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Introduction

Throughout the paper G denotes a connected reductive algebraic group,

unless otherwise specified, and H an algebraic subgroup of G. All groups

and algebraic varieties considered are over an algebraically closed field

K of characteristic zero, unless otherwise specified. Let K[X ] be the

algebra of regular functions on an algebraic variety X and K(X) the

field of rational functions on X provided X is irreducible. Our general

references are [30] for algebraic groups and [56, 37, 29] for algebraic

transformation groups and invariant theory.

Affine embeddings: definitions. Let us recall that an irreducible

algebraic G-variety X is said to be an embedding of the homogeneous

space G/H if X contains an open G-orbit isomorphic to G/H . We shall

denote this relationship by G/H ↪→ X . Let us say that an embedding

G/H ↪→ X is affine if the variety X is affine. In many problems of

invariant theory, representation theory and other branches of mathe-

matics, only affine embeddings of homogeneous spaces arise. This is

why it is reasonable to study specific properties of affine embeddings in

the framework of a well-developed general embedding theory.

Which homogeneous spaces admit an affine embedding? It is

easy to show that a homogeneous space G/H admits an affine embed-

ding if and only if G/H is quasi-affine (as an algebraic variety). In

this situation, the subgroup H is said to be observable in G. A closed

subgroup H of G is observable if and only if there exist a rational finite-

dimensional G-module V and a vector v ∈ V such that the stabilizer Gv

coincides with H . (This follows from the fact that any affine G-variety

may be realized as a closed invariant subvariety in a finite-dimensional

G-module [56, Th.1.5].) There is a nice group-theoretic description of
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observable subgroups due to A. Sukhanov: a subgroup H is observable

in G if and only if there exists a quasi-parabolic subgroup Q ⊂ G such

that H ⊂ Q and the unipotent radical Hu is contained in the unipotent

radical Qu, see [63], [29, Th.7.3]. (Let us recall that a subgroup Q is

said to be quasi-parabolic if Q is the stabilizer of a highest weight vector

in some G-module V .)

It follows from Chevalley’s theorem that any subgroup H without non-

trivial characters (in particular, any unipotent subgroup) is observable.

By Matsushima’s criterion, a homogeneous space G/H is affine if and

only if H is reductive. (For a simple proof, see [42] or [4]; a characteristic-

free proof can be found in [57].) In particular, any reductive subgroup

is observable. A description of affine homogeneous spaces G/H for non-

reductive G is still an open problem.

Complexity of reductive group actions. Now we define the notion

of complexity, which we shall encounter many times in the text. Let

us fix the notation. By B = TU denote a Borel subgroup of G with

a maximal torus T and the unipotent radical U . By definition, the

complexity c(X) of a G-variety X is the codimension of a B-orbit of

general position in X for the restricted action B : X . This notion firstly

appeared in [45] and [70]. Now it plays a central role in embedding

theory. By Rosenlicht’s theorem, c(X) is equal to the transcendence

degree of the field K(X)B of rational B-invariant functions on X . A

normal G-variety X is called spherical if c(X) = 0 or, equivalently,

K(X)B = K. A homogeneous space G/H and a subgroup H ⊆ G are

said to be spherical if G/H is a spherical G-variety.

Rational representations, the isotypic decomposition and G-

algebras. A linear action of G in vector space W is said to be rational

if for any vector w ∈ W the linear span 〈Gw〉 is finite-dimensional and

the action G : 〈Gw〉 defines a representation of an algebraic group. Since

any finite-dimensional representation of G is completely reducible, it is

easy to prove that W is a direct sum of finite-dimensional simple G-

modules. Let Ξ+(G) be the semigroup of dominant weights of G. For

any λ ∈ Ξ+(G), denote by Wλ the sum of all simple submodules in W

of highest weight λ. The subspace Wλ is called an isotypic component

of W of weight λ, and the decomposition

W = ⊕λ∈Ξ+(G)Wλ

is called the isotypic decomposition of W .

If G acts on an affine variety X , the linear action G : K[X ], (gf)(x) :=
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f(g−1x), is rational [56, Lemma 1.4]. (Note that for irreducible X the

action on rational functions G : K(X) defined by the same formula is

not rational.) The isotypic decomposition

K[X ] = ⊕λ∈Ξ+(G)K[X ]λ

and its interaction with the multiplicative structure on K[X ] give im-

portant technical tools for the study of affine embeddings.

An affine G-variety X is spherical if and only if K[X ]λ is a simple

G-module for any λ ∈ Ξ+(G) [32].

Suppose that A is a commutative associative algebra with unit over

K. If G acts on A by automorphisms and the action G : A is rational,

we say that A is a G-algebra. The algebra K[X ] is a G-algebra for any

affine G-variety X . Moreover, any finitely generated G-algebra without

nilpotents arises in this way.

We conclude the introduction with a review of the contents of this

survey.

One of the pioneering works in embedding theory was a classification of

normal affine SL(2)-embeddings due to V. L. Popov, see [52, 37]. In the

same period (early seventies) the theory of toric varieties was developed.

A toric variety may be considered as an equivariant embedding of an

algebraic torus T . Such embeddings are described in terms of convex

fans. Any cone in the fan of a toric variety X represents an affine toric

variety. This reflects the fact that X has a covering by T -invariant affine

charts. In 1972, V. L. Popov and E. B. Vinberg [55] described affine

embeddings of quasi-affine homogeneous spaces G/H , where H contains

a maximal unipotent subgroup of G. In Section 1 we discuss briefly these

results together with a more recent one: a remarkable classification of

algebraic monoids with a reductive group G as the group of invertible

elements (E. B. Vinberg [71]). This is precisely the classification of affine

embeddings of the space (G × G)/∆(G), where ∆(G) is the diagonal

subgroup.

In Section 2 we consider connections of the theory of affine embeddings

with Hilbert’s 14th problem. Let H be an observable subgroup of G. By

the Grosshans theorem, the following conditions are equivalent: 1) the

algebra of invariants K[V ]H is finitely generated for any G-module V ; 2)

the algebra of regular functions K[G/H ] is finitely generated; 3) there

exists a (normal) affine embedding G/H ↪→ X such that codimX(X \

(G/H)) ≥ 2 (such an embedding is called the canonical embedding of

G/H).
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It was proved by F. Knop that if c(G/H) ≤ 1 then the algebra K[G/H ]

is finitely generated. This result provides a large class of subgroups with

a positive solution of Hilbert’s 14th problem. In particular, Knop’s the-

orem together with Grosshans’ theorem on the unipotent radical Pu of a

parabolic subgroup P ⊂ G includes almost all known results on Popov-

Pommerening’s conjecture (see 2.2). We study the canonical embedding

of G/Pu from a geometric view-point. Finally, we mention counterex-

amples to Hilbert’s 14th problem due to M. Nagata, P. Roberts, and R.

Steinberg.

In Section 3 we introduce the notion of an affinely closed space, i.e.

an affine homogeneous space admitting no non-trivial affine embeddings,

and discuss the result of D. Luna related to this notion. (We say that

an affine embedding G/H ↪→ X is trivial if X = G/H .) Affinely closed

spaces of an arbitrary affine algebraic group are characterized and some

elementary properties of affine embeddings are formulated.

Section 4 is devoted to affine embeddings with a finite number of or-

bits. We give a characterization of affine homogeneous spaces G/H such

that any affine embedding of G/H contains a finite number of orbits.

More generally, we compute the maximal number of parameters in a

continuous family of G-orbits over all affine embeddings of a given affine

homogeneous space G/H . The group of equivariant automorphisms of

an affine embedding is also studied here.

Some applications of the theory of affine embeddings to functional

analysis are given in Section 5. Let M = K/L be a homogeneous space of

a connected compact Lie group K, and C(M) the commutative Banach

algebra of all complex-valued continuousfunctions on M . The K-action

on C(M) is defined by the formula (kf)(x) = f(k−1x), k ∈ K, x ∈

M . We shall say that A is an invariant algebra on M if A is a K-

invariant uniformly closed subalgebra with unit in C(M). Denote by

G and H) the complexifications of K and L respectively. Then G is

a reductive algebraic group with reductive subgroup H . There exists

a correspondence between finitely generated invariant algebras on M

and affine embeddings of G/F with some additional data, where F is

an observable subgroup of G containing H . This correspondence was

introduced by V. M. Gichev [25], I. A. Latypov [38], [39] and, in a

more algebraic way, by E. B. Vinberg. We give a precise formulation of

this correspondence and reformulate some facts on affine embeddings in

terms of invariant algebras. Some results of this section are new and not

published elsewhere.

