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1. Introduction 

 

Social choice theory states that there is no perfect voting rule (Brams, Fishburn 2002). A 

variety of rules are needed to satisfy different properties and aims. Voting rules are differentiated 

not only by outcomes, but also by the way of representing preference profiles, aggregation 

method etc. Many-sided comparisons are applicable for the choice of a relevant procedure. The 

data requirement is an important aspect of voting rule analysis. 

Different voting rules utilize different information from a preference profile. Fishburn 

(1977) analyzed data requirements for Condorcet social choice functions. The well-known 

classification introduces three classes: C1 — voting rules that only depend on pairwise majority 

comparisons, C2 — voting rules that only depend on weighted pairwise majority comparisons, 

and C3 — voting rules that require more information than weighted pairwise majority 

comparisons. This classification is not suitable for all (non-Condorcet) voting rules. Almost all 

voting rules belong to the C3 class. 

Fishburn’s classification is a benchmark for different voting rule classification studies. 

Based on a computational experiment for a particular number of alternatives and agents Eckert et 

al. (2006), and McCabe-Dansted, Slinko (2006) analyzed the similarity of voting outcomes and 

the corresponding voting rules. There is no direct relation between Fishburn’s (1977) 

classification and the similarity of voting result, but there is some correlation. Experimental 

results are not generalizable for a broader set of parameters. 

Data requirements for voting rules are closely related to the computational complexity of 

social choice problems and mechanisms. Handbook of computational social choice (2016) 

presents methods and results pertaining to one of Fishburn’s classes. 

Zwicker (2016) mentioned that Fishburn’s classification do not represent the relation 

“need more information”. Intuitively, the plurality rule requires less information than the Borda 

rule, but according to Fishburn’s classification, the plurality rule belongs to C3, and the Borda 

rule belongs to C2 (Fischer et al. 2016). The aim of this paper is to quantify the amount of 

information required by various voting rules and to compare these rules. 

Starting from an impartial, anonymous, and neutral culture (IANC) model (Egecioglu 

2009; Egecioglu, Giritgil 2013) and enumerative combinatorics of anonymous and neutral 

equivalence classes of preference profiles (ANECs), we introduce reverse invariant ANECs 

(RIANECs) and self-symmetric ANECs (SSANECs). These classes of ANECs exploit the 

reversal symmetry of preference profiles. Note that we do not introduce any probability 

distribution over preference profiles. We consider the IANC model only as a combinatorial 

object. For a three-alternative case, we design a multigraph representation of ANECs and a 

bracelet representation of RIANECs. These objects are well-studied in combinatorics theory. 

A voting rule may not allow for all preference profiles to be separately identified. Some 

preference profiles from different ANECs are indiscernible, e.g., preference profiles with the 

same structure of the top alternatives under the plurality rule. The class of preference profiles 

that are indiscernible under a voting rule is called a voting situation. 

Voting situations induce a partition of the set of ANECs. A finer partition means that a 

rule utilizes more information and it is in some sense more complicated. A lower number of 

voting situations is associated with a simpler computation of the voting outcome. Calculating the 

number of voting situations, we derive a numerical representation—a “trace” of a voting rule. 

For a perfectly discernible voting rule, which distinguishes all ANECs, the number of voting 

situations equals the number of ANECs. The ratio between the number of voting situations and 

the number of ANECs defines the information utilization index of a voting rule. The new 

measure is not simulation-based, it has a simple and tractable explicit formula. This measure 
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produces a hierarchy of voting rules according to information utilization. It is a promising 

alternative to Fishburn’s hierarchical classification. 

To illustrate the general framework, we analyze five main rules based on different 

informational bases: the plurality rule, the run-off rule, the Kemeny rule, the Borda rule, and the 

scoring rules in the extreme case. The main results are obtained for the case of three alternatives. 

If the number of voters is large enough, then the scoring rules in the extreme case utilize more 

information than the Kemeny rule, the Kemeny rule utilizes more information than the run-off 

rule, the run-off rule utilizes more information than the Borda rule, and the Borda rule utilizes 

more information than the plurality rule. The complexity of the Kemeny rule is confirmed in 

computational social choice studies. Our framework can be applied to other rules and a higher 

number of alternatives. 

The structure of the paper is as follows: Section 2 describes a mathematical model of 

IANC and the basic combinatorial theory; Section 3 presents the main result about voting rules; 

and Section 4 compares voting rules and concludes the paper. Proofs of propositions are given in 

Appendix 1. Appendix 2 contains a table with the number of ANECs, RIANECs, SSANECs, the 

number of voting situations, the polynomial degree and the information utilization index for the 

rules for the 3 alternatives case. 

 

 

2. Framework 

 

Let a finite set 𝑋 = {1, … ,𝑚}, 𝑚 ≥ 2 be the set of alternatives and a finite set 𝒩 =
{1,… , 𝑛}, 𝑛 ≥ 2 be the set of agents (voters). Each agent 𝑖 ∈ 𝒩 has a strict preference 𝑃𝑖 over 𝑋 

(linear order). Let ℒ(𝑋) be the set of all possible linear orders over 𝑋. An n-tuple of preference 

orders generates a preference profile 𝒫 = (𝑃1, … , 𝑃𝑛) ∈ ℒ(𝑋)
𝑛. 

Within this model, the names of voters (anonymity) and names of alternatives (neutrality) 

do not matter. An anonymous and neutral equivalence class (ANEC) is a set of preference 

profiles that can be obtained from each other by permuting preference orders and renaming 

alternatives. The permutation of preference orders is denoted by 𝜎:𝒩 → 𝒩, and the permutation 

of alternatives is denoted by 𝜏: 𝑋 → 𝑋. The image of profile 𝒫 under permutations 𝜎, 𝜏 is denoted 

by (𝒫𝜎)𝜏. Preference profiles 𝒫,𝒫′ belong to the same ANEC if and only if there are 

permutations 𝜎:𝒩 → 𝒩, 𝜏: 𝑋 → 𝑋, such that (𝒫𝜎)𝜏 = 𝒫′. This relation, which is symmetrical, is 

denoted as 𝒫 ∼𝐴𝑁𝐸𝐶 𝒫′. The complementary binary relation is denoted as ≁𝐴𝑁𝐸𝐶. The function 

𝑝𝑜𝑠(𝑃𝑖, 𝑗) = |{𝑥 ∈ 𝑋|𝑥𝑃𝑖𝑗}| + 1 indicates the position of candidate 𝑗 in preference profile 𝑃𝑖. 

We use the following rounding functions: 

⌊𝑥⌋ is rounding down to the nearest integer, 

⌈𝑥⌉ is rounding up to the nearest integer, and 

𝑅𝑜𝑢𝑛𝑑[𝑥] is rounding down if the fractional part is less than 0.5 and rounding up if the 

fractional part is greater than or equal to 0.5. 

 

 

2.1 ANEC enumeration problem 

 

The ANEC enumeration problem was solved (Egecioglu 2009; Egecioglu, Giritgil 2013). 

To state the authors’ results, we need some notation from their papers. A partition 𝜆 of an integer 

𝑛 is a weakly decreasing sequence of nonnegative integers 𝜆 = (𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑘) with 

𝑛 = 𝜆1 + 𝜆2 +⋯+ 𝜆𝑛. Each of the integers 𝜆𝑖 > 0 is called a part of 𝑛. For example, 𝜆 =
(3,2,2) is a partition of 𝑛 = 7 into three parts. It has two parts of size two and one part of size 
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three. If 𝜆 is a partition of n, then this is denoted by 𝜆 ⊢ 𝑛. Each partition of 𝑛 has a type denoted 

by the symbol 1𝛼12𝛼2⋯𝑛𝛼𝑛 , which signifies that 𝜆 has 𝛼𝑖 parts of size 𝑖 for 1 ≤ 𝑖 ≤ 𝑛. 𝜆 For 

example, the type of 𝜆 = (3,2,2) is 10223140506070. We can omit the zeros that appear as 

exponents and write the type of 𝜆 as 2231. 

