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Abstract We consider explicit two-level three-point in space finite-difference sche-
mes for solving 1D barotropic gas dynamics equations. The schemes are based on
special quasi-gasdynamic and quasi-hydrodynamic regularizations of the system.
We linearize the schemes on a constant solution and derive the von Neumann type
necessary condition and a CFL type criterion (necessary and sufficient condition)
for weak conservativeness in L2 for the corresponding initial-value problem on the
whole line. The criterion is essentially narrower than the necessary condition and
wider than a sufficient one obtained recently in a particular case; moreover, it corre-
sponds most well to numerical results for the original gas dynamics system.
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1 Introduction

The stability theory for finite-difference schemes for model problems in gas dynam-
ics is well presented in the literature [1, 4, 5, 6, 7, 11, 12]. In this paper we consider
some finite-difference schemes for solving 1D barotropic gas dynamics equations.
The schemes are explicit, two-level in time and use a symmetric three-point sten-
cil in space. Their construction is based on special quasi-gasdynamic and quasi-
hydrodynamic [3, 8, 13, 15, 20] regularizations of the original equations (without
a regularization, the schemes are unstable). The schemes of this kind were suc-
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cessfully applied in numerous and various practical applications, in particular, see
[2, 9, 10, 21], but their theory is not developed so well.

We linearize the schemes on a constant solution and derive both the von Neu-
mann type necessary condition and a CFL type criterion for weak conservativeness
in L2 for the corresponding initial-value problem on the whole line. The weak con-
servativeness in L2 means the uniform in time bound for the norm of scaled solution
by the norm of initial data instead of the energy conservation law for the linearized
original system, i.e., the acoustics system of equations. Our numerical experience
show that validity of the weak conservativeness property is important since it pre-
vents numerical solutions from the well-known possible spurious oscillations. The
property guarantees the uniform in time L2 stability with respect to initial data.

Since in practice necessary conditions are often in use (a derivation of sufficient
conditions is much more complicated in general), it is important to know to what
extent this is lawful to do. The criterion turns out to be essentially narrower than the
necessary condition and at the same time wider than a sufficient condition obtained
recently in a particular case in [14]. Moreover, namely the criterion corresponds
most well to results of numerical experiments for the original gas dynamics system.
Therefore the criterion (but not the necessary condition or sufficient one) is most
adequate and useful for practical purposes.

2 Systems of equations, finite-difference schemes and their
linearization

The 1D barotropic gas dynamics (Euler) system of equations consists in the mass
and momentum balance equations

∂tρ +∂x(ρu) = 0, ∂t(ρu)+∂x p(ρ) = 0, (1)

where ρ > 0, u and p are the gas density and velocity (the sought functions) and
pressure. We assume that p′(ρ)> 0 and consider the equations for x ∈ R and t > 0.

The 1D barotropic quasi-gas dynamics (QGD) system of equations consists in
the regularized mass and momentum balance equations

∂tρ +∂x j = 0, ∂t(ρu)+∂x
(

ju+ p(ρ)−Π
)
= 0, (2)

j = ρ(u−w), w =
τ

ρ
u∂x(ρu)+ ŵ, ŵ =

τ

ρ
[ρu∂xu+ p′(ρ)], (3)

Π = ΠNS +ρuŵ+ τ p′(ρ)∂x(ρu), ΠNS = µ(ρ)∂xu. (4)

Here j and Π are the regularized mass flux and stress, w and ŵ are the regulariz-
ing velocities, τ = τ(ρ) > 0 is a regularization parameter and ΠNS is the Navier-
Stokes viscous stress with µ(ρ)≥ 0 being proportional to the viscosity coefficient.
In the barotropic case, quasi-gasdynamic and quasi-hydrodynamic systems were in-
troduced and investigated (in multidimensional case) in [20, 16, 17].
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The QGD system is simplified into the original system (1) for τ = µ = 0 and the
Navier-Stokes system of equations for viscous compressible barotropic gas flow for
τ = 0 and µ > 0.