The last section is devoted to G-algebras. It is easy to prove that any
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subalgebra in the polynomial algebra K[x] is finitely generated. On the

other hand, one can construct many non-finitely generated subalgebras

in K[x1, . . . , xn] for n ≥ 2. More generally, every subalgebra in an as-

sociative commutative finitely generated integral domain A with unit is

finitely generated if and only if KdimA ≤ 1, where KdimA is the Krull

dimension of A (Proposition 6.5). In Section 6 we obtain an equivari-

ant version of this result. The problem was motivated by the study of

invariant algebras in the previous section. The proof of the main re-

sult (Theorem 6.3) is based on a geometric method for constructing a

non-finitely generated subalgebra in a finitely generated G-algebra and

on properties of affine embeddings obtained above. In particular, the

notion of an affinely closed space is crucial for the classification of G-

algebras with finitely generated invariant subalgebras. The arguments

used in this text are slightly different from the original ones [9]. A char-

acterization of G-algebras with finitely generated invariant subalgebras

for non-reductive G is also given in this section.
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1 Remarkable classes of affine embeddings

1.1 Affine toric varieties

We begin with some notation. Let T be an algebraic torus and Ξ(T )

the lattice of its characters. A T -action on an affine variety X defines

a Ξ(T )-grading on the algebra K[X ] = ⊕χ∈Ξ(T )K[X ]χ, where K[X ]χ =

{f | tf = χ(t)f for any t ∈ T }. (This grading is just the isotypic

decomposition, see the introduction.) If X is irreducible, then the set

L(X) = {χ | K[X ]χ 
= 0} is a submonoid in Ξ(T ).

Definition 1.1. An affine toric variety X is a normal affine T -variety

with an open T -orbit isomorphic to T .

Below we list some basic properties of T -actions:
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• An action T : X has an open orbit if and only if dimK[X ]χ = 1 for any

χ ∈ L(X). In this situation K[X ] is T -isomorphic to the semigroup

algebra KL(X).

• An action T : X is effective if and only if the subgroup in Ξ(T )

generated by L(X) coincides with Ξ(T ).

• Suppose that T : X is an effective action with an open orbit. Then

the following conditions are equivalent:

1) X is normal;

2) the semigroup algebra KL(X) is integrally closed;

3) if χ ∈ Ξ(T ) and there exists n ∈ N, n > 0, such that nχ ∈ L(X),

then χ ∈ L(X) (the saturation condition);

4) there exists a solid convex polyhedral cone K in Ξ(T ) ⊗Z Q such

that L(X) = K ∩ Ξ(T ).

In this situation, any T -invariant radical ideal of K[X ] corresponds to

the subsemigroup L(X) \ M for a fixed face M of the cone K. This

correspondence defines a bijection between T -invariant radical ideals

of K[X ] and faces of K.

The proof of these properties can be found, for example, in [23]. Sum-

marizing all the results, we obtain

Theorem 1.2.1) Affine toric varieties are in one-to-one correspondence

with solid convex polyhedral cones in the space Ξ(T ) ⊗Z Q;

2) T -orbits on a toric variety are in one-to-one correspondence with faces

of the cone.

The classification of affine toric varieties will serve us as a sample for

studying more complicated classes of affine embeddings. Generalizations

of a combinatorial description of toric varieties were obtained for spher-

ical varieties [45, 33, 17], and for embeddings of complexity one [68].

In this more general context, the idea that normal G-varieties may be

described by some convex cones becomes rigorous through the method

of U -invariants developed by D. Luna and Th. Vust. The essence of this

method is contained in the following theorem (see [72, 37, 54, 29]).

Theorem 1.3. Let A be a G-algebra and U a maximal unipotent sub-

group of G. Consider the following properties of an algebra:

1) it is finitely generated;

2) it has no nilpotent elements;

3) it has no zero divisors;
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4) it is integrally closed.

If (P) is any of these properties, then the algebra A has property (P) if

and only if the algebra AU has property (P).

We try to demonstrate briefly some applications of the method of

U -invariants in the following subsections.

1.2 Normal affine SL(2)-embeddings

Suppose that the group SL(2) acts on a normal affine variety X and

there is a point x ∈ X such that the stabilizer of x is trivial and the

orbit SL(2)x is open in X . We say in this case that X is a normal

SL(2)-embedding.

Let Um be a finite extension of the standard maximal unipotent sub-

group in SL(2):

Um =

{(
ε a

0 ε−1

)
| εm = 1, a ∈ K

}
.

Theorem 1.4 ([52]). Normal non-trivial SL(2)-embeddings are in one-

to-one correspondence with rational numbers h ∈ (0, 1]. Furthermore,

1) h = 1 corresponds to a (unique) smooth SL(2)-embedding with two

orbits: X = SL(2) ∪ SL(2)/T ;

2) if h = p
q < 1 and (p, q) = 1, then X = SL(2) ∪ SL(2)/Up+q ∪ {pt},

and {pt} is an isolated singular point in X.

The proof of Theorem 1.4 can be found in [52], [37, Ch. 3]. Here we

give only some examples and explain what the number h (which is called

the height of X) means in terms of the algebra K[X ].

Example 1.5. 1) The group SL(2) acts tautologically on the space K2

and by conjugation on the space Mat(2 × 2). Consider the point

x =

{(
1 0

0 −1

)
,

(
1

0

)}
∈ Mat(2 × 2) × K2

and its orbit

SL(2)x = {(A, v) | detA = −1, tr A = 0, Av = v, v 
= 0}.

It is easy to see that the closure

X = SL(2)x = {(A, v) | detA = −1, tr A = 0, Av = v}
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is a smooth SL(2)-embedding with two orbits, hence X corresponds to

h = 1.

2) Let Vd = 〈xd, xd−1y, . . . , yd〉 be the SL(2)-module of binary forms

of degree d. It is possible to check that

X = SL(2)(x, x2y) ⊂ V1 ⊕ V3

is a normal SL(2)-embedding with the orbit decomposition X = SL(2)∪

SL(2)/U3 ∪ {pt}, hence X corresponds to h = 1
2 .

An embedding SL(2) ↪→ X , g → gx determines the injective homo-

morphism A = K[X ] → K[SL(2)] with QA = QK[SL(2)], where QA

is the quotient field of A. Let U− be the unipotent subgroup of SL(2)

opposite to U . Then

K[SL(2)]U
−

= {f ∈ K[SL(2)] | f(ug) = f(g), g ∈ SL(2), u ∈ U−} = K[A, B],

where A

(
a b

c d

)
= a and B

(
a b

c d

)
= b.

Below we list some facts ([37, Ch. 3]) that allow us to introduce the

height of an SL(2)-embedding X .

• If C is an integral F -domain, where F is a unipotent group, then

Q(CF ) = (QC)F . In particular, if C ⊆ A and QA = QC, then

Q(AU−

) = Q(CU−

).

• Suppose that limt→0

(
t 0

0 t−1

)
x exists. Then A ∈ K[SL(2)] ⊂

K(X) is regular on X .

• Let D ⊂ K[x, y] be a homogeneous integrally closed subalgebra in the

polynomial algebra such that QD = K(x, y) and x ∈ D. Then D is

generated by monomials.

In our situation, the algebra D = AU−

⊂ K[A, B] is homogeneous

because it is T -stable (since T normalizes U−).

• There exists rational h ∈ (0, 1] such that

AU−

= A(h) = 〈AiBj |
j

i
≤ h〉.

Moreover, for any rational h ∈ (0, 1] the subspace 〈SL(2)A(h)〉 ⊂

K[SL(2)] is a subalgebra.

Remark . While normal SL(2)-embeddings are parametrized by a dis-

crete parameter h, there are families of non-isomorphic non-normal SL(2)-

embeddings over a base of arbitrary dimension [13].
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Remark . A classification of SL(2)-actions on normal three-dimensional

affine varieties without open orbit can be found in [6], [5].

1.3 HV -varieties and S-varieties

In this subsection we discuss the results of V. L. Popov and E. B. Vin-

berg [55]. Suppose that G is a connected and simply connected semisim-

ple group.

Definition 1.6. An HV -variety X is the closure of the orbit of a highest

weight vector in a simple G-module.