Let 𝑝𝑘(𝑛) be the number of partitions of 𝑛 with exactly 𝑘 parts. It is also the number of 

partitions of 𝑛 in which the largest part has size 𝑘 (Stanley 2012). Let 𝑝𝑘,𝑙(𝑛) be the number of 

partitions with k parts, each of which does not exceed 𝑙. It is convenient to use the following 

formulas: 

𝑝𝑘,𝑙(𝑛) = ∑ 𝑝𝑘−1,𝑚𝑖𝑛{𝑙,𝑛−2𝑖}(𝑛 − 𝑖)
⌊
𝑛

𝑘
⌋

𝑖=1
                        (1) 

For 𝑘 = 2 and 𝑛 − 1 ≥ 𝑙 ≥ 𝑛/2, we have: 

𝑝2,𝑙(𝑛) = 𝑙 − ⌊
𝑛−1

2
⌋                                             (2) 

A permutation 𝜎 of [𝑛] defines a partition of 𝑛 where the parts of the partition are the 

cycle lengths in the cycle decomposition of 𝜎. The cycle type of 𝜎 is defined as the type of the 

resulting partition. For example, 𝜎 = (142)(35)(67) has cycle type 2231. For any 𝜆 ⊢ 𝑛 of type 

1𝛼12𝛼2⋯𝑛𝛼𝑛, define a number:  

𝑧𝜆 = 1
𝛼12𝛼2⋯𝑛𝛼𝑛𝛼1! 𝛼2! ⋯𝛼𝑛!.                          (3) 

The number of permutations of cycle type 1𝛼12𝛼2⋯𝑛𝛼𝑛 is given by 𝑧𝜆
−1𝑛! where 𝜆 is the 

partition of cycle lengths of 𝜎. 

 

Proposition 1. (Egecioglu 2009) For 𝑛 voters and 𝑚 alternatives, the number of ANECs is equal 

to  

#𝐴𝑁𝐸𝐶(𝑚, 𝑛) = ∑ 𝑧𝜆
−1 (

𝑛

𝑑
+
𝑚!

𝑑
− 1

𝑚!

𝑑
− 1

)𝜆⊢𝑚 ,                              (4) 

where 𝑑 = 𝑑(𝜆) = 𝐿𝐶𝑀(𝜆), 𝑧𝜆 is defined in formula (2) and (
𝑥
𝑘
) = {

𝑥!

𝑘!(𝑥−𝑘)!
 𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
   

 

#𝐴𝑁𝐸𝐶(𝑚, 𝑛) is a polynomial in n of degree 𝑚! − 1. Veselova (2016) compared 

#𝐴𝑁𝐸𝐶(𝑚, 𝑛) with #𝐴𝐸𝐶(𝑚, 𝑛) and #𝐸𝐶(𝑚, 𝑛) and explored their asymptotic properties. 

Asymptotically, the IANC, IAC and IC models leads to the same results. IAC and IC models are 

applicable for the equiprobable generation of preference profiles and simulation studies. In our 

model we do not make simulations. The neutrality property is needed for defining voting 

situations. Neutrality also clarifies combinatorial structures, which arise in this paper. 

A preference profile 𝒫′ is the reversal of preference profile 𝒫 if (∀𝑥 ∈ 𝑋, ∀𝑖 ∈ 𝒩, 

𝑝𝑜𝑠(𝑃𝑖, 𝑥) = 𝑚 + 1 − 𝑝𝑜𝑠(𝑃′𝑖 , 𝑥)). This type of symmetry was studied by Saari (1999), Saari, 

Barney (2003) and Crisman (2014). 

An ANEC is self-symmetric if for every 𝒫 from the ANEC, the reverse profile 𝒫′ 

belongs to the same ANEC. A pair of ANECs is reverse symmetric if for every 𝒫 from one 

ANEC, the reverse profile 𝒫′ belongs to the other ANEC. 

Considering symmetric ANECs as equivalent, we obtain a set of reverse invariant 

ANECs (RIANECs) and binary relation ∼𝑅𝐼𝐴𝑁𝐸𝐶, which contains ∼𝐴𝑁𝐸𝐶. 
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2.1. Three alternatives case 

 

This section introduces two new representations of preference profiles. These 

representations reveal the internal structure of preference profiles and enable us to calculate the 

number of RIANECs and SSANECs. 

 

Definition 1. Multigraph representation of preference profile. Having 3 alternatives as 

vertices of a graph, for each preference order in the profile, we define an arc from the best 

alternative to the worst alternative. 

 

Multigraph representation is anonymous and neutral. The renaming of alternatives leads 

to graph isomorphism. The corresponding multigraph uniquely represents a preference profile. 

Table 1 contains several examples of the multigraph representation of preference profiles. 

 #𝐴𝑁𝐸𝐶(3, 𝑛) is also the number of multigraphs with 3 nodes and n arcs (it is the A037240 

sequence in the on-line encyclopedia of integer sequences, published electronically at 

http://oeis.org; henceforth OEIS). In the 3 alternatives case, formula (4) leads to: 

#𝐴𝑁𝐸𝐶(3, 𝑛) =

{
 
 
 

 
 
 
1

6
(
𝑛 + 5
5

) +
1

16
(𝑛 + 4)(𝑛 + 2) +

1

9
(𝑛 + 3), if 𝑛 ≡ 0 (𝑚𝑜𝑑 6); 

1

6
(
𝑛 + 5
5

) , if 𝑛 ≡ (1 𝑜𝑟 5)(𝑚𝑜𝑑 6);

1

6
(
𝑛 + 5
5

) +
1

16
(𝑛 + 4)(𝑛 + 2), if 𝑛 ≡ (2 𝑜𝑟 4)(𝑚𝑜𝑑 6);

1

6
(
𝑛 + 5
5

) +
1

9
(𝑛 + 3), if 𝑛 ≡ 3 (𝑚𝑜𝑑 6).

       (5) 

For 𝑚 = 3, there are six different preference orders presented. Defining residues modulo 

6, we numerate preference orders from 0 to 5 in clockwise manner: 

𝑃0 = (
𝑎
𝑏
𝑐
), 𝑃1 = (

𝑎
𝑐
𝑏
), 𝑃2 = (

𝑐
𝑎
𝑏
), 𝑃3 = (

𝑐
𝑏
𝑎
), 𝑃4 = (

𝑏
𝑐
𝑎
), 𝑃5 = (

𝑏
𝑎
𝑐
).                (6) 

Each subsequent preference order is obtained from the previous preference order by one 

pairwise swap of consecutive alternatives. The next nearest preference order is obtained by two 

swaps. The highest number of swaps is three, which leads to preference order reversal. Putting 

preference orders on a loop we obtain a circle representation of preference orders, which is 

presented in Figure 1. 

 

 
Figure 1. Circle representation of preference orders. 

 

𝑎
𝑏
𝑐

 

𝑎
𝑐
𝑏

 

𝑐
𝑎
𝑏

 

𝑐
𝑏
𝑎

 

𝑏
𝑐
𝑎

 

𝑏
𝑎
𝑐

 

http://oeis.org/
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A preference profile is a string of n preference orders, each of 6 possible types 𝑃0, 𝑃1, 𝑃2, 

𝑃3, 𝑃4, 𝑃5. By anonymity, the order of preference orders does not matter. Only the number of 

different preference orders matters. Neutrality links different preference orders in the cycle 

structure depicted in Figure 1. 

Permutating (renaming) one pair of alternatives (one or three swaps in a preference order) 

leads to a preference order circle turnover. There are 3 possible pairs and 3 axes that divide the 

circle into halves. Two possibilities of permutating (renaming) three alternatives (two swaps in a 

preference order) leads to the preference order circle rotating on 2 preference orders in a 

clockwise or counterclockwise manner. The circle representation of preference orders is applied 

for the Kemeny rule analysis further in the paper. 