System (1) can be linearized on a constant solution ρ∗ ≡ const > 0 and u∗ = 0.
Substituting the solution in the form ρ = ρ∗+∆ρ and u = u∗+∆u in the equations
and neglecting the terms having the second order of smallness with respect to ∆ρ

and ∆u and their derivatives leads us to the following system of equations:

∂t∆ρ +ρ∗∂x∆u = 0, ρ∗∂t∆u+ p′(ρ∗)∂x∆ρu = 0. (5)

For the dimensionless unknowns ρ̃ = ∆ρ

ρ∗
and ũ = ∆u√

p′(ρ∗)
we gain the acoustics

system of equations:

∂t ρ̃ + c∗∂xũ = 0, ∂t ũ+ c∗∂xρ̃ = 0. (6)

Hereafter c∗ =
√

p′(ρ∗) is the background velocity of sound. Given the initial data
ρ̃|t=0 = ρ̃0 and ũ|t=0 = ũ0 (that one can consider complex-valued), for the solution
to the last system the following energy conservation law holds

‖ρ̃(·, t)‖2
L2(R)+‖ũ(·, t)‖

2
L2(R) = ‖ρ̃0‖2

L2(R)+‖ũ0‖2
L2(R) for t ≥ 0. (7)

Now we pass to discretization. Let ωh be a uniform mesh on R with the nodes
xk = kh, k ∈ Z, and step h = X/N. Let ω∗h be an auxiliary mesh with the nodes
xk+1/2 = (k+0.5)h, k∈Z. Define a uniform mesh in t with the nodes tm =m∆ t, m≥
0, and step ∆ t > 0. We define the shift, averaging and difference quotient operators

v±,k = vk±1, (sv)k−1/2 =
vk + vk+1

2
, (δv)k−1/2 =

vk− vk−1

h
,

(δ ∗y)k =
yk+1/2− yk−1/2

h
, δtv =

v+− v
∆ t

, v+,m = vm+1.

We first consider a standard explicit two-level in time and three-point symmetric
in space discretization of the QGD equations (2)-(4):

δtρ +δ
∗ j = 0, δt(ρu)+δ

∗( jsu+ p(sρ)−Π
)
= 0 on ωh, (8)

j = (sρ)su− (sρ)w, (sρ)w = (sτ)
[
δ (ρu)

]
su+(sρ)ŵ, (9)

(sρ)ŵ = (sτ)
[
(sρ)(su)δu+δ p(ρ)

]
, (10)

Π = µδu+(su)(sρ)ŵ+(sτ)
[
p′(sρ)

]
δ (ρu). (11)

The main unknown functions ρ > 0, u and the parameter τ are defined on ωh
whereas j,w, ŵ,Π and µ are defined on ω∗h .

In [18] two non-standard spatial discretizations of the QGD equations (2)-(4)
were constructed which are weakly conservative in energy (see their generalization
to a multidimensional case in [19]). One of them has the “enthalpy” form
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δtρ +δ
∗ j = 0, δt(ρu)+δ

∗( jsu−Π)+ s∗
[
(sρ)δh(ρ)

]
= 0, (12)

j = sρ · su− sρ ·w, sρ ·w =
[
(τ∂x)h(ρu)

]
su+(sρ)ŵ, (13)

ŵ = (sτ)
[
(su)δu+δh(ρ)

]
, Π = µδu+(su)(sρ)ŵ+ p′(sρ)(τ∂x)h(ρu), (14)

(τ∂x)h(ρu) =
(

s
τ

h′(ρ)

){
[δh(ρ)]su+ p′(sρ)δu

}
, (15)

where h(ρ) =
∫

ρ

r0

p′(r)
r dr, with some r0 > 0, is the gas enthalpy and thus h′(ρ) =

p′(ρ)
ρ

. In the isentropic case p(ρ) = p1ργ with γ > 1, one can take r0 = 0 and then

h(ρ) = γ

γ−1
p(ρ)

ρ
and h′(ρ) = γ

p(ρ)
ρ2 . Notice the non-standard h(ρ)-dependent dis-

cretizations of ∂x p(ρ) in (12) and (14) and τ∂x(ρu) in (13)-(14), see (15).
We linearize scheme (8)-(11) on a constant solution ρ∗ ≡ const > 0 and u∗ = 0.