Let V (λ) be the simple G-module with highest weight λ and vλ a

highest weight vector in V (λ). Denote by λ∗ the highest weight of the

dual G-module V (λ)∗.

• X(λ) = Gvλ∗ is a normal affine variety consisting of two orbits:

X(λ) = Gvλ∗ ∪ {0}.

• K[X(λ)] = K[Gvλ∗ ] = ⊕m≥0K[X(λ)]mλ, any isotypic component

K[X(λ)]mλ is a simple G-module, and

K[X(λ)]m1λK[X(λ)]m2λ = K[X(λ)](m1+m2)λ.

• The algebra K[X(λ)] is a unique factorization domain if and only if λ

is a fundamental weight of G.

Example 1.7. 1) The quadratic cone KQn = {x ∈ Kn | x2
1 + · · · +

x2
n = 0} (n ≥ 3) is an HV -variety for the tautological representation

SO(n) : Kn. (In fact, the group SO(n) is not simply connected and

we consider the corresponding module as a Spin(n)-module.) It follows

that KQn is normal and it is factorial if and only if n ≥ 5.

2) The Grassmannian cone KGn,m (n ≥ 2, 1 ≤ m ≤ n − 1) (i.e.

the cone over the projective variety of m-subspaces in Kn) is an HV -

variety associated with the fundamental SL(n)-representation in the

space
∧m

Kn, hence it is factorial.

Definition 1.8. An irreducible affine variety X with an action of a

connected reductive group G is said to be an S-variety if X has an open

G-orbit and the stabilizer of a point in this orbit contains a maximal

unipotent subgroup of G.

Any S-variety may be realized as X = Gv, where v = vλ∗
1

+ · · ·+ vλ∗
k
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is a sum of highest weight vectors vλ∗
i

in some G-module V . We have

the isotypic decomposition

K[X ] = ⊕λ∈L(X)K[X ]λ,

where L(X) is the semigroup generated by λ1, . . . , λk, any K[X ]λ is a

simple G-module, and K[X ]λK[X ]µ = K[X ]λ+µ. The last condition

determines uniquely (up to G-isomorphism) the multiplicative structure

on the G-module K[X ]. This shows that there is a bijection between

S-varieties and finitely generated submonoids in Ξ+(G).

Consider the cone K = Q+L(X). As in the toric case, normality of

X is equivalent to the saturation condition for the semigroup L(X), and

G-orbits on X are in one-to-one correspondence with faces of K. On

the other hand, there are phenomena which are specific for S-varieties.

For example, the complement to the open orbit in X has codimension

≥ 2 if and only if ZL(X) ∩ Ξ+(G) ⊆ Q+L(X) (this is never the case

for non-trivial toric varieties). For semisimple simply connected G, an

S-variety X is factorial if and only if L(X) is generated by fundamental

weights.

Finally, we mention one more result on this subject. Say that an

action G : X on an affine variety X is special (or horospherical) if there

is an open dense subset W ⊂ X such that the stabilizer of any point of

W contains a maximal unipotent subgroup of G.

Theorem 1.9 ([54]). The following conditions are equivalent:

1) the action G : X is special;

2) the stabilizer of any point on X contains a maximal unipotent sub-

group;

3) K[X ]λK[X ]µ ⊆ K[X ]λ+µ for any λ, µ ∈ Ξ+(G).

1.4 Algebraic monoids

The general theory of algebraic semigroups was developed by M. S.

Putcha, L. Renner and E. B. Vinberg. In this subsection we recall

briefly the classification results following [71].

Definition 1.10. An (affine) algebraic semigroup is an (affine) algebraic

variety S with an associative multiplication

µ : S × S → S,

which is a morphism of algebraic varieties. An algebraic semigroup S is

normal if S is a normal algebraic variety.
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Any algebraic group is an algebraic semigroup. Another example is

the semigroup End(V ) of endomorphisms of a finite-dimensional vector

space V .

Lemma 1.11. An affine algebraic semigroup S is isomorphic to a closed

subsemigroup of End(V ) for a suitable V . If S has a unit, one may

assume that it corresponds to the identity map of V .

Proof. The morphism µ : S × S → S induces the homomorphism µ∗ :

K[S] → K[S] ⊗ K[S], f(s) �→ F (s1, s2) := f(s1s2). Hence f(s1s2) =∑n
i=1 fi(s1)hi(s2). Consider the linear action S : K[S] defined by (s ∗

f)(x) = f(xs). One has 〈Sf〉 ⊆ 〈f1, . . . , fn〉, i.e. the linear span of any

‘S-orbit’ in K[S] is finite-dimensional and the linear action S : 〈Sf〉 de-

fines an algebraic representation of S. Take as V any finite-dimensional

S-invariant subspace of K[S] containing a system of generators of K[S].

Suppose that S is a monoid, i.e. a semigroup with unit. We claim that

the action S : V defines a closed embedding φ : S → End(V ). Indeed,

there are αij ∈ K[S] such that s ∗ fi =
∑

j αij(s)fj . The equalities

fi(s) = (s ∗ fi)(e) =
∑

j αij(s)fj(e) show that the homomorphism φ∗ :

K[End(V )] → K[S] is surjective.

The general case can be reduced to the previous one as follows: to

any semigroup S one may add an element e with relations e2 = e and

es = se = s for any s ∈ S. Then S̃ = S�{e} is an algebraic monoid.

If S ⊆ End(V ) is a monoid, then any invertible element of S corre-

sponds to an element of GL(V ). Conversely, if the image of s is invertible

in End(V ), then it is invertible in S. Indeed, the sequence of closed sub-

sets S ⊇ sS ⊇ s2S ⊇ s3S ⊇ . . . stabilizes, and skS = sk+1S implies

S = sS. Hence the group G(S) of invertible elements is open in S and

is an algebraic group. Suppose that G(S) is dense in S. Then S may

be considered as an affine embedding of G(S)/{e} (with respect to left

multiplication).

Proposition 1.12. Let G be an algebraic group. An affine embedding

G/{e} ↪→ S has a structure of an algebraic monoid with G as the group

of invertible elements if and only if the G-equivariant G-action on the

open orbit by right multiplication can be extended to S, or, equivalently,

S is an affine embedding of (G×G)/∆(G), where ∆(G) is the diagonal

in G × G.

Proof. If S is an algebraic monoid with G(S) = G and G(S) is dense in
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S, then G × G acts on S by ((g1, g2), s) �→ g1sg
−1
2 and the dense open

G × G-orbit in S is isomorphic to (G × G)/∆(G).

For the converse, we give two independent proofs in their historical

order.

Proof One (the reductive case). (E.B.Vinberg [71]) An algebraic monoid

S is reductive if the group G(S) is reductive and dense in S. The

multiplication µ : G × G → G corresponds to the comultiplication

µ∗ : K[G] → K[G]⊗K[G]. Any (G×G)-isotypic component in K[G] is a

simple (G×G)-module isomorphic to V (λ)∗ ⊗V (λ) for λ ∈ Ξ+(G) [37].

It coincides with the linear span of the matrix entries of the G-module

V (λ). This shows that µ∗ maps an isotypic component to its tensor

square, and for any (G × G)-invariant subspace W ⊂ K[G] one has

µ∗(W ) ⊂ W ⊗W . Thus the spectrum S of any (G×G)-invariant finitely

generated subalgebra in K[G] carries the structure of an algebraic semi-

group. If the open (G × G)-orbit in S is isomorphic to (G × G)/∆(G),

then G(S) = G. Indeed, G is dense in S and for any s ∈ G(S) the

intersection sG ∩ G 
= ∅, hence s ∈ G.

Proof Two (the general case). (A.Rittatore [59]) If the multiplication

µ : G × G → G extends to a morphism µ : S × S → S, then µ is a

multiplication because µ is associative on G × G. It is clear that 1 ∈ G

satisfies 1s = s1 = s for all s ∈ S. Consider the right and left actions of

G given by

G × S → S, gs = (g, 1)s,

S × G → S, sg = (1, g−1s).

These actions define coactions K[S] → K[G] ⊗ K[S] and K[S] → K[S]⊗

K[G], which are the restrictions to K[S] of the comultiplication K[G] →

K[G] ⊗ K[G]. Hence the image of K[S] lies in

(K[G] ⊗ K[S]) ∩ (K[S] ⊗ K[G]) = K[S] ⊗ K[S],

and we have a multiplication on S. The equality G(S) = G may be

proved as above.