Neutrality, anonymity and reverse invariance leads to a simpler representation of 

preference profiles. Instead of using 6 types of preference orders (letters) in the standard 

representation of preference profiles, we can use only 2 types of letters. Because we apply the 

cycle structure of a string, taking all rotations and turnovers as equivalent, we call the new object 

a bracelet (term is borrowed from combinatorics theory). For demonstration purposes we provide 

a definition using beads of two colors. It is possible to rewrite definition in terms of string with 

two types of letters. 

 

Definition 2. Bracelet representation of preference profiles. According to the circle 

representation of preference orders (Formula (6) and Figure 1), we numerate preference orders 

from 0 to 5 in a clockwise manner. Every preference order in a profile is represented by a black 

bead. The space between preference orders in the circle representation of preference orders is 

represented by a white bead. A preference profile is a bracelet with 𝑛 + 6 beads, where exactly 6 

beads are white. We take 𝑛0 black beads, where 𝑛0 is the number of type 0 preference orders, 

then one white bead, then 𝑛1 black beads, where 𝑛1 is the number of type 1 preference orders, 

etc. Adding a white bead between 𝑛5 black beads, where 𝑛5 is the number of type 5 preference 

orders, and 𝑛0 black beads, where 𝑛0 is the number of type 0 preference orders, we complete the 

bracelet. 

 

Table 1 contains examples of the bracelet representation of preference profiles. The 

starting point of the circle representation of preference orders and the numbering (clockwise or 

counterclockwise) do not matter. In each case, we obtain equivalent bracelets. The bracelet 

representation of preference profiles is anonymous, neutral and reverse invariant. 

Permutating one pair of alternatives (one or three swaps in a preference order) leads to 

bracelet turnover. Two possibilities of permutating three alternatives (two swaps in a preference 

order) leads to preference order bracelet rotation. Reversing a preference profile leads to a 

rotation on 3 preference orders in a clockwise manner. 

For 𝑛 = 𝑚 = 3, we have #𝐴𝑁𝐸𝐶(3,3) = 10. According to Table 1, in the case of 3 

alternatives and 3 agents, there are 10 different multigraphs and 7 different bracelets representing 

10 ANECs (preference profiles represented different ANECS and numbering of ANECs are 

borrowed from (Karpov 2017)). Some ANECs have equivalent bracelet representations. These 

ANECs belong to the same RIANEC. For example, preference profiles 𝒫2 and 𝒫3 are reverse 

symmetric and bracelets generated by these preference profiles are equivalent. 
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Table 1. 3 agents and 3 alternatives case. List of ANECs. Multigraph and bracelet 

representations of preference profiles. 

Number ANEC 
Multigraph 

representation 
Bracelet representation 

𝒫1 

𝑎 𝑎 𝑎
𝑏 𝑏 𝑏
𝑐 𝑐 𝑐

 

  

𝒫2 

𝑎 𝑎 𝑎
𝑏 𝑏 𝑐
𝑐 𝑐 𝑏

 

  

𝒫3 
𝑎 𝑎 𝑏
𝑏 𝑏 𝑎
𝑐 𝑐 𝑐

 

  

𝒫4 

𝑎 𝑎 𝑐
𝑏 𝑏 𝑎
𝑐 𝑐 𝑏

 

  

𝒫5 
𝑎 𝑎 𝑏
𝑏 𝑏 𝑐
𝑐 𝑐 𝑎

 

  

𝒫6 

𝑎 𝑎 𝑐
𝑏 𝑏 𝑏
𝑐 𝑐 𝑎

 

  

𝒫7 
𝑎 𝑎 𝑏
𝑏 𝑐 𝑎
𝑐 𝑏 𝑐
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𝒫8 
𝑎 𝑎 𝑏
𝑏 𝑐 𝑐
𝑐 𝑏 𝑎

 

  

𝒫9 
𝑎 𝑏 𝑐
𝑏 𝑎 𝑎
𝑐 𝑐 𝑏

 

  

𝒫10 
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏

 

  
 

Every (𝑛 + 6)-bead bracelet (turnover invariant) with 6 white beads corresponds to a 

RIANEC. Vladimir Shevelev (A005513 in OEIS) proved the formula for the number of such 

bracelets. Thus, we have proposition 2. 

 

Proposition 2. (Vladimir Shevelev, A005513 in OEIS). For 𝑚 = 3, the number of reverse 

invariant ANECs is equal to  

#𝑅𝐼𝐴𝑁𝐸𝐶(3, 𝑛) =

{
 
 
 

 
 
 

1

12
(
𝑛 + 5
5

) +
1

96
(𝑛 + 7)(𝑛 + 4)(𝑛 + 2) +

1

18
(𝑛 + 6), if 𝑛 ≡ 0 (𝑚𝑜𝑑 6); 

1

12
(
𝑛 + 5
5

) +
1

96
(𝑛 + 5)(𝑛 + 3)(𝑛 + 1), if 𝑛 ≡ (1 𝑜𝑟5) (𝑚𝑜𝑑 6);

1

12
(
𝑛 + 5
5

) +
1

96
(𝑛 + 7)(𝑛 + 4)(𝑛 + 2), if 𝑛 ≡ (2 𝑜𝑟 4)(𝑚𝑜𝑑 6);

1

12
(
𝑛 + 5
5

) +
1

96
(𝑛 + 5)(𝑛 + 3)(𝑛 + 1) +

1

18
(𝑛 + 6) −

1

6
, if 𝑛 ≡ 3(𝑚𝑜𝑑 6).

(7) 

 

This sequence arises in several enumeration problems. To the best of the author's 

knowledge, Hoskins and Penfold Street (1982), who studied the geometry of fabrics, were the 

first with this sequence. 

All ANECs are either self-symmetric or have reverse symmetric ANECs. Thus, the 

number of SSANECs is equal to 2#𝑅𝐼𝐴𝑁𝐸𝐶(3, 𝑛) − #𝐴𝑁𝐸𝐶(3, 𝑛), which leads to proposition 

3. 

 

Proposition 3. For 𝑚 = 3, the number of self-symmetric ANECs is equal to 

#𝑆𝑆𝐴𝑁𝐸𝐶(3, 𝑛) = {
⌈
1

48
(𝑛 + 4)2(𝑛 + 2)⌉ , if 𝑛 is even; 

1

48
(𝑛 + 5)(𝑛 + 3)(𝑛 + 1), if 𝑛 is odd.

                        (8) 
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The number of SSANECs is relatively small, with 𝑙𝑖𝑚𝑛→∞
#𝑆𝑆𝐴𝑁𝐸𝐶(3,𝑛)

#𝐴𝑁𝐸𝐶(3,𝑛)
= 0 and 

𝑙𝑖𝑚𝑛→∞
#𝑅𝐼𝐴𝑁𝐸𝐶(3,𝑛)

#𝐴𝑁𝐸𝐶(3,𝑛)
=

1

2
. Almost all ANECs have their own symmetric ANEC. Appendix 2 

contains a table with #𝐴𝑁𝐸𝐶(3, 𝑛), #𝑅𝐼𝐴𝑁𝐸𝐶(3, 𝑛) and #𝑆𝑆𝐴𝑁𝐸𝐶(3, 𝑛). 
 

 

3. Voting situations induced by voting rules 

 

Different voting rules utilize different information from preference profiles and 

distinguish different numbers of voting situations. By a voting situation, we mean a class of 

ANECs that are indiscernible, having information obtained from a procedure. 

For example, for the plurality rule, only the top alternative in each preference order 

matters. For the case of 3 agents and 3 alternatives, we have only three types of voting situations 

described by the top alternatives up to renaming alternatives: (𝑎, 𝑎, 𝑎), (𝑎, 𝑎, 𝑏), and (𝑎, 𝑏, 𝑐). 

