recall that Dt0 ∩f(Dt′1

) is two vertical strips and

each strip divides the disk. We assign “0” to the strip of Dt0 ∩ f(Dt′1
) which is the closest to the

coordinate origin and we assign “+1” to the other strip. In the same way we assign “0” and “+1”
to the two strips of the intersection Dt0 ∩ f(Dt′′1

). Notice that Dt0 ∩ f(Dt′1
) = R0(t0) ∪ R1(t0)

and we have assigned “0” to the strip R0(t0) and we have assigned ”+1“ to the strip R1(t0).

We assign ω′0 = 0 and ω′′0 = 1 to the respective horizontal strips R
(−1)
0 and R

(−1)
1 . Now each

rectangle of the first degree has the corresponding block [(t0, ω0); (t1, ω1)] where t0 = E2(t1),
ω0 ∈ {0; 1}, ω1 ∈ {0; 1}. Denote by V (1)[(t0, ω0); (t1, ω1)] the rectangle with this block. Since



(a)
(b)

Figure 4. Rectangles of the first degree (a), rectangles of the second degree (b).

the rectangles of the first degree are pairwise disjoint it follows from (2) that an arbitrary point
P ∈ Ω ∩ Dt0 belongs to exactly one octagon and P ∈ V (1)[(t0, ω0); (t1, ω1)] has been assigned
the (initial) block [(t0, ω0); (t1, ω1)] of the first degree.

Analogously the intersection

f−2(B) ∩ f−1(B) ∩Dt0 ∩ f(B) ∩ f2(B) = f−1
[
f−1(B) ∩ B

]
∩Dt0 ∩ f [B ∩ f(B)]

consists of 82 rectangles which we call the rectangles of the second degree, see Fig. 4 (b).
It is easy to see that each rectangle of the first degree contains 8 disjoint rectangles of the
second degree. Using the rectangle of the first degree V (1)[(t0, ω0); (t1, ω1)] instead of the
disk we analogously assign the block V (2)[(t−1, ω−1); (t0, ω0); (t1, ω1); (t2, ω2)] to the rectangle
of the second degree V (1)[(t0, ω0); (t1, ω1)], where t−1 = E2(t0), t1 = E2(t2), ωj ∈ {0; 1}, j =
−1, 0, 1, 2. Since a point P ∈ Ω ∩ Dt0 is contained in exactly one octagon of the second
degree, say V (2)[(t−1, ω−1); (t0, ω0); (t1, ω1); (t2, ω2)], the unique block of the second degree
[(t−1, ω−1); (t0, ω0); (t1, ω1); (t2, ω2)] is assigned to it. If we continue this procedure then for
each point P ∈ Ω ∩Dt0 we get the bilateral sequence

P̂
def
= [· · · (t−n, ω−n); · · · ; (t−1, ω−1); (t0, ω0)︸ ︷︷ ︸; (t1, ω1); (t2, ω2); · · · ; (tn, ωn); · · · ],

where ωj ∈ {0; 1}, j ∈ Z, E2(ti+1) = ti, i ∈ Z. The underlined pair is conventionally assumed
to be at the position 0.

Let Σ2(E2) denote the set of all sequences of the type

[· · · (t−n, ω−n); · · · ; (t−1, ω−1); (t0, ω0)︸ ︷︷ ︸; (t1, ω1); (t2, ω2); · · · ; (tn, ωn); · · · ],

where ωj ∈ {0; 1}, j ∈ Z, E2(ti+1) = ti, i ∈ Z. Fix a sequence P̂ (0) ∈ Σ2(E2), P̂ (0) =

{(t(0)
i , ω

(0)
i }∞i=−∞ and fix numbers r ∈ N, ε > 0. A (r, ε)-neighborhood Ur,ε

(
P̂ (0)

)
of the

sequence P̂ (0) is the set of sequences P̂ ∈ Σ2(E2), P̂ = {(ti, ωi)}∞i=−∞ which satisfy

|t(0)
i − ti| < ε for all − r ≤ i ≤ r,

∞∑
i=−∞

|ω(0)
i − ωi|

2i
< ε.



The set of (r, ε)-neighborhoods generates the topology on Σ2(E2). Let σ : Σ2(E2) → Σ2(E2)
denote the map

σ

(
[· · · ; (t−1, ω−1); (t0, ω0)︸ ︷︷ ︸; (t1, ω1); · · · ]

)
= [· · · ; (t−1, ω−1)︸ ︷︷ ︸; (t0, ω0); (t1, ω1); · · · ].

Then one proves in the standard way that σ is a homeomorphism.

Lemma 4 The homeomorphism σ : Σ2(E2)→ Σ2(E2) is transitive and its set of periodic points
is dense.

Proof The proof is just the compilation of the well known proofs of the similar statements
for the classic Smale horseshoe and the Smale solenoid [13, 11, 9], therefore we omit it.�

Theorem 1 The restriction f |Ω : Ω → Ω of the diffeomorphism f to Ω is conjugate to
σ : Σ2(E2)→ Σ2(E2).

Proof Denote by ϑ : Ω → Σ2(E2) the map which assigns to a point P ∈ Ω its code

P̂ ∈ Σ2(E2). Since the rectangles of any fixed degree are pairwise disjoint, the map ϑ is
well defined and it is single-valued, i.e. if P1 6= P2 then ϑ(P1) 6= ϑ(P2). It is clear that the
rectangles of the fixed degree continuously depend (in the Hausdorff topology in the space of
compact sets) on the parameter t of the square Dt, therefore ϑ is continuous. Since the space
Σ2(E2) is compact, ϑ is a homeomorphism. It is immediate from the definition of the coding
that the diagram

Ω
f |Ω−→ Ω

↓ ϑ ↓ ϑ
Σ2(E2)

σ−→ Σ2(E2)

is commutative. This means that the maps f |Ω and σ are conjugate.�

Corollary 1 The homeomorphism f |Ω : Ω → Ω is transitive and its set of periodic points is
dense.

Consider on S1 × B2 a magnetic field ~B of unit vectors tangent to the curves S1 × {z},
z ∈ B2. One assumes the curves S1 × {z} to be oriented in the direction of the parameter

increase. It is clear that ~B can be extended to the unit vector field (therefore, divergence-free)

of the entire sphere S3. The following result shows that the energy of the magnetic field ~B
grows exponentially with the exponent µ > 0.

Theorem 2 The diffeomorphism f : S3 → S3 is fast nondissipative kinematic dynamo with
respect to the magnetic field ~B.

Proof Since f stretches the length of the curves S1 × {z} two-fold, f transforms the field ~B

to the field f∗(~B) with the following property: there is a constant λ > 1 such that the vectors of

f∗(~B) are longer by at least factor λ then those of the field ~B. The same holds for the lengths

of the vectors of the field fn+1
∗ (~B) with respect to the filed fn∗ (~B). If we ignore the energy

dissipation then the energy of the vector field fn∗ (~B) grows exponentially with the exponent
lnλ > 0. Notice that this result also follows from Lemma 3 and the more general result of the
paper [8], in which it is shown that a typical magnetic field is a nondissipative fast dynamo if
and only if the diffeomorphism f has a nonzero topological entropy.�
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