For the rest of this section we assume that G is reductive. For λ1, λ2 ∈

Ξ+(G), we denote by Ξ(λ1, λ2) the set of λ ∈ Ξ+(G) such that the G-

module V (λ1)⊗V (λ2) contains a submodule isomorphic to V (λ). Since

any (G×G)-isotypic component K[G](λ∗,λ) in K[G] is the linear span of

the matrix entries corresponding to the representation of G in V (λ), the
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product K[G](λ∗
1 ,λ1)K[G](λ∗

2 ,λ2) is the linear span of the matrix entries

corresponding to V (λ1) ⊗ V (λ2). This shows that

K[G](λ∗
1 ,λ1)K[G](λ∗

2 ,λ2) = ⊕λ∈Ξ(λ1,λ2)K[G](λ∗,λ).

Since every (G×G)-isotypic component in K[G] is simple, any (G×G)-

invariant subalgebra in K[G] is determined by the semigroup of dominant

weights that appear in its isotypic decomposition, and it is natural to

classify reductive algebraic monoids S with G(S) = G in terms of the

semigroup that determines K[S] in K[G].

Definition 1.13. A subsemigroup L ⊂ Ξ+(G) is perfect if it contains

zero and λ1, λ2 ∈ L implies Ξ(λ1, λ2) ⊂ L.

Let ZΞ+(G) be the group generated by the semigroup Ξ+(G). This

group may be realized as the group of characters Ξ(T ) of a maximal

torus of G.

Theorem 1.14 ([71]). A subset L ⊂ Ξ+(G) defines an affine algebraic

monoid S with G(S) = G if and only if L is a perfect finitely generated

subsemigroup generating the group ZΞ+(G).

The classification of normal affine reductive monoids is more con-

structive. We fix some notation. The group G = ZG′ is an almost

direct product of its center Z and the derived subgroup G′. Fix a Borel

subgroup B0 and a maximal torus T0 ⊂ B0 in G′. Then B = ZB0 (resp.

T = ZT0) is a Borel subgroup (resp. a maximal torus) in G. By N (resp.

N0, N1) denote Q-vector space Ξ(T )⊗ZQ (resp. Ξ(T0)⊗ZQ, Ξ(Z)⊗ZQ).

Then N = N1 ⊕ N0. The semigroup of dominant weights Ξ+(G) (with

respect to B) is a subsemigroup in Ξ(T ) ⊂ N . By α1, . . . , αk ∈ N1

denote the simple roots of G with respect to B, and by C ⊂ N (resp.

C0 ⊂ N0) the positive Weyl chamber for the group G (resp. G′) with

respect to α1, . . . , αk.

Theorem 1.15 ([71]). A subset L ⊂ Ξ+(G) defines a normal affine

algebraic monoid S with G(S) = G if and only if L = Ξ+(G)∩K, where

K is a closed convex polyhedral cone in N satisfying the conditions:

1) −α1, . . . ,−αk ∈ K;

2) the cone K ∩ C generates N .

The monoid S has a zero if and only if:

3) the cone K ∩ N1 is pointed;
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4) K ∩ C0 = {0}.

A characteristic-free approach to the classification of reductive alge-

braic monoids via the theory of spherical varieties was developed in [59].

Another interesting result of [59] is that any reductive algebraic monoid

is affine. Recently A. Rittatore announced a proof of the fact that any

algebraic monoid with an affine algebraic group of invertible elements is

affine.

2 Connections with Hilbert’s 14th Problem

2.1 Grosshans subgroups and the canonical embedding

Let H be a closed subgroup of GL(V ). Hilbert’s 14th problem (in its

modern version) may be formulated as follows: characterize subgroups

H such that the algebra of polynomial invariants K[V ]H is finitely gen-

erated. It is a classical result that for reductive H the algebra K[V ]H is

finitely generated. For non-reductive linear groups this problem seems

to be very far from a complete solution.

Remark . Hilbert’s original statement of the problem was the following:

For a field K, let K[x1, . . . , xn] denote the polynomial ring in n vari-

ables over K, and let K(x1, . . . , xn) denote its field of fractions. If K

is a subfield of K(x1, . . . , xn) containing K, is K ∩ K[x1, . . . , xn] finitely

generated over K?

Since K[V ]H = K[V ] ∩ K(V )H , our situation may be regarded as a

particular case of the general one.

Let us assume that H is a subgroup of a bigger reductive group G act-

ing on V . (For example, one may take G = GL(V ).) The intersection of

a family of observable subgroups in G is an observable subgroup. Define

the observable hull Ĥ of H as the minimal observable subgroup of G con-

taining H . The stabilizer of any H-fixed vector in a rational G-module

contains Ĥ . Therefore K[V ]H = K[V ]Ĥ for any G-module V , and it is

natural to solve Hilbert’s 14th problem for observable subgroups.

The following famous theorem proved by F. D. Grosshans establishes

a close connection between Hilbert’s 14th problem and the theory of

affine embeddings.

Theorem 2.1 ([27, 29]). Let H be an observable subgroup of a reductive

group G. The following conditions are equivalent:
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1) for any G-module V the algebra K[V ]H is finitely generated;

2) the algebra K[G/H ] is finitely generated;

3) there exists an affine embedding G/H ↪→ X such that

codimX(X \ (G/H)) ≥ 2.

Definition 2.2. 1) An observable subgroup H in G is said to be a

Grosshans subgroup if K[G/H ] is finitely generated.

2) If H is a Grosshans subgroup of G, then G/H ↪→ X = Spec K[G/H ]

is called the canonical embedding of G/H , and X is denoted by CE(G/H).

Note that any normal affine embedding G/H ↪→ X with codimX(X \

(G/H)) ≥ 2 is G-isomorphic to the canonical embedding [29]. A ho-

mogeneous space G/H admits such an embedding if and only if H is a

Grosshans subgroup.

By Matsushima’s criterion, H is reductive if and only if CE(G/H) =

G/H . For non-reductive subgroups, CE(G/H) is an interesting object

canonically associated with the pair (G, H). It allows us to reformulate

algebraic problems concerning the algebra K[G/H ] in geometric terms.

2.2 Popov-Pommerening’s conjecture and Knop’s theorem

Theorem 2.3 ([28, 19],[29, Th.16.4]). Let Pu be the unipotent radical

of a parabolic subgroup P of G. Then Pu is a Grosshans subgroup of G.

Proof. Let P = LPu be a Levi decomposition and U1 a maximal unipo-

tent subgroup of L. Then U = U1P
u is a maximal unipotent subgroup

of G, and K[G]U = (K[G]P
u

)U1 . We know that K[G]U is finitely gen-

erated (Theorem 1.3). On the other hand, Theorem 1.3 implies that

the L-algebra K[G]P
u

is finitely generated if and only if (K[G]P
u

)U1 is,

hence K[G]P
u

is finitely generated. (Another proof, using an explicit

codimension 2 embedding, is given in [28].)

Let us say that a subgroup of a reductive group G is regular if it

is normalized by a maximal torus in G. Generalizing Theorem 2.3, V.

L. Popov and K. Pommerening conjectured that any observable regular

subgroup is a Grosshans subgroup. At the moment a positive answer is

known for groups G of small rank [64, 66, 65], and for some special classes

of regular subgroups (for example, for unipotent radicals of parabolic

subgroups of Levi subgroups of G [29]). Lin Tan [65] constructed ex-

plicitly canonical embeddings for regular unipotent subgroups in SL(n),

n ≤ 5. A strong argument in favour of Popov-Pommerening’s conjecture
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is given in [14, Th.4.3] in terms of finite generation of induced modules,

see also [29, § 23].

Another powerful method for checking that the algebra K[G/H ] is

finitely generated is provided by the following theorem of F. Knop.

Theorem 2.4 ([35, 29]). Suppose that G acts on an irreducible normal

unirational variety X. If c(X) ≤ 1, then the algebra K[X ] is finitely

generated.

Corollary . If H is observable in G and c(G/H) ≤ 1, then H is a

Grosshans subgroup.

2.3 The canonical embedding of G/P u

Since the unipotent radical Pu of a parabolic subgroup P is a Grosshans

subgroup of G, there exists a canonical embedding G/P u ↪→ CE(G/Pu).