From information that is utilized by the plurality rule, we do not distinguish 𝒫1 from 𝒫2. For the 

case of 3 agents and 3 alternatives, the plurality rule partitions the set of ANECs into three parts: 

(𝒫1, 𝒫2), (𝒫3, 𝒫4, 𝒫5, 𝒫6, 𝒫7, 𝒫8), and (𝒫9, 𝒫10). We have three anonymous and neutral 

equivalent classes of preference profiles (voting situations) generated by the plurality rule. It is 

important to note that we do not find the result of a voting rule and do not distinguish preference 

profiles by the final choice. We consider only anonymous and neutral voting situations. 

For the case of 4 agents and 3 alternatives, we have only three types of voting situations 

described by top alternatives: (𝑎, 𝑎, 𝑎, 𝑎), (𝑎, 𝑎, 𝑎, 𝑏), and (𝑎, 𝑎, 𝑏, 𝑐). The run-off rule utilizes 

more information than the plurality rule. In this case, we have four voting situations described by 

the first-best and the second-best alternatives 

(𝑎, 𝑎, 𝑎, 𝑎), (𝑎, 𝑎, 𝑎, 𝑏), (
𝑎, 𝑎, 𝑏, 𝑐
? , ? , ? , 𝑏

), (
𝑎, 𝑎, 𝑏, 𝑐
? , ? , ? , 𝑎

). 

In the last two voting situations, the partition of votes in the second round of the run-off 

procedure would be different. For the case of 3 agents and 3 alternatives, the run-off rule 

partitions the set of ANECs into three parts: (𝒫1, 𝒫2), (𝒫3, 𝒫4, 𝒫5, 𝒫6, 𝒫7, 𝒫8), and (𝒫9, 𝒫10), 

which is equivalent to the plurality rule. 𝒫9, 𝒫10 are equivalent because of the equivalence of the 

partition of votes in the first and second rounds. 

#𝑅𝑢𝑙𝑒(𝑚, 𝑛) is the number of anonymous and neutral equivalent voting situations 

induced by a rule. For the case of 3 agents and 3 alternatives, we have #𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(3,3) =

#𝑅𝑢𝑛_𝑜𝑓𝑓(3,3) = 3. #𝑅𝑢𝑙𝑒(𝑚, 𝑛) does not exceed #𝐴𝑁𝐸𝐶(𝑚, 𝑛). In the case of 

#𝑅𝑢𝑙𝑒(𝑚, 𝑛) = #𝐴𝑁𝐸𝐶(𝑚, 𝑛), we can unambiguously reconstruct the ANEC from a voting 

situation. In other cases, that reconstruction is impossible. 

The information utilization index of a rule is defined as follows: 

𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) =
#𝑅𝑢𝑙𝑒(𝑚,𝑛)−1

#𝐴𝑁𝐸𝐶(𝑚,𝑛)−1
.                                                   (9) 

The higher the information utilization index, the more information about the preference 

profile we have from a voting situation.  𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) = 1 corresponds to the full discernibility 

power of a voting rule. 

If for each preference profile, its reversal belongs to the same voting situation, then a 

voting rule satisfies the informational reversal symmetry property. The Kemeny rule satisfies the 

informational reversal symmetry property, but the Borda rule does not. Our property differs from 

the reversal symmetry property (Saari 1999; Saari, Barney 2003; Crisman 2014) in social choice 

theory, which requires the invariance of the social choice function outcome. Apart from the 
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Kemeny rule, the Borda rule also satisfies the reversal symmetry property from social choice. 

For voting rules that satisfy the informational reversal symmetry property, #𝑅𝑢𝑙𝑒(𝑚, 𝑛) does not 

exceed #𝑅𝐼𝐴𝑁𝐸𝐶(𝑚, 𝑛). In such cases, it is reasonable to calculate the reverse invariant 

information utilization index: 

𝐼𝑅𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) =
#𝑅𝑢𝑙𝑒(𝑚,𝑛)−1

#𝑅𝐼𝐴𝑁𝐸𝐶(𝑚,𝑛)−1
.                                                   (10) 

Using 𝐼𝑅𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) instead of 𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) matters only for small 𝑛. For large 𝑛, we 

have lim𝑛→∞ 𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) = lim𝑛→∞ 2𝐼
𝑅𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛), but for the considered rules cases, 

lim𝑛→∞ 𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) = 0. Although not true for all rules, 𝐼(𝑅𝑢𝑙𝑒,𝑚, 𝑛) has a polynomial form 

on 𝑛 for many rules, and it is convenient to distinguish rules by the polynomial degree of 

#𝑅𝑢𝑙𝑒(𝑚, 𝑛) on 𝑛. In the case of 𝑚 = 3, there are 6 classes with degrees from 0 to 5. 

Strong discernibility is an important property in preference diversity measurement. It has 

been proven that in some classes of preference diversity indices, there is no function that satisfies 

strong discernibility (Hashemy, Endriss 2014) and reverse invariant discernibility (Karpov 

2017). Some voting rules utilize the same information as preference diversity indices and fail to 

achieve strong or reverse invariant discernibility. 

In the following subsections, the number of voting situations induced by the plurality 

rule, the run-off rule, the Kemeny rule, the Borda rule, and the scoring rules in extreme cases are 

calculated. 

 

 

3.1 The plurality rule 

 

The plurality rule compares alternatives by the number of preference orders where an 

alternative occupies the top position. The plurality rule utilizes information about the partition of 

top choices. This partition has from 1 to 𝑚 parts, which leads to proposition 4.  

 

Proposition 4. The number of voting situations induced by the plurality rule is equal to  

#𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(𝑚, 𝑛) = ∑ 𝑝𝑖(𝑛)
𝑚
𝑖=1 .                              (11) 

 

#𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(3, 𝑛) is also the number of multigraphs with 3 nodes and n edges. For each 

preference order in the profile, we define an edge connecting the worst alternative and the 

second worst alternative. Because for all 𝑘 > 𝑛, we have 𝑝𝑘(𝑛) = 0, then for each 𝑛, the 

sequence #𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(𝑖, 𝑛) has an upper bound. 

 

Corollary 1. (A001399, OEIS). For 𝑚 = 3, the number of equivalent classes generated by the 

plurality rule is equal to  

#𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(3, 𝑛) = 𝑟𝑜𝑢𝑛𝑑 [
1

12
(𝑛 + 3)2].                               (12) 

Note that ties in rounding in this formula never arise. 

 

The values of #𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(3, 𝑛) and the number of voting situations induced by other 

rules are given in Appendix 2. 

 

 

 



12 
 

3.2 The run-off rule 

 

The run-off rule has two rounds. In the first round, the plurality rule is used, and if there 

is an absolute majority winner, then the procedure terminates. If not, then the two alternatives 

with the highest number of votes are promoted to the next round. In the second round, the 

alternative with the higher number of votes wins. 

The run-off rule utilizes information about the partition of voters’ top choices and the 

partition of votes between the two alternatives with the highest number of plurality votes if there 

is no absolute majority winner in the first round. 

For the 3 alternatives and 3 agents case, we have the following voting situations (ANECs 

and corresponding partitions of the top choices and partition of votes in the second round): 

𝒫1, 𝒫2: (3,0,0); 
𝒫3, 𝒫4, 𝒫5, 𝒫6, 𝒫7, 𝒫8: (2,1,0); 

𝒫9, 𝒫10: (1,1,1), (2,1). 

If the two alternatives with the highest number of votes in the first round have different 

numbers of votes, then we differentiate situations when there is the same winner in the second 

round, and when the second winner differs from the first round winner. For example, voting 

situation with partitions (11,10,9), (16,14) and (11,10,9), (14,16) are different. 

 

Proposition 5. The number of voting situations induced by the run-off rule is equal to  

#𝑅𝑢𝑛_𝑜𝑓𝑓(𝑚, 𝑛) = ⌈
𝑛+1

2
⌉ + ∑ [∑ 𝑝𝑖−1 (⌈

𝑛

2
⌉ − 𝑗)

⌊
𝑛

2
⌋

𝑗=1
+ ∑ (𝑝𝑖−2,𝑗(𝑛 − 2𝑗) (⌈

𝑛+1

2
⌉ − j) +

⌊
𝑛

2
⌋

𝑗=⌈
𝑛

𝑖
⌉

𝑚
𝑖=3

∑ (𝑛 + 1 −max(𝜆) − j)𝜆⊢𝑛−𝑗,
𝑖−1,𝑗−1

)],                     (13) 

where ∑𝜆⊢𝑛−𝑗,
𝑖−1,𝑗−1

 is the sum over all partitions of 𝑛 − 𝑗 with 𝑖 − 1 parts, each part does not 

exceed 𝑗 − 1, and 𝑚𝑎𝑥 (𝜆) is the highest element of partition 𝜆. 