To do that, we write its solution in the form ρ = ρ∗+∆ρ and u = u∗+∆u, neglect
terms having the second order of smallness with respect to ∆ρ and ∆u and obtain

δt∆ρ +ρ∗δ
∗s∆u− τ(ρ∗)p′(ρ∗)δ ∗δ∆ρ = 0,

ρ∗δt∆u+ p′(ρ∗)δ ∗s∆ρ−
[
µ(ρ∗)+ τ(ρ∗)ρ∗p′(ρ∗)

]
δ
∗
δ∆u = 0.

For the dimensionless unknowns ρ̃ = ∆ρ

ρ∗
and ũ = ∆u

c∗
we get equations

δt ρ̃ + c∗δ ∗sũ− τ(ρ∗)c2
∗δ
∗
δ ρ̃ = 0, (16)

δt ũ+ c∗δ ∗sρ̃−
[

µ(ρ∗)

ρ∗
+ τ(ρ∗)c2

∗

]
δ
∗
δ ũ = 0 (17)

(cf. systems (5) and (6)). The linearization of scheme (12)-(15) is the same.
Notice that since u∗ = 0, the linearization result remains the same if it would be

w= ŵ and the terms dependent on u were omitted in the definition of these variables,
i.e., for example, w = ŵ = τ̃

sρ
δ p(ρ) instead of formulas in (9)-(10).

We assume that the regularization parameter and viscosity coefficient are given
by usual QGD-formulas

τ(ρ) =
αh√
p′(ρ)

, µ(ρ) = αsτ(ρ)ρ p′(ρ),

where α > 0 and αs ≥ 0 are parameters. Then omitting tildes above ρ and u, equa-
tions (16)-(17) can be rewritten in the following recurrent form

ρ
+ = ρ− β

2
(u+−u−)+αβ (ρ−−2ρ +ρ−), (18)

u+ = u− β

2
(ρ+−ρ−)+καβ (u+−2u+u−) (19)
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with three parameters α , β := c∗ ∆ t
h and κ := αs + 1 ≥ 1. The functions ρ0 and u0

are given, i.e., we consider the initial-value problem for the scheme. Below it is
convenient to consider ρ and u as complex-valued mesh functions.

3 Weak conservativeness analysis

Let ym = (ρm um)T , m ≥ 0, be a column-vector function on ωh and the linearized
difference scheme (18)-(19) be rewritten in a matrix form

y+ =

(
αβ

β

2
β

2 καβ

)
y−+

(
1−2αβ 0

0 1−2καβ

)
y+

(
αβ −β

2

−β

2 καβ

)
y+. (20)

Let H be a Hilbert space of complex valued square-summable on ωh vector func-
tions, i.e. having a finite norm

‖y‖H =
(

h
∞

∑
k=−∞

|yk|2
)1/2

.

For y0 = (ρ0 u0)T ∈ H we have that ym ∈ H for all m ≥ 1. We define a weak
conservativeness of scheme (20) as validity of the bound

sup
m≥0
‖ym‖H ≤ ‖y0‖H ∀y0 ∈ H. (21)

This definition is motivated by the energy conservation law (7) for the acoustics
system of equation (6). It is essential to notice that for the linearized QGD-system
(2)-(4) namely the corresponding inequality holds in place of equality (7) so that it is
natural to study the bound for schemes based on such a system. Of course, estimate
(21) guarantees the uniform in time stability in H with respect to initial data.

We first substitute a partial solution in the form ym
k = eikξ vm(ξ ), k ∈ Z, m ≥ 0,

where i is the imaginary unit and 0≤ ξ ≤ 2π is a parameter, into (20) and obtain

v+(ξ ) = G(ξ )v(ξ ), G(ξ ) =

(
1−ω1 −iω2

−iω2 1−κω1

)
, (22)

where we denote ω1 = 4αβθ , θ = sin2 ξ

2 ∈ [0,1] and ω2 = β sinξ for brevity. Below
it is important that ω2

2 = 4β 2θ(1−θ).
It is known (see similar formulas in [6]) that if y0 = (ρ0 u0)T ∈ H, then there

exists a function v0 ∈ L2(0,2π) such that

v0(ξ ) =
1√
2π

∞

∑
k=−∞

y0
ke−ikξ ,
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and we can write the solution to scheme (20) in an integral form

ym
k =

1√
2π

∫ 2π

0
vm(ξ )eikξ dξ , k ∈ Z,

where vm ∈ L2(0,2π) due to (22). The following Parseval identity also holds

‖ym‖H =
√

h‖vm‖L2(0,2π), m≥ 0. (23)

The von Neumann type spectral condition

max
0≤ξ≤2π

max
l

∣∣λl
(
G(ξ )

)∣∣≤ 1 (24)

is known to be a necessary condition for property (21) to hold (see similar result in
[6]). Hereafter λl(A) are eigenvalues of a matrix A.