Such embeddings provide an interesting class of affine factorial G-varieties,

which was studied in [12]. Let us note that the Levi subgroup L ⊂ P

normalizes Pu, hence acts G-equivariantly on G/P u and on CE(G/Pu).

By VL(λ) denote a simple L-module with the highest weight λ. Our ap-

proach is based on the analysis of the (G×L)-module decomposition of

the algebra K[G/Pu] given by

K[G/Pu] =
⊕

λ∈Ξ+(G)

K[G/Pu]λ,

where K[G/Pu]λ ∼= V (λ)∗ ⊗ VL(λ) is the linear span of the matrix en-

tries of the linear maps V (λ)P u

→ V (λ) induced by g ∈ G, considered

as regular functions on G/Pu. (In fact, our method works for any affine

embedding G/Pu ↪→ X , where L acts G-equivariantly.) The multiplica-

tion structure looks like

K[G/P u]λ · K[G/P u]µ = K[G/P u]λ+µ ⊕
⊕

i

K[G/Pu]λ+µ−βi
,

where λ + µ− βi runs over the highest weights of all “lower” irreducible

components in the L-module decomposition VL(λ) ⊗ VL(µ) = VL(λ +

µ) ⊕ . . . .

Here we list the results from [12].

• Affine (G × L)-embeddings G/Pu ↪→ X are classified by finitely

generated subsemigroups S of Ξ+(G) having the property that all high-

est weights of the tensor product of simple L-modules with highest
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weights in S belong to S, too. Furthermore, every choice of the gen-

erators λ1, . . . , λm ∈ S gives rise to a natural G-equivariant embedding

X ↪→ Hom(V P u

, V ), where V is the sum of simple G-modules of highest

weights λ1, . . . , λm. The convex cone Σ+ spanned by S is precisely the

dominant part of the cone Σ spanned by the weight polytope of V P u

. In

the case X = CE(G/Pu), the semigroup S coincides with Ξ+(G) and

Σ is the span of the dominant Weyl chamber by the Weyl group of L.

In particular, if G is simply connected and semisimple then there is a

natural inclusion

CE(G/Pu) ⊂
l⊕

i=1

Hom(V (ωi)
P u

, V (ωi)),

where ω1, . . . , ωl are the fundamental weights of G.

• The (G × L)-orbits in X are in bijection with the faces of Σ whose

interiors contain dominant weights, the orbit representatives being given

by the projectors onto the subspaces of V P u

spanned by eigenvectors of

eigenweights in a given face. For the canonical embedding, the (G×L)-

orbits correspond to the subdiagrams in the Dynkin diagram of G such

that no connected component of such a subdiagram is contained in the

Dynkin diagram of L. We also compute the stabilizers of points in G×L

and in G, and the modality of the action G : X .

• We classify smooth affine (G×L)-embeddings G/Pu ↪→ X . In par-

ticular, the only non-trivial smooth canonical embedding corresponds to

G = SL(n), P is the stabilizer of a hyperplane in Kn, and CE(G/Pu) =

Mat(n, n − 1) with the G-action by left multiplication.

• The techniques used in the description of affine (G×L)-embeddings

of G/Pu are parallel to those developed in [69] for the study of equiv-

ariant compactifications of reductive groups. An analogy with monoids

becomes more transparent in view of the bijection between our affine

embeddings G/Pu ↪→ X and a class of algebraic monoids M with the

group of invertibles L, given by X = Spec K[G ×P M ].

• Finally, we describe the G-module structure of the tangent space of

CE(G/Pu) at the G-fixed point, assuming that G is {simply connected Author

query:

Does this

mean

sim. conn.

(topologi-

cally)

and simple

(algebraically)?

and simple.} This space is obtained from
⊕

i Hom(V (ωi)
P u

, V (ωi))

by removing certain summands according to an explicit algorithm. The

tangent space at the fixed point is at the same time the minimal ambient

G-module for CE(G/Pu).
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2.4 Counterexamples

The famous counterexample of Nagata to Hilbert’s 14th problem [49]

yields a 13-dimensional unipotent subgroup H in SL(32) acting natu-

rally in V = K32 such that the algebra of invariants K[V ]H is not finitely

generated. This shows that the algebra K[SL(32)/H ] is not finitely gen-

erated, or, equivalently, the complement of the open orbit in any affine

embedding SL(32)/H ↪→ X contains a divisor.

Nagata’s construction was simplified by R. Steinberg. He proved that

K[V ]H is not finitely generated for the following 6-dimensional commu-

tative unipotent linear group:

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 c1

0 1
0

. .

. .

0
1 c9

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
9∑

j=1

aijcj = 0, i = 1, 2, 3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

where the nine points Pj = (a1j : a2j : a3j) are nonsingular points on

an irreducible cubic curve in the projective plane, their sum has infinite

order in the group of the curve, and V = K18 (see [62] for details).

Another method of obtaining counterexamples was proposed by P.

Roberts [60]. Consider the polynomial algebra R = K[x, y, z, s, t, u, v] in

7 variables over a not necessarily algebraically closed field K of charac-

teristic zero with the grading R = ⊕n≥0Rn determined by assigning the

degree 0 to x, y, z and the degree 1 to s, t, u, v. The elements s, t, u, v

generate a free R0-submodule in R considered as R0-module . Choosing

a natural number m ≥ 2, Roberts defines an R0-module homomorphism

on this submodule

f : R0s ⊕ R0t ⊕ R0u ⊕ R0v → R0

given by f(s) = xm+1, f(t) = ym+1, f(u) = zm+1, f(v) = (xyz)m. The

submodule Ker f generates a subalgebra of R, which is denoted by A. It

is proved in [60] that the K-algebra B = R∩QA is not finitely generated.

(Roberts shows how to construct an element in B of any given degree

which is not in the subalgebra generated by elements of lower degree.)

A linear action of a 12-dimensional commutative unipotent group on

19-dimensional vector space with the algebra of invariants isomorphic to

the polynomial algebra in one variable over B is constructed in [1].

For a recent development in this direction, see [21, 22].
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3 Some properties of affine embeddings

3.1 Affinely closed spaces and Luna’s theorem

Definition 3.1. An affine homogeneous space G/H of an affine alge-

braic group G is called affinely closed if it admits only the trivial affine

embedding X = G/H .

Assume that G is reductive; {then G/H affinely closed implies H Author

queryreductive.} By NG(H), CG(H) denote the normalizer and centralizer

respectively of H in G, and by W (H) denote the quotient NG(H)/H .

It is known that NG(H)0 = H0CG(H)0 and both NG(H) and CG(H)

are reductive [44, Lemma 1.1].

Theorem 3.2 ([43]). Let H be a reductive subgroup of a reductive group

G. The homogeneous space G/H is affinely closed if and only if the

group W (H) is finite. Moreover, if G acts on an affine variety X and

the stabilizer of a point x ∈ X contains a reductive subgroup H such that

W (H) is finite, then the orbit Gx is closed in X.

Remark . The last statement may be reformulated: if H is reductive,

the group W (H) is finite, and H ⊂ H ′ ⊂ G, where H ′ is observable,

then H ′ is reductive and G/H ′ is affinely closed.

Remark . Let H be a Grosshans subgroup of G. The following condi-

tions are equivalent:

1) H is reductive and W (H) is finite;

2) H is reductive and for any one-parameter subgroup µ : K∗ → CG(H)

one has µ(K∗) ⊆ H ;

3) the algebra K[G/H ] does not have non-trivial G-invariant ideals and

does not admit non-trivial G-invariant Z-gradings;

4) the algebra K[G/H ] does not have non-trivial G-invariant ideals and

the group of G-equivariant automorphisms of K[G/H ] is finite.

5) no invariant subalgebra in K[G/H ] admits a non-trivial G-invariant

ideal.

Example 3.3. 1) Let ρ : H → SL(V ) be an irreducible representation

of a reductive group H . Then the space SL(V )/ρ(H) is affinely closed

(W (ρ(H)) is finite by the Schur Lemma).

2) If T is a maximal torus of G, then W (T ) is the Weyl group and

G/T is affinely closed.

Proposition 3.4. Let G be an affine algebraic group. The following

conditions are equivalent:
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1) any monoid S with G(S) = G and G(S) = S coincides with G;

2) the group G/Gu is semisimple.

Proof. Let G be reductive. The space (G×G)/∆(G) is affinely closed if

and only if the group NG×G(∆(G))/∆(G) is finite. But this is exactly

the case when the center of G is finite. The same arguments work for

any G (Theorem 3.9).