 

Corollary 2. For 𝑚 = 3, the number of voting situations induced by the run-off rule is equal to  

#𝑅𝑢𝑛_𝑜𝑓𝑓(3, 𝑛) =

{
 
 
 
 
 
 

 
 
 
 
 
 ⌈

1

1728
(7𝑛3 + 192𝑛2 + 1008𝑛 + 1088)⌉ , 𝑖𝑓 𝑛 ≡ (0 𝑜𝑟 4) (𝑚𝑜𝑑 12);

⌈
1

1728
(7𝑛3 + 165𝑛2 + 729𝑛 + 827)⌉ , 𝑖𝑓 𝑛 ≡ (1 𝑜𝑟 9) (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 192𝑛2 + 804𝑛 + 1024), 𝑖𝑓 𝑛 ≡ 2 (𝑚𝑜𝑑 12);

⌈
1

1728
(7𝑛3 + 165𝑛2 + 837𝑛 + 935)⌉ , 𝑖𝑓 𝑛 ≡ (3 𝑜𝑟 7) (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 633𝑛 + 475), 𝑖𝑓 𝑛 ≡ 5 (𝑚𝑜𝑑 12);

⌈
1

1728
(7𝑛3 + 192𝑛2 + 900𝑛 + 1088)⌉ , 𝑖𝑓 𝑛 ≡ (6 𝑜𝑟 10) (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 192𝑛2 + 912𝑛 + 1024), 𝑖𝑓 𝑛 ≡ 8 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 741𝑛 + 583), 𝑖𝑓 𝑛 ≡ 11 (𝑚𝑜𝑑 12).

  (14) 

 

The proof for Proposition 5, Corollary 2 and subsequent propositions are given in  

Appendix 1. For m = 3, the run-off rule coincides with the alternative vote method (the single 

transferable vote). 
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The main difference in the number of voting situations is between even and odd 𝑛, but 

divisibility by 3 and 4 also matters. The function #𝑅𝑢𝑛_𝑜𝑓𝑓(3, 𝑛) is not monotone on 𝑛. We 

have relatively more voting situations for even 𝑛. 

For small 𝑛, the function #𝑅𝑢𝑛_𝑜𝑓𝑓(3, 𝑛) is close to #𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(3, 𝑛). For example, 

#𝑅𝑢𝑛_𝑜𝑓𝑓(3,5) = 5 and #𝑃𝑙𝑢𝑟𝑎𝑙𝑖𝑡𝑦(3,5) = 5. The reason is that almost all the partitions for 

top choices lead to an absolute majority winner. Only if the highest part of the partition is greater 

than or equal to ⌈
𝑛

3
⌉ and less than or equal to ⌊

𝑛

2
⌋ do we have the second round. There are 

approximately 
𝑛

6
 ways to define the highest part of the partition, for which we have the second 

round. 

 

 

3.4 The Borda rule 

 

The Borda rule is a scoring rule in which the worst alternative has a score of 0, and the 

best alternative has a score of 𝑚 − 1. The Borda rule utilizes information only about the sum of 

scores for each alternative. 

For the 3 alternatives and 3 agents case, we have the following voting situations (ANECs 

and corresponding sums of scores vector in decreasing order): 

𝒫1: (
6
3
0
); 𝒫2: (

6
2
1
); 𝒫3: (

5
4
0
); 𝒫4: (

5
2
2
); 𝒫5: (

4
4
1
); 𝒫6, 𝒫8, 𝒫9: (

4
3
2
); 𝒫7: (

5
3
1
); 𝒫10: (

3
3
3
). 

Voting situations correspond to different partitions of the sum of the scores. 

 

Proposition 6. For 𝑚 = 3 and 𝑛 ≥ 2, the number of voting situations induced by the Borda rule 

is equal to  

#𝐵𝑜𝑟𝑑𝑎(3, 𝑛) = ⌈
1

2
(𝑛 + 1)2⌉.                                (15) 

 

 

3.3.The Kemeny rule 

 

The Kemeny rule uses the swap distance between preference orders (the number of 

pairwise swaps of consecutive alternatives that is needed to transform one order into another). 

Having the bracelet representation of preference profiles (Figure 1), we obtain a circle of 

distances from order 𝑃0 (Figure 2). The circles of distances from other preference orders can be 

obtained by rotating the circle of distances from figure 2. 

 

 
Figure 2. Circle of distances from order 𝑃0. 

 

Permutating one pair of alternatives (one or three swaps in a preference order) leads to 

the turnover of the circle in Figure 2. Two possibilities of permutating three alternatives (two 

0  

1  

2  

3  

2  

1  
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swaps in the preference order) leads to the circle rotating. Reversing the preference profile leads 

to the circle rotating on 3 preference orders in a clockwise manner. 

The Kemeny rule finds the order with the lowest sum of swap distances from the order to 

all orders in the preference profile. The Kemeny rule utilizes information only about the sums of 

swap distances between the preference profile and different preference orders. 

For the 3 alternatives and 3 agents case, we have the following voting situations (ANECs 

and the corresponding sums of distances in the circle form, which is invariant up to rotating and 

turnover): 

𝑃0: −0 − 3 − 6 − 9 − 6 − 3 −; 

𝑃2, 𝑃3: −1 − 2 − 5 − 8 − 7 − 4 −; 

𝑃4, 𝑃5: −2 − 3 − 4 − 7 − 6 − 5 −; 

𝑃6, 𝑃8, 𝑃9: −3 − 4 − 5 − 6 − 5 − 4 −; 

𝑃7: −2 − 3 − 6 − 8 − 6 − 3 −; 

𝑃10: −4 − 5 − 4 − 5 − 4 − 5 −. 

 

Proposition 7. For 𝑚 = 3, the number of voting situations induced by the Kemeny rule is equal 

to  

#𝐾𝑒𝑚𝑒𝑛𝑦(3, 𝑛) = {
⌈
1

72
(4𝑛3 + 21𝑛2 + 54𝑛 + 56)⌉ , if 𝑛 is even; 

⌈
1

72
(4𝑛3 + 21𝑛2 + 36𝑛 + 11)⌉ , if 𝑛 is odd.

                   (16) 

 

The Kemeny rule is more complicated and has a higher information utilization index than 

the rules above. Bartholdi, Tovey, and Trick (1989) showed that determining the optimal 

Kemeny ranking in an election is NP-hard. Hemaspaandra et al. (2005) provided a stronger 

bound of computational complexity of the Kemeny rule. Zwicker (2018) introduced a 

generalization of Kemeny’s voting rule. Special cases of this generalization include the Borda 

rule and plurality voting, which are computationally tractable. Zwicker (2018) showed that 

computational complexity of the Kemeny rule arises from the cyclic part in the fundamental 

decomposition of a weighted tournament into cyclic and co-cyclic components. This cyclic part 

is associated with the Condorcet paradox. 