Let us determine the spectral form of property (21).

Lemma 1. Validity of the spectral bound

max
0≤ξ≤2π

max
l

λl
(
(G∗G)(ξ )

)
≤ 1 (25)

is necessary and sufficient for the weak conservativeness property (21) to hold.

Proof. Due to the Parseval identity (23) and formula (22) we have

h−1‖ŷ‖2
H = ‖v̂‖2

L2(0,2π) = ‖Gv‖2
L2(0,2π) = (G∗Gv,v)L2(0,2π).

Since (G∗G)(ξ )≥ 0 is a Hermitian matrix, it has a spectral decomposition (G∗G)(ξ )=
U∗(ξ )Λ(ξ )U(ξ ), where U(ξ ) is a unitary matrix, and Λ(ξ ) is a diagonal matrix
with numbers λl

(
(G∗G)(ξ )

)
≥ 0 forming its diagonal. Hence for z(ξ ) :=U(ξ )v(ξ )

we have
(G∗Gv,v)L2(0,2π) = (Λz,z)L2(0,2π) = ‖Λ

1/2z‖2
L2(0,2π).

Thus ‖ym‖2
H = h‖Λ m/2z0‖2

L2(0,2π)
for m ≥ 0, and bound (21) is equivalent to the

following one

sup
m≥0
‖Λ m/2z0‖2

L2(0,2π) ≤ ‖z
0‖2

L2(0,2π) ∀z
0 ∈ L2(0,2π).

It holds if and only if the spectral bound (25) holds.

Remark 1. Under validity of the spectral bound (25), the norm ‖ym‖H is actually
non-increasing in m≥ 0 that serves as a stronger property than (21).

In the proof of this lemma, the specific form and dimension of the matrix G are
clearly inessential, and actually it holds in general case.

In our case the matrix G∗G has the form
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G∗G =

(
(1−ω1)

2 +ω2
2 −i(1−κ)ω1ω2

i(1−κ)ω1ω2 (1−κω1)
2 +ω2

2

)
.

Note that G∗G =
[
(1−ω1)

2 +ω2
2
]
I in the simplest case κ = 1, where I is a unit

matrix.

Theorem 1. The necessary spectral condition (24) holds if and only if

β ≤min
{
(κ+1)α,

1
2κα

}
. (26)

Proof. The characteristic polynomial for the matrix G has the following form

q1(λ ) = λ
2− (trG)λ +detG = λ

2 +[(κ+1)ω1−2]λ+

+
[
κω

2
1 +ω

2
2 +1− (κ+1)ω1

]
. (27)

We set a0 := q1(1)= 1−(trG)+detG=κω2
1 +ω2

2 ≥ 0 and notice that a0 = q1(1)=
0 if and only if G = I. We transform the unit circle {|λ | ≤ 1} with a punctured point
(1,0) on C into the closed left half-plane {Rez≤ 0} and put

q̂1(z) := (z−1)2q1

( z+1
z−1

)
= a0z2 +2a1z+a2,

where a1 = 1−detG, a2 = 1+ trG+detG. It is well known that for a0 > 0 the roots
q̂1(z) lie in {Rez≤ 0} under the conditions a1 ≥ 0 and a2 ≥ 0, i.e.

κω
2
1 +ω

2
2 − (κ+1)ω1 ≤ 0, κω

2
1 +ω

2
2 −2(κ+1)ω1 +4≥ 0.