We now give a proof of Theorem 3.2 in terms of so-called adapted (or

optimal) one-parameter subgroups following G. Kempf [31, Cor.4.5].

We have to prove that if G/H ′ is a quasi-affine homogeneous space

that is not affinely closed and H ⊂ H ′ is a reductive subgroup, then there

exists a one-parameter subgroup ν : K∗ → CG(H) such that ν(K∗) is

not contained in H . There is an affine embedding G/H ′ ↪→ X with a

G-fixed point o, see 3.5. Denote by x the image of eH ′ in the open orbit

on X . By the Hilbert-Mumford criterion, there exists a one-parameter

subgroup γ : K∗ → G such that limt→0 γ(t)x = o. Moreover, there

is a subgroup γ that moves x ‘most rapidly’ toward o. Such a γ is

called adapted to x; for the precise definition see [31, 56]. For adapted

γ, consider the parabolic subgroup

P (γ) = {g ∈ G | lim
t→0

γ(t)gγ(t)−1 exists in G }.

Then P (γ) = L(γ)U(γ), where L(γ) is the Levi subgroup that is the

centralizer of γ(K∗) in G, and U(γ) is the unipotent radical of P (γ).

By [31], [56, Th.5.5], the stabilizer Gx = H ′ is contained in P (γ). Hence

there is an element u ∈ U(γ) such that uHu−1 ⊂ L(γ).

We claim that γ(K∗) is not contained in uHu−1. In fact, γ is adapted

to the element ux, too [31, Th.3.4], hence γ(K∗) is not contained in the

stabilizer of ux. Thus u−1γu is the desired subgroup ν.

Conversely, suppose that there exists ν : K∗ → CG(H) and ν(K∗)

is not contained in H . Consider the subgroup H1 = ν(K∗)H . The

homogeneous fiber space G ∗H1 K, where H acts on K trivially and

H1/H acts on K by dilation, is a two-orbit embedding of G/H . �

3.2 Affinely closed spaces in arbitrary characteristic

In this subsection we assume that K is an arbitrary algebraically closed

field. Suppose that G acts on an affine variety X . In positive char-

acteristic, the structure of an algebraic variety on the orbit Gx of a

point x ∈ X is not determined (up to G-isomorphism) by the stabilizer
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H = Gx, and it is natural to consider the isotropy subscheme H̃ at x,

with H as the reduced part, identifying Gx and G/H̃ . There is a natural

bijective purely inseparable and finite morphism π : G/H → G/H̃ [30,

4.3, 4.6]. The following technical proposition shows that this difficulty

does not play an essential role for affinely closed spaces.

Proposition 3.5 ([9, Prop. 8]). The homogeneous space G/H is affinely

closed if and only if G/H̃ is affinely closed.

Definition 3.6. We say that an affinely closed homogeneous space G/H

is strongly affinely closed if for any affine G-variety X and any point

x ∈ X fixed by H the orbit Gx is closed in X .

By Theorem 3.2, in characteristic zero any affinely closed space is

strongly affinely closed.

The following notion was introduced by J.-P. Serre, c.f. [41].

Definition 3.7. A subgroup D ⊂ G is called G-completely reducible

(G-cr for short) if, whenever D is contained in a parabolic subgroup P

of G, it is contained in a Levi subgroup of P .

A G-cr subgroup is reductive. For G = GL(V ) this notion agrees

with the usual notion of complete reducibility. In fact, if G is any of the

classical groups then the notions coincide, although for the symplectic

and orthogonal groups this requires the assumption that char K is a

good prime for G. The class of G-cr subgroups is wide. Some conditions

which guarantee that certain subgroups satisfy the G-cr condition can

be found in [41, 46].

The proof of Theorem 3.2 given above implies:

• if H is not contained in a proper parabolic subgroup of G, then G/H

is strongly affinely closed;

• if there exists ν : K∗ → CG(H) such that ν(K∗) is not contained in

H , then G/H is not affinely closed;

• if H is a G-cr subgroup of G, then the following conditions are

equivalent:

1) G/H is affinely closed;

2) G/H is strongly affinely closed;

3) for any one-parameter subgroup ν : K∗ → CG(H) one has ν(K∗) ⊆ H .

Example 3.8. The following example produced by George J. McNinch

shows that the group W (H) may be unipotent even for reductive H .
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Let L be the space of (n × n)-matrices and H the image of SL(n) in

G = SL(L) acting on L by conjugation.

If p = char K | n, then L is an indecomposable SL(n)-module with

three composition factors, c.f. [46, Prop. 4.6.10, a)]. It turns out that

CG(H)0 is a one-dimensional unipotent group consisting of operators of

the form Id+aT , where a ∈ K, and T is a nilpotent operator on L defined

by T (X) = tr (X)E. The subgroup H is contained in a quasi-parabolic

subgroup of G, hence G/H is not strongly affinely closed.

In the simplest case n = p = 2, we have H ∼= PSL(2) ⊂ SL(4),

NG(H) = HCG(H) (because H does not have outer automorphisms),

CG(H) is connected, and W (H) ∼= (K, +).

It would be very interesting to obtain a complete description of affinely

closed spaces in arbitrary characteristic and to answer the following ques-

tion: is it true that any affinely closed space is strongly affinely closed?

3.3 Affinely closed spaces of non-reductive groups

For non-reductive G the class of affinely closed homogeneous spaces is

much wider. For example, it is well-known that an orbit of a unipo-

tent group acting on an affine variety is closed, hence any homogeneous

space of a unipotent group is affinely closed. Conversely, if any (quasi-

affine) homogeneous space of an affine group G is affinely closed, then

the connected component of the identity in G is unipotent [15, 10.1],

[20, Th.4.2]. In this subsection we give a complete characterization of

affinely closed homogeneous spaces of non-reductive groups.

Let us fix the Levi decomposition G = LGu of the group G in the

semidirect product of a reductive subgroup L and the unipotent radical

Gu. By φ denote the homomorphism G → G/Gu. We shall identify the

image of φ with L. Put K = φ(H).

Theorem 3.9 ([10, Th.2]). The following conditions are equivalent:

(1) G/H is affinely closed;

(2) L/K is affinely closed.

Proof. The subgroup H is observable in G if and only if the subgroup

K is observable in L [63], [29, Th.7.3].

Suppose that L/K admits a non-trivial affine embedding. Then there

are an L-module V and a vector v ∈ V such that the stabilizer Lv equals

K and the orbit boundary Y = Z \Lv, where Z = Lv, is nonempty. Let
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I(Y ) be the ideal in K[Z] defining the subvariety Y . There exists a finite-

dimensional L-submodule V1 ⊂ I(Y ) that generates I(Y ) as an ideal.

The inclusion V1 ⊂ K[Z] defines L-equivariant morphism ψ : Z → V ∗
1

and ψ−1(0) = Y . Then L-equivariant morphism ξ : Z → V2 = V ∗
1 ⊕

(V ⊗ V ∗
1 ), z → (ψ(z), z ⊗ ψ(z)) maps Y to the origin and is injective

on the open orbit in Z. Hence we obtain an embedding of L/K in an

L-module such that the closure of the image of this embedding contains

the origin. Put v2 = ξ(v). By the Hilbert-Mumford Criterion, there

is a one-parameter subgroup λ : K∗ → L such that limt→0 λ(t)v2 = 0.

Consider the weight decomposition v2 = v
(i1)
2 + · · · + v

(is)
2 of the vector

v2, where λ(t)v
(ik)
2 = tikv

(ik)
2 . Here all ik are positive.

By the identification G/Gu = L, one may consider V2 as a G-module.

Let W be a finite-dimensional G-module with a vector w whose stabilizer

equals H . Replacing the pair (W, w) by the pair (W ⊕ (W ⊗ W ), w +

w ⊗w), one may suppose that the orbit Gw intersects the line Kw only

at the point w. The weight decomposition shows that, for a sufficiently

large N , in the G-module W ⊗ V ⊗N
2 one has limt→0 λ(t)(w ⊗ v⊗N

2 ) = 0

(λ(K∗) may be considered as a subgroup of G). On the other hand, the

stabilizer of w⊗v⊗N
2 coincides with H . This implies that the space G/H

is not affinely closed.

Conversely, suppose that G/H admits a non-trivial affine embedding.