 

 

3.4  The discernibility potential of the scoring rules 

 

The scoring rules utilize information only about the sum of scores for each alternative. In 

an extreme case of irrational scores (e.g., for 𝑚 = 3 scores 0, 1, √2), each combination of the 

scores (e.g., for 𝑚 = 3, 𝑛 = 5 scores 0, 0,1, √2, √2) leads to a unique sum of scores (1 + 2√2 in 

our example). In this case, we can unambiguously derive the combination of scores from the sum 

of the score vector. In other words, we can derive the scoring matrix (the scorix in the 

terminology of Pérez-Fernández and De Baets (2017)). The element at the i-th row and j-th 

column of this matrix equals the number of times that the i-th candidate is ranked at the j-th 

position 

𝑎𝑖𝑗 = |{𝑘|𝑝𝑜𝑠(𝑃𝑘, 𝑖) = 𝑗}|.                                  (17) 

The scoring matrix is used not only for scoring rules but also for other voting rules, e.g., for the 

threshold rule (Aleskerov, Chistyakov, Kalyagin 2010), and the rank-dependent scoring rules 

(Goldsmith et al 2016). This matrix was investigated in pure mathematics in (MacMahon 1918), 
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where we find 10 scoring matrices for the 3 alternatives and 3 agents case, which corresponds to 

the voting situations (ANECs and corresponding scoring matrices): 

𝒫1: (
3 0 0
0 3 0
0 0 3

); 𝒫2: (
3 0 0
0 2 1
0 1 2

); 𝒫3: (
2 1 0
1 2 0
0 0 3

); 𝒫4: (
2 1 0
0 2 1
1 0 2

); 𝒫5: (
2 0 1
1 2 0
0 1 2

);  

𝒫6: (
2 0 1
0 3 0
1 0 2

); 𝒫7: (
2 1 0
1 1 1
0 1 2

); 𝒫8: (
2 0 1
1 1 1
0 2 1

);  𝒫9: (
1 2 0
1 1 1
1 0 2

); 𝒫10: (
1 1 1
1 1 1
1 1 1

). 

From the generating function in (A257464 in OEIS) and the author’s calculations, we 

derive Proposition 8. 

 

Proposition 8. For 𝑚 = 3, the number of voting situations induced by the scoring rules in the 

extreme case is equal to  

#𝑆𝑐𝑜𝑟𝑖𝑛𝑔(3, 𝑛) = {
⌈
1

48
(𝑛4 + 6𝑛3 + 18𝑛2 + 36𝑛 + 32)⌉ , if 𝑛 is even; 

⌈
1

48
(𝑛4 + 6𝑛3 + 18𝑛2 + 18𝑛 + 5)⌉ , if 𝑛 is odd.

.           (18) 

 

MacMahon (1918) contains series for higher 𝑚. In the extreme case, the scoring rule has 

a higher degree polynomial on 𝑛 than the other scoring rules considered in this paper (the 

plurality rule and the Borda rule). For 𝑚 = 3, the simplest example of indiscernibility is: 

𝒫̂ = (
𝑎 𝑎 𝑏 𝑐
𝑏 𝑏 𝑐 𝑎
𝑐 𝑐 𝑎 𝑏

); 𝒫̃ = (
𝑎 𝑎 𝑏 𝑐
𝑏 𝑐 𝑎 𝑏
𝑐 𝑏 𝑐 𝑎

). 

𝒫̂ and 𝒫̃ belong to different ANECs. The last three preference orders are different in 

different preference profiles, but they have the same scoring matrix. These preference orders 

represent different versions of the Condorcet cycle. Having the scoring matrix, it is impossible to 

reconstruct ANEC. For small 𝑛, there is a small number of such situations, but for big 𝑛 the vast 

majority of ANECs have such indiscernibility. 

 

 

4. Conclusion 

 

Appendix 2 contains a table with the number of ANECs, the number of voting situations, 

the polynomial degree and the information utilization index for the above-mentioned rules for 

the 3 alternatives case. 

Only the run-off rule has a non-monotonic function of the number of voting situations. It 

has a smaller number of voting situations in the case of an odd 𝑛. There are two reasons for this 

phenomenon. First, in the case of an odd 𝑛, the absolute majority in the first round arises more 

frequently. Second, in the second round, the number of partitions for even and odd consecutive 

numbers are equal. The additional voter in the case of an odd 𝑛 does not add additional partitions 

in the second round. 

All other rules induce monotonic functions of the number of voting situations. The 

plurality rule has the lowest number of voting situations. It is the simplest rule, and the 

information utilization index reflects this. The scoring rules in the extreme case have the highest 

number of voting situations. For the other rules, the highest information utilization index occurs 

with the Kemeny rule, which is more complicated in comparison with the other rules. 
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The number of voting situations induced by the plurality and Borda rules is represented 

by a polynomial in n of degree 2. At the limit, the number of voting situations induced by the 

Borda rule is 6 times higher than the number of voting situations induced by the plurality rule. 

The number of voting situations induced by the run-off and Kemeny rules is represented by a 

polynomial in n of degree 3. At the limit, the number of voting situations induced by the Kemeny 

rule is 13.7 times higher than the number of voting situations induced by the run-off rule. 

For 𝑛 ≤ 97, the Borda rule outreaches the run-off rule for the number of voting 

situations, but for 𝑛 ≥ 102, we have the reverse order. The reason is that for small 𝑛, the number 

of voting situations with the second round is relatively small, and the run-off rule behaves close 

to the plurality rule, which has a degree 2 polynomial. 

Strong discernibility arises only three times in the class of scoring rules: 

 𝐼(𝑆𝑐𝑜𝑟𝑖𝑛𝑔, 3,2) = 𝐼(𝑆𝑐𝑜𝑟𝑖𝑛𝑔, 3,3) = 𝐼(𝐵𝑜𝑟𝑑𝑎, 3,2) = 1. In other cases, it is impossible to 

reconstruct the ANEC from the voting situation. The information utilization index decreases 

relatively rapidly for all of the above-mentioned rules, except for the scoring rule in the extreme 

case. A general comparison of a higher number of voting rules is the goal for the future research. 
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Appendix 1. 

 

Proof of proposition 5. We have 1 + 𝑝2(𝑛) partitions of top choices with 1 or 2 parts. In this 

case, there is no second round, or the second round does not add new information. Let 𝑖 be the 

number of parts in a partition of top choices; then, ∑ 𝑝𝑖−1 (⌈
𝑛

2
⌉ − 𝑗)

⌊
𝑛

2
⌋

𝑗=1
 is the number of partitions 

with an absolute winner in the first round,  

∑ (𝑝𝑖−2,𝑗(𝑛 − 2𝑗)𝑝2,𝑛−j(𝑛))
⌊
𝑛

2
⌋

𝑗=⌈
𝑛

𝑖
⌉

  

is the the number of voting situations with the second round and equal number of plurality votes 

of the two winners in the first round, 

∑ ∑ (𝑝2,𝑛−max (𝜆)(𝑛) + 𝑝2,𝑛−j(𝑛) − 1𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛)𝜆⊢𝑛−𝑗,
𝑖−1,𝑗−1

⌊
𝑛

2
⌋

𝑗=⌈
𝑛

𝑖
⌉

,  

where 1n is even = 1 if n is even and 1n is even = 0, if n is odd; 

is the number of situations with the second round and unequal number of plurality votes of the 

two winners in the first round. Thus, we have 

#𝑅𝑢𝑛_𝑜𝑓𝑓(𝑚, 𝑛) = ⌈
𝑛+1

2
⌉ + ∑ [∑ 𝑝𝑖−1 (⌈

𝑛

2
⌉ − 𝑗)

⌊
𝑛

2
⌋

𝑗=1
+ ∑ (𝑝𝑖−2,𝑗(𝑛 − 2𝑗)𝑝2,𝑛−j(𝑛) +

⌊
𝑛

2
⌋

𝑗=⌈
𝑛

𝑖
⌉

𝑚
𝑖=3

∑ (𝑝2,𝑛−max (𝜆)(𝑛) + 𝑝2,𝑛−j(𝑛) − 1𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛)𝜆⊢𝑛−𝑗,
𝑖−1,𝑗−1

)]. 