We rewrite these conditions as

β (4κα
2
θ +1−θ)− (κ+1)α ≤ 0 for 0≤ θ ≤ 1, (28)

r(θ) := β
2(4κα

2−1)θ 2−β
(
2(κ+1)α−β

)
θ +1≥ 0 for 0≤ θ ≤ 1. (29)

The left-hand side of (28) is linear in θ , thus it suffices to test it for θ = 0,1 that
leads us to the condition

β ≤min
{
(κ+1)α,

κ+1
4κα

}
. (30)

Next we analyze condition (29). Notice that r(0) = 1 and due to (30) we have
2(κ+1)α−β > 0. For a = 4κα2−1 6= 0 the vertex of the parabola r(θ) is given
by

θv =
2(κ+1)α−β

2β (4κα2−1)
.

For 4κα2−1 > 0 the property θv > 1 means that β < (κ+1)α
4κα2−0.5 , and it holds due

to (30). Hence condition (29) reduces to r(1)≥ 0, i.e.
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4κα
2
β

2−2(κ+1)αβ +1 = 4κα
2
(

β − 1
2κα

)(
β − 1

2α

)
≥ 0. (31)

For 4κα2−1 < 0 we have θv < 0, so that condition (29) reduces again to r(1)≥ 0.
For 4κα2−1 = 0 the condition also reduces to r(1)≥ 0 (since r(0) = 1).

Since κ ≥ 1, inequality (31) means that either of the conditions

β ≤ 1
2κα

, β ≥ 1
2α

(32)

holds. Combining them with (30), we obtain (26).

Now we turn to the spectral criterion (25).

Theorem 2. The spectral criterion (25) holds if and only if

β ≤min
{

2α,
1

2κα

}
. (33)

Proof. The characteristic polynomial of G∗G has the following form

q2(λ ) = λ
2− tr(G∗G)λ +(detG)2.

Since λl(G∗G)≥ 0, the property |λl(G∗G)| ≤ 1 means validity of the conditions

1
2

tr(G∗G)≤ 1, q2(1) = 1− tr(G∗G)+(detG)2 ≥ 0. (34)

The first of them has the form

κ2 +1
2

ω
2
1 +ω

2
2 − (κ+1)ω1 ≤ 0

and can be specified as

8α
2
β

2(κ2 +1)θ 2 +4β
2
θ(1−θ)−4αβ (κ+1)θ ≤ 0 for 0≤ θ ≤ 1. (35)

After dividing by 4βθ we get that it suffices to confine ourselves with the values
θ = 0,1 that leads to the condition

β ≤min
{
(κ+1)α,

κ+1
2(κ2 +1)α

}
. (36)

In order to transform the second condition (34) we notice that

tr(G∗G) = 2(b+1)+(κ−1)2
ω

2
1 , (detG)2 = (b+1)2,

where b :=κω2
1 +ω2

2−(κ+1)ω1, see (27). Hence the following factorization holds

q2(1) = b2− (κ−1)2
ω

2
1 =

(
b− (κ−1)ω1

)(
b+(κ−1)ω1

)
,
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that is decisive for the simplicity of our analysis. Since κ ≥ 1, the condition q2(1)≥
0 is equivalent to validity of either of the conditions

κω
2
1 +ω

2
2 −2ω1 ≤ 0, κω

2
1 +ω

2
2 −2κω1 ≥ 0,

i.e., more specifically, to validity of either of the conditions

β (4κα
2
θ +1−θ)−2α ≤ 0 for 0≤ θ ≤ 1,

β (4κα
2
θ +1−θ)−2κα ≥ 0 for 0≤ θ ≤ 1.

As above they respectively mean that the inequalities

β ≤min
{

2α,
1

2κα

}
, β ≥max

{
2κα,

1
2α

}
(37)

hold. Combining them with (36) we complete the proof.

It is essential that the function on the right-hand side of condition (33) reaches its
maximal value at α = α∗ := 1

2
√
κ ≤

1
2 and the maximal value equals 1√

κ ≤ 1. Hence
the criterion coincides with the standard CFL stability condition β ≤ 1 if and only if
α = α∗ and κ = 1. The criterion gives an important information on the optimal
choice of α since in practice for the original non-linear problem α is normally
sought experimentally. Note also that criterion (33) and the necessary condition (26)
coincide only in the case α ≥ α∗.

We call attention to a paradoxical moment: criterion (33) becomes stronger as
the coefficient of “effective viscosity” κ increases (it is harder to say that about the
necessary condition (26)). Therefore the best choice in the present bounds is αs = 0,
i.e. κ = 1. But this conclusion is not universal in practice and it is known that in
some situations αs > 0 has to be taken (see, for example, [21]).