This embedding corresponds to a G-invariant subalgebra A ⊂ K[G/H ]

containing a non-trivial G-invariant ideal I. Note that the algebra K[L]

may be identified with the subalgebra in K[G] of (left- or right-) Gu-

invariant functions, K[G/H ] is realized in K[G] as the subalgebra of

right H-invariants, and K[L/K] is the subalgebra of left Gu-invariants

in K[G/H ]. Consider the action of Gu on the ideal I. By the Lie-

Kolchin Theorem, there is a non-zero Gu-invariant element in I. Thus

the subalgebra A∩K[L/K] contains the non-trivial L-invariant ideal I∩

K[L/K]. If the space L/K is affinely closed then we get a contradiction

with the following lemma.

Lemma 3.10. Let L/K be an affinely closed space of a reductive group

L. Then any L-invariant subalgebra in K[L/K] is finitely generated and

does not contain non-trivial L-invariant ideals.

Proof. Let B ⊂ K[L/K] be a non-finitely generated invariant subalge-

bra. For any chain W1 ⊂ W2 ⊂ W3 ⊂ . . . of finite-dimensional L-

invariant submodules in K[L/K] with ∪∞
i=1Wi = K[L/K], the chain of

subalgebras B1 ⊂ B2 ⊂ B3 ⊂ . . . generated by Wi does not stabi-
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lize. Hence one may suppose that all inclusions here are strict. Let

Zi be the affine L-variety corresponding the algebra Bi. The inclusion

Bi ⊂ K[L/K] induces the dominant morphism L/K → Zi and Theo-

rem 3.2 implies that Zi = L/Ki, K ⊂ Ki. But B1 ⊂ B2 ⊂ B3 ⊂ . . . ,

and any Ki is strictly contained in Ki−1, a contradiction. This shows

that B is finitely generated and, as proved above, L acts transitively on

the affine variety Z corresponding to B. But any non-trivial L-invariant

ideal in B corresponds to a proper L-invariant subvariety in Z.

Theorem 3.9 is proved.

Corollary . Let G/H be an affinely closed homogeneous space. Then

for any affine G-variety X and a point x ∈ X such that Hx = x, the

orbit Gx is closed.

Proof. The stabilizer Gx is observable in G, hence φ(Gx) is observable

in L. The subgroup φ(Gx) contains K = φ(H), and Theorems 3.2, 3.9

imply that the space L/φ(Gx) is affinely closed. By Theorem 3.9, the

space G/Gx is affinely closed.

Corollary . If X is an affine G-variety and a point x ∈ X is T -fixed,

where T is a maximal torus of G, then the orbit Gx is closed.

A characteristic-free description of affinely closed homogeneous spaces

for solvable groups is given in [67].

3.4 The Slice Theorem

The Slice Theorem due to D. Luna [42] is one of the most important

technical tools in modern invariant theory. In this text we need only

some corollaries of the Slice Theorem related to affine embeddings [42],

[56].

• Let G/H ↪→ X be an affine embedding with a closed G-orbit iso-

morphic to G/F , where F is reductive. By the Slice Theorem, we may

assume that H ⊆ F . Then there exists an affine embedding F/H ↪→ Y

with an F -fixed point such that X is G-isomorphic to the homogeneous

fiber space G ∗F Y . This allows one to reduce many problems to affine

embeddings with a fixed point. On the other hand, this gives us a G-

equivariant projection of X onto G/F .

• Let G/H ↪→ X be a smooth affine embedding with closed G-orbit

isomorphic to G/F . Then X is a homogeneous vector bundle over G/F .
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In particular, if X contains a G-fixed point, then X is vector space with

a linear G-action.

3.5 Fixed-point properties

Here we list some results concerning G-fixed points in affine embeddings.

• If G/H is a quasi-affine non affinely closed homogeneous space, then

G/H admits an affine embedding with a G-fixed point [9, Prop.3].

• A homogeneous space G/H admits an affine embedding G/H ↪→ X

such that X = G/H ∪ {o}, where o is a G-fixed point, if and only if H

is a quasi-parabolic subgroup of G [53, Th.4, Cor.5]. In this case the

normalization of X is an HV -variety and the normalization morphism

is bijective.

• Consider the canonical decomposition K[G/H ] = K ⊕ K[G/H ]G,

where the first term corresponds to the constant functions and K[G/H ]G
is the sum of all nontrivial simple G-submodules in K[G/H ]. Suppose

that H is an observable subgroup of G. The following conditions are

equivalent [9, Prop.6]:

(1) any affine embedding of G/H contains a G-fixed point;

(2) H is not contained in a proper reductive subgroup of G;

(3) K[G/H ]G is an ideal in K[G/H ].

If H is a Grosshans subgroup, then conditions (1)-(3) are equivalent to

(4) CE(G/H) contains a G-fixed point.

Example 3.11. Let G be a connected semisimple group and P a parabolic

subgroup containing no simple components of G. For H = Pu the

properties (1)-(4) hold. In fact, (3) follows from the observation that

K[G/Pu]G is the positive part of a G-invariant grading on K[G/P u] de-

fined by the G-equivariant action of a suitable one-parameter subgroup

in the centre of the Levi subgroup of P on G/Pu [9].

Proposition 3.12. Let H be an observable subgroup of G.

1) If either G/H is affinely closed or H is a quasi-parabolic subgroup

of G, then G/H admits only one normal affine embedding (up to G-

isomorphism);

2) if G = K∗ and H is finite, then there exist only two normal affine

embeddings, namely K∗/H and K/H;
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3) in all other cases there exists an infinite sequence

X1
φ1
←− X2

φ2
←− X3

φ3
←− . . .

of pairwise nonisomorphic normal affine embeddings G/H ↪→ Xi and

equivariant dominant morphisms φi.

Proof. The statements are obvious for affinely closed G/H and for G =

K∗. If H is a quasi-parabolic subgroup, then K[G/H ]U = K[t]. Suppose

that G/H ↪→ X is a normal affine embedding. Then K[X ]U ⊆ K[t]

is a graded integrally closed subalgebra with Q(K[X ]U ) = K(t). This

implies K[X ]U = K[t] and K[X ] = K[G/H ], hence X is G-isomorphic to

the canonical embedding of G/H .

In all other cases there exists an integrally closed non-finitely gen-

erated invariant subalgebra B in K[G/H ] with QB = K(G/H); see

Proposition 6.4. Let f1, f2, . . . , fn, fn+1, . . . be a set of generators of B

such that K(f1, . . . , fn) = K(G/H). Define Bk as the integral closure of

K[〈Gf1, . . . , Gfn+k〉] in B. The varieties Xk = Spec Bk are birationally

isomorphic to G/H and hence G/H ↪→ Xk. Infinitely many of the Xk

are pairwise nonisomorphic. Renumbering, one may suppose that all Xk

are nonisomorphic. The chain

B1 ⊂ B2 ⊂ B3 . . .

corresponds to the desired chain

X1 ← X2 ← X3 ← . . .

4 Embeddings with a finite number of orbits

4.1 The characterization theorem

Spherical homogeneous spaces admit the following nice characterization

in terms of equivariant embeddings.

Theorem 4.1 ([61, 45, 2]). A homogeneous space G/H is spherical if

and only if any embedding of G/H has finitely many G-orbits.

To be more precise, F. J. Servedio proved that any affine spherical

variety contains finitely many G-orbits, D. Luna, Th. Vust and D. N.

Akhiezer extended this result to an arbitrary spherical variety and D.

N. Akhiezer constructed a projective embedding with infinitely many

G-orbits for any homogeneous space of positive complexity.
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Now we are concerned with the following problem: characterize all

quasi-affine homogeneous spaces G/H of a reductive group G with the

property

(AF) For any affine embedding G/H ↪→ X, the number of G-orbits

in X is finite.

It follows from the results considered above that

1) spherical homogeneous spaces

2) affinely closed homogeneous spaces

3) homogeneous spaces of the group SL(2)

have property (AF). Our main result in some sense gives a unification

of these three classes.

Theorem 4.2 ([11]). For a reductive subgroup H ⊆ G, (AF) holds if

and only if either W (H) = NG(H)/H is finite or any extension of H by

a one-dimensional torus in NG(H) is spherical in G.

Corollary . For an affine homogeneous space G/H of complexity > 1,

(AF) holds if and only if G/H is affinely closed.