Substituting formula (2), we obtain the result. ■ 

Proof of corollary 2. For 𝑚 = 3, formula (13) is as follows 

⌈
𝑛+1

2
⌉ + ∑ ⌊

⌈
𝑛

2
⌉−𝑗

2
⌋

⌊
𝑛

2
⌋

𝑗=1
+ ∑ (1𝑛−2𝑗≥1 (⌈

𝑛+1

2
⌉ − j) + 1

𝑗−1≥⌈
𝑛−𝑗

2
⌉
∑ (𝑛 + 1 − j − 𝑘)
𝑗−1

𝑘=⌈
𝑛−𝑗

2
⌉

)
⌊
𝑛

2
⌋

𝑗=⌈
𝑛

3
⌉

, 

Calculating sums we obtain 

#𝑅𝑢𝑛_𝑜𝑓𝑓(3, 𝑛) =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

1

1728
(7𝑛3 + 192𝑛2 + 1008𝑛 + 1728), 𝑖𝑓 𝑛 ≡ 0 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 729𝑛 + 827), 𝑖𝑓 𝑛 ≡ 1 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 192𝑛2 + 804𝑛 + 1024), 𝑖𝑓 𝑛 ≡ 2 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 837𝑛 + 999), 𝑖𝑓 𝑛 ≡ 3 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 192𝑛2 + 1008𝑛 + 1088), 𝑖𝑓 𝑛 ≡ 4 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 633𝑛 + 475) , 𝑖𝑓 𝑛 ≡ 5 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 192𝑛2 + 900𝑛 + 1728), 𝑖𝑓 𝑛 ≡ 6 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 837𝑛 + 935), 𝑖𝑓 𝑛 ≡ 7 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 192𝑛2 + 912𝑛 + 1024), 𝑖𝑓 𝑛 ≡ 8 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 729𝑛 + 891), 𝑖𝑓 𝑛 ≡ 9 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 192𝑛2 + 900𝑛 + 1088), 𝑖𝑓 𝑛 ≡ 10 (𝑚𝑜𝑑 12);

1

1728
(7𝑛3 + 165𝑛2 + 741𝑛 + 583), 𝑖𝑓 𝑛 ≡ 11 (𝑚𝑜𝑑 12).
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Modifying we obtain the result. ■ 

 

Proof of proposition 6. For 𝑚 = 3, a homogenous preference profile (n preference orders 𝑃0) 

has vector of rank sums (
2𝑛
𝑛
0
). Any preference profile has vector of ranks sums either (

2𝑛
𝑛
0
) or 

vectors 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, defined here: 

𝛼 = (
2𝑛 − 𝑥
𝑛 + 𝑥
0

); 𝛽 = (
2𝑛
𝑛 − 𝑥
𝑥

); 𝛾 = (
2𝑛 − 𝑦

𝑛 − (𝑥 − 𝑦)
𝑥

); 𝛿 = (
2𝑛 − 𝑥
𝑛 + 𝑦
𝑥 − 𝑦

); 𝜀 = (
2𝑛 − 𝑥
𝑛
𝑥

). 

For all vectors 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, we have that the first component is not less than the second; the 

second component is not less than the third.  

Substituting 𝑥 preference orders from 𝑃0 to 𝑃5, we obtain type 𝛼 preference profile. There 

are ⌊
𝑛

2
⌋ preference profiles of type 𝛼. Similarly, we have ⌊

𝑛

2
⌋ voting situations of type 𝛽. 

Substituting 𝑦/2 preference orders from 𝑃0 to 𝑃3 and 𝑥 − 𝑦 preference orders from 𝑃0 to 

𝑃1, we obtain type 𝛾 voting situations with even 𝑦. Substituting (𝑦 − 1)/2 preference orders 

from 𝑃0 to 𝑃3, 𝑥 − 𝑦 − 1 preference orders from 𝑃0 to 𝑃1, and one preference order from 𝑃0 to 

𝑃2, we obtain type 𝛾 voting situations with odd 𝑦. 

We can construct all possible type 𝛾 voting situations using these two design methods. 

There are two natural restrictions on 𝑥, 𝑦 for saving the order of alternatives: 

𝑥 + 𝑥 − 𝑦 ≤ 𝑛, 

𝑦 − 𝑛 ≤ 𝑥 − 𝑦. 

From this we find the number of type 𝛾 voting situations (if 𝑛 ≥ 4):  

for 𝑦 ≤ 𝑥 − 𝑦, it is ∑ 𝑝2(𝑖) +
⌊
𝑛

2
⌋

𝑖=2
∑ 𝑝2,𝑛−𝑖(𝑖)
⌊
2𝑛

3
⌋

𝑖=⌊
𝑛

2
⌋+1

; 

for 𝑦 ≥ 𝑥 − 𝑦, it is ∑ 𝑝2(𝑖)
⌊
2𝑛

3
⌋

𝑖=2
+ ∑ [𝑝2(𝑖) − 𝑝2,2𝑖−𝑛−1(𝑖)]

𝑛−1

𝑖=⌊
2𝑛

3
⌋+1

; 

for 𝑦 = 𝑥 − 𝑦, it is ⌊
⌊
2𝑛

3
⌋

2
⌋. 

Thus, the number of type 𝛾 voting situations is equal to 

∑ 𝑝2(𝑖) +
⌊
𝑛

2
⌋

𝑖=2
∑ 𝑝2,𝑛−𝑖(𝑖)
⌊
2𝑛

3
⌋

𝑖=⌊
𝑛

2
⌋+1

+ ∑ 𝑝2(𝑖)
⌊
2𝑛

3
⌋

𝑖=2
+∑ [𝑝2(𝑖) − 𝑝2,2𝑖−𝑛−1(𝑖)]

𝑛−1

𝑖=⌊
2𝑛

3
⌋+1

− ⌊
⌊
2𝑛

3
⌋

2
⌋. 

It is also the number of type 𝛿 voting situations. 

Substituting 𝑥/2 preference orders from 𝑃0 to 𝑃3, we obtain type 𝜀 voting situations with 

even 𝑥. Substituting (𝑥 − 1)/2 preference orders from 𝑃0 to 𝑃3, one preference order from 𝑃0 to 

𝑃1, and one preference order from 𝑃0 to 𝑃5, we obtain type 𝛾 voting situations with odd 𝑥. 

We can construct all possible type 𝜀 voting situations using these two design methods. 

There is one restriction on 𝑥 for saving the order of alternatives: 

𝑥 ≤ 𝑛. 

If 𝑛 ≥ 2, then the number of type 𝜀 voting situations is equal to 𝑛. 

Summing over all types, we have (if 𝑛 ≥ 4) 
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1 + 2(⌊
𝑛

2
⌋ + ∑ 𝑝2(𝑖) +

⌊
𝑛

2
⌋

𝑖=2
∑ 𝑝2,𝑛−𝑖(𝑖)
⌊
2𝑛

3
⌋

𝑖=⌊
𝑛

2
⌋+1

+ ∑ 𝑝2(𝑖)
⌊
2𝑛

3
⌋

𝑖=2
+ ∑ [𝑝2(𝑖) − 𝑝2,2𝑖−𝑛−1(𝑖)]

𝑛−1

𝑖=⌊
2𝑛

3
⌋+1

−

⌊
⌊
2𝑛

3
⌋

2
⌋) + 𝑛. 

Modifying this, we obtain  

3𝑛 − 1 + ⌊
2𝑛

3
⌋
2

− ⌊
2𝑛

3
⌋ + ⌊

𝑛

2
⌋ (⌊

𝑛

2
⌋ + 3 − 2𝑛) + 2(∑ ⌊

𝑖

2
⌋

⌊
𝑛

2
⌋

𝑖=2
+∑ ⌊

𝑖

2
⌋𝑛−1

𝑖=2 − ∑ ⌊
𝑖−1

2
⌋

⌊
2𝑛

3
⌋

𝑖=⌊
𝑛

2
⌋+1

+

∑ (⌊
𝑖−1

2
⌋)𝑛−1

𝑖=⌊
2𝑛

3
⌋+1

− ⌊
⌊
2𝑛

3
⌋

2
⌋). 