In Fig. 1 we compare the necessary condition, the criterion of stability and the
sufficient condition as well as the results of numerical experiments for the original
system (1) for p(ρ)= ρ2 (the scaled case of the shallow water equations) and κ= 7

3 .
The sufficient condition was obtained in [14] only for these p(ρ) and κ by the
energy method and has the form

β ≤min
{

2α

1+6α +4α2 ,
4α

1+6α +16α2

}
.

Notice that the first fraction in it is less than the second one for 0 < α < 3+
√

17
8 ≈

0.890. The corresponding graph is almost flat for 0.3 ≤ α ≤ 0.9 in contrast to the
cases of necessary condition and criterion. The computations are accomplished for
0≤ t ≤ 0.5 for the Riemann problem with the discontinuous initial data

ρ0(x) =

{
1, x < 0
0.1, x > 0

, u0(x) =

{
0.1, x < 0,
0, x > 0
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for both schemes (8)-(11) and (12)-(15) with h = 1/125.

(a) The standard scheme (b) The “enthalpy” scheme

Fig. 1 The weak conservativeness analysis: the necessary condition (solid line), the criterion (dash
line), the sufficient condition (dotdash line) together with conservative (painted balls) and non-
conservative (unpainted balls) computations for the Riemann problem in dependence with α

We observe a good correspondence of the obtained criterion with the experi-
mental results, and that the sufficient condition underestimates the criterion up to
several times in the most interesting region α ≈ α∗. Also the results for the “en-
thalpy” scheme (12)-(15) are clearly different from and better than for the standard
one (8)-(11) though the above linearized analysis gives the same results for them.

We have identified non-conservative computations by noticeable well-known os-
cillations of the numerical solutions (some of computations have not even been
completed due to overflow). In Fig. 2 we give an example of conservative and
non-conservative solutions ρ and u for the “enthalpy” scheme (at time t = 0.5) for
α = 0.4 and two neighboring values of β from Fig. 1 (b).

(a) The conservative solution, β ≈ 0.589 (b) The non-conservative solution, β ≈ 0.643

Fig. 2 The examples of conservative and non-conservative solutions for the “enthalpy“scheme for
α = 0.4 (at time t = 0.5)
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4 The case of the schemes based on a simplified regularization

We also consider a simplified (quasi-hydrodynamic [8, 13, 15]) regularization (2)-
(4), where the terms with ∂x(ρu) are omitted, in particularly, it becomes w = ŵ.
Correspondingly in schemes (8)-(11) and (12)-(15) we have to omit both terms with
respectively δ (ρu) and (τ∂x)h(ρu). In the linearized scheme the term τ(ρ∗)c2

∗ dis-
appears from equation (17), hence now κ = αs. Notice that usually 0 < αs ≤ 1
though in specific cases αs > 1 can be also taken.

Theorem 3. For the simplified scheme based on the quasi-hydrodynamic regular-
ization the following results are valid:

(1) in the case 0≤ αs ≤ 1 the necessary condition (24) and criterion (25) hold if
and only if respectively

β ≤min
{
(αs +1)α,

1
2α

}
, (38)

β ≤min
{

2αsα,
1

2α

}
; (39)

(2) in the case αs ≥ 1 the results of Theorems 1 and 2 remain valid with κ = αs.

Proof. The above given analysis holds true except for some changes in the case
0≤ κ = αs ≤ 1. In this case, inequalities (32) are replaced by the following ones

β ≤ 1
2α

, β ≥ 1
2κα

;

they being combined with (30) lead to (38). Also inequalities (37) are replaced by
the following ones

β ≤min
{

2κα,
1

2α

}
, β ≥max

{
2α,

1
2κα

}
,

they being combined with (36) lead to (39).

The maximal value of the function on the right-hand side of criterion (39) is reached
at α = α∗ := 1

2
√

αs
≥ 1

2 and equals
√

αs ≤ 1. We notice that the necessary condition
(38) is especially rough compared to criterion (39) for αs ≈ 0, including the case
αs = 0 when actually the stability is absent at all.
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