Calculating the sums, we obtain the result, which is also correct for 𝑛 = 2, and 𝑛 = 3. ■ 

 

Proof of proposition 7. Let 𝑓0(𝑘):ℕ0 → ℕ0 be the sum of distances between preference order 

𝑃0 and preference order 𝑃𝑖, where 𝑖 ≡ 𝑘 (𝑚𝑜𝑑 6). Let 𝑔0(𝑘) = 𝑓0(𝑘) + 𝑓0(𝑘 + 2) and ℎ0(𝑘) =

(2𝑔0(𝑘) − 𝑔0(𝑘 + 3))/6 = (2𝑓0(𝑘) + 2𝑓0(𝑘 + 2) − 𝑓0(𝑘 + 3) − 𝑓0(𝑘 + 5))/6. This 

transformation is presented in figure 3a. The first circle is the circle of distances from order 𝑃0 to 

all six preference orders. After transformation, each preference order is presented by three 

subsequent ones. This transformation has the inversion presented in figure 3b. We design one-to-

one correspondence between 𝑓0(𝑘) and ℎ0(𝑘). 
 

                                                   
𝑓0(𝑘)                                            𝑔0(𝑘)                                              ℎ0(𝑘) 

Figure 3a 

 

                          
                                         ℎ0(𝑘)                𝑓0(𝑘) = ℎ0(𝑘) + ℎ0(𝑘 − 1) + ℎ0(𝑘 − 2). 

Figure 3b 

 

In the same fashion, we define functions 𝑓𝑗(𝑘), 𝑔𝑗(𝑘), ℎ𝑗(𝑘), 𝑗 = 0,5. Instead of summing 

distances from preference orders ∑ 𝑓𝑗(𝑘)𝑛𝑗
5
𝑗=0 , we sum transformed values ∑ ℎ𝑗(𝑘)𝑛𝑗

5
𝑗=0 . We 

have bisection between these sums. Any sum of transformed values ∑ ℎ𝑗(𝑘)𝑛𝑗
5
𝑗=0  can be 

represented by the circle presented in figure 4. 
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Figure 4 

 

Permutating one pair of alternatives (one or three swaps in a preference order) leads to 

figure 4 circle turnover. Two possibilities of permutating three alternatives (two swaps in a 

preference order) lead to the circle rotating. Reversing the preference profile leads to a rotating 

on 3 preference orders in a clockwise manner. By these operations we can always construct a 

circle, such that 𝑥 + 𝑦 + 𝑧 ≤ 3𝑛 − 𝑥 − 𝑦 − 𝑧 and 𝑥 ≥ 𝑦 ≥ 𝑧. From this definition, we have the 

following additional restrictions on 𝑥, 𝑦, 𝑧 

𝑥 + 𝑦 ≥ 𝑛 − 𝑧; 

𝑛 − 𝑦 + 𝑛 − 𝑧 ≥ 𝑥; 

𝑧 + 𝑛 − 𝑦 + 𝑛 − 𝑧 + 𝑦 ≥ 2𝑥 + 2(𝑛 − 𝑥). 

From these inequalities, we have 𝑛 ≤ 𝑥 + 𝑦 + 𝑧 ≤ ⌊
3𝑛

2
⌋. We will calculate the number of 

partitions of 𝑖 = 𝑛, ⌊
3𝑛

2
⌋ with 1, 2, or 3 parts, such that each part does not exceed 𝑛 (and the 

special case of 𝑖 =
3𝑛

2
). A complementary partition has sum 3𝑛 − 𝑖. 

If 𝑥 + 𝑦 + 𝑧 =
3𝑛

2
, then the partitions of 𝑖 =

3𝑛

2
 and 3𝑛 − 𝑖 =

3𝑛

2
 can be the same. 

Partitions with 𝑦 =
𝑛

2
 are symmetric (𝑛 − 𝑥 = 𝑧, 𝑛 − 𝑧 = 𝑥, 𝑛 − 𝑦 = 𝑦). The number of such 

partitions is equal to 
𝑛

2
+ 1. All other partitions of 𝑖 =

3𝑛

2
 have different complement partitions 

with the same sum. The number of partitions of 
3𝑛

2
 and complement partitions of 

3𝑛

2
 with 1, 2, or 

3 parts, such that each part does not exceed 𝑛, is equal to 

1

2
(𝑝2,𝑛 (

3𝑛

2
) + 𝑝3,𝑛 (

3𝑛

2
) +

𝑛

2
+ 1) =  

=
1

2
(1 + 𝑛 − ⌊

𝑛

4
⌋ (

𝑛

2
− 1) +

𝑛2

2
+ ⌊

𝑛

4
⌋
2

− ⌊
3𝑛−2

4
⌋ − ∑ ⌊

3𝑛−2𝑗−2

4
⌋

𝑛

2

𝑗=1
).            (*) 

For all other 𝑖, we have 

1 + ∑ 𝑝2,𝑛(𝑖)
⌊
3𝑛−1

2
⌋

𝑖=𝑛
+ ∑ 𝑝3,𝑛(𝑖)

⌊
3𝑛−1

2
⌋

𝑖=𝑛
. 

For 𝑛 ≥ 3, we have  

1 + ⌊
𝑛

2
⌋ + ∑ (𝑛 − ⌊

𝑖−1

2
⌋)

⌊
3𝑛−1

2
⌋

𝑖=𝑛+1
+ ∑ ∑ (min {𝑖 − 2𝑗, 𝑛} − ⌊

𝑖−𝑗−1

2
⌋)

⌊
𝑖

3
⌋

𝑗=1

⌊
3𝑛−1

2
⌋

𝑖=𝑛
.    (**) 

Summing (*) for even 𝑛 and (**) for all 𝑛, we obtain the result, which is also correct for 𝑛 = 1 

and 𝑛 = 2. ■ 

 

𝑛 − 𝑦  

𝑥  

𝑛 − 𝑧  

𝑦  

𝑛 − 𝑥  

𝑧  
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Appendix. 2. Number of voting situations, m=3. 

 

  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Polinomial 

degree 

#ANEC 5 10 24 42 83 132 222 335 511 728 1047 1428 1956 2586 3414 4389 5638 7084 8888 5 

#RIANEC 4 7 16 26 50 76 126 185 280 392 561 756 1032 1353 1782 2277 2920 3652 4576 5 

#SSANEC 3 4 8 10 17 20 30 35 49 56 75 84 108 120 150 165 202 220 264 3 

share in 

#ANEC  0.60 0.40 0.33 0.24 0.20 0.15 0.14 0.10 0.10 0.08 0.07 0.06 0.06 0.05 0.04 0.04 0.04 0.03 0.03   

Plurality 2 3 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44 2 

I(Rule,3,n) 0.25 0.22 0.13 0.10 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 

 run-off 2 3 5 5 9 10 14 15 21 22 31 31 40 43 55 54 70 72 88 3 

I(Rule,3,n) 0.25 0.22 0.17 0.10 0.10 0.07 0.06 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01   

Kemeny 4 6 12 17 28 37 54 69 93 115 148 178 221 261 315 366 433 496 577 3 

I(Rule,3,n) 0.75 0.56 0.48 0.39 0.33 0.27 0.24 0.20 0.18 0.16 0.14 0.12 0.11 0.10 0.09 0.08 0.08 0.07 0.06 

 I
IR

(Rule,3,n) 1 0.83 0.73 0.64 0.55 0.48 0.42 0.37 0.33 0.29 0.26 0.23 0.21 0.19 0.18 0.16 0.15 0.14 0.13 

 Borda 5 8 13 18 25 32 41 50 61 72 85 98 113 128 145 162 181 200 221 2 

I(Rule,3,n) 1 0.78 0.52 0.41 0.29 0.24 0.18 0.15 0.12 0.10 0.08 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02   

Scoring 5 10 23 40 73 114 180 262 379 521 712 938 1228 1567 1986 2469 3052 3715 4499 4 

I(Rule,3,n) 1 1 0.96 0.95 0.88 0.86 0.81 0.78 0.74 0.72 0.68 0.66 0.63 0.61 0.58 0.56 0.54 0.52 0.51   
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