Corollary . An affine homogeneous space G/H of complexity 1 satisfies

(AF) if and only if either W (H) is finite, or rkW (H) = 1 and NG(H)

is spherical.

Corollary . Let G be a reductive group with infinite center Z(G) and H

a reductive subgroup in G that does not contain Z(G)0. Then property

(AF) holds for G/H if and only if H is a spherical subgroup of G.

The proof of Theorem 4.2 is based on the analysis of Akhiezer’s con-

struction [2] of projective embeddings and on some results of F. Knop.

We give this proof in Section 4.2, obtaining a more general result, The-

orem 4.7.

Our method applied to an arbitrary quasi-affine space G/H gives a

necessary condition for property (AF) (see the remark on page 35 be-

low), but a characterization of quasi-affine spaces with property (AF) is

not obtained yet. Another open problem is to characterize Grosshans

subgroups H of a reductive group G such that CE(G/H) contains only

a finite number of G-orbits [9].
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4.2 Modality

The aim of this subsection is to generalize Theorem 4.2 following the

ideas of [3], and to find the maximal number of parameters in a contin-

uous family of G-orbits over all affine embeddings of a given affine space

G/H .

Definition 4.3. Let F : X be an algebraic group action. The integer

dF (X) = min
x∈X

codimX Fx = tr.deg K(X)F

is called the generic modality of the action. This is the number of pa-

rameters in the family of generic orbits. The modality of F : X is

the integer modF X = maxY ⊆X dF (Y ), where Y runs through F -stable

irreducible subvarieties of X .

An action of modality zero is just an action with a finite number

of orbits. Note that c(X) = dB(X). E. B. Vinberg [70] proved that

modB(X) = c(X) for any G-variety X . This means that if we pass

from X to a B-stable irreducible subvariety Y ⊂ X , then the number of

parameters for generic B-orbits does not increase. Simple examples show

that the inequality dG(X) ≤ modG(X) can be strict. This motivates the

following

Definition 4.4. With any G-variety X we associate the integer

mG(X) = maxX′ modG(X ′),

where X ′ runs through all G-varieties birationally G-isomorphic to X .

For a homogeneous space G/H we have mG(G/H) = maxX modG(X),

where X runs through all embeddings of G/H .

It is clear that for any subgroup F ⊂ G the inequality mG(X) ≤

mF (X) holds. In particular, mG(X) ≤ c(X). The next theorem shows

that mG(X) = c(X).

Theorem 4.5 ([3]). There exists a projective G-variety X ′ birationally

G-isomorphic to X such that modG(X ′) = c(X).

Now we introduce an affine counterpart of mG(X).

Definition 4.6. With any quasi-affine homogeneous space G/H we as-

sociate the integer

aG(G/H) = maxX modG(X),

where X runs through all affine embeddings G/H ↪→ X .
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Theorem 4.7 ([7]). Let H be a reductive subgroup of G.

(1) If the group W (H) is finite, then aG(G/H) = 0;

(2) If W (H) is infinite, then

aG(G/H) = maxH1 c(G/H1),

where H1 runs through all non-trivial extensions of H by a one-dimensional

subtorus of CG(H). In particular, aG(G/H) = c(G/H) or c(G/H) − 1.

Proof. Step 1 – Affine cones. Consider the natural surjection κ :

NG(H) → W (H).

Proposition 4.8. Let H be an observable subgroup of G. Suppose that

there is a non-trivial one-parameter subgroup λ : K∗ → W (H) and put

H1 = κ−1(λ(K∗)). Then there exists an affine embedding G/H ↪→ X

with modG(X) ≥ c(G/H1).

The idea of the proof is to apply Akhiezer’s construction [3] to the ho-

mogeneous space G/H1 and to consider the affine cone over a projective

embedding G/H1 ↪→ X ′ with modG(X ′) = c(G/H1)

Lemma 4.9. In the notation of Proposition 4.8, there exists a finite-

dimensional G-module V and an H1-eigenvector v ∈ V such that

1) the orbit G〈v〉 of the line 〈v〉 in P(V ) is isomorphic to G/H1;

2) H fixes v;

3) H1 acts transitively on K∗v;

4) modG(G〈v〉) = c(G/H1).

Proof (of Lemma 4.9). By Chevalley’s theorem, there exist a G-module

V ′ and a vector v′ ∈ V ′ having property 1). Let χ be the eigenweight of

H at v′. Since H is observable in G, each finite-dimensional H-module

can be embedded into a finite-dimensional G-module [47]. In particular,

there exists a G-module V ′′ containing H-eigenvectors of the weight −χ.

Among them we can choose an H1-eigenvector v′′ and set V = V ′⊗V ′′,

v = v′ ⊗ v′′. This pair has properties 1)-2).

If H1 does not act transitively on K∗v, then take an arbitrary G-

module W containing a vector with stabilizer H . Take an H1-eigenvector

in WH with nonzero weight and replace V by V ⊗ W and v by v ⊗ w.

Conditions 1)-3) are now satisfied.

By a result of Akhiezer [3], we can find a pair (V ′, v′) with properties

1) and 4). Then we proceed as above obtaining a pair (V, v). The closure

G〈v〉 ⊆ P(V ) lies in the image of the Segre embedding

P(V ′) × P(V ′′) × P(W ) ↪→ P(V ),
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and it projects G-equivariantly onto G〈v′〉 ⊆ P(V ′). Now properties

1)-4) are satisfied for the pair (V, v).

Remark . If H is reductive, then one can find v in Lemma 4.9 such

that Gv = H . This is not possible for an arbitrary observable subgroup,

see [11, Remark 2].

Proof (of Proposition 4.8). Let (V, v) be the pair from Lemma 4.9. Put

H ′ = Gv and X̃ = Gv. By properties 1)-3) and since H1/H is isomorphic

to K∗, H ′ is a finite extension of H . By 3), the closure of the orbit Gv

in V is a cone, therefore 4) implies the inequality modG(X̃) ≥ c(G/H1).

Consider now the morphism G/H → G/H ′. It determines an embed-

ding K[G/H ′] ⊆ K[G/H ]. Let A be the integral closure of the subalgebra

K[X̃] ⊆ K[G/H ′] in the field K(G/H). We have the following commu-

tative diagrams:

A ↪→ K[G/H ] ↪→ K(G/H) Spec A ←↩ G/H

↑ ↑ ↑ ↓ ↓

K[X̃] ↪→ K[G/H ′] ↪→ K(G/H ′) X̃ ←↩ G/H ′

The affine variety X = Spec A with the natural G-action can be re-

garded as an affine embedding of G/H . The embedding K[X̃] ⊆ A

defines a finite (surjective) morphism X → X̃, therefore modG(X) =

modG(X̃) ≥ c(G/H1).

Step 2. Here we formulate several results due to F. Knop.

Lemma 4.10 ([34, 7.3.1], see also [11, Lemma 3]). Let X be an irre-

ducible G-variety, and v a G-invariant valuation of K(X) over K with

residue field K(v). Then K(v)B is the residue field of the restriction of

v to K(X)B.

Definition 4.11 ([36, §7]). Let X be a normal G-variety. A discrete Q-

valued G-invariant valuation of K(X) is said to be central if it vanishes

on K(X)B \ {0}. A source of X is a non-empty G-stable subvariety

Y ⊆ X that is the center of a central valuation of K(X).

The following lemma is an easy consequence of [36]; for more details

see [11, Lemma 4].

Lemma 4.12. If X is a normal affine G-variety containing a proper

source, then there exists a one-dimensional torus S ⊆ AutG(X) such

that K(X)B ⊆ K(X)S. (Here AutG(X) is the group of G-equivariant

automorphisms of X).
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Step 3. Assertion (1) of Theorem 4.7 follows from Theorem 3.2. To

prove (2) we use Proposition 4.8. Since H is reductive, the group W (H)

is reductive and contains a one-dimensional subtorus λ(K∗). Hence

aG(G/H) ≥ c(G/H1) ≥ c(G/H) − 1. If there exists a one-dimensional

torus in W (H) such that c(G/H) = c(G/H1), we obtain an affine em-

bedding of G/H of modality c(G/H).

Conversely, let G/H ↪→ X be an affine embedding of modality c(G/H).

We have to find a one-dimensional subtorus λ(K∗) ⊆ W (H) such that

c(G/H1) = c(G/H). By the definition of modality, there exists a proper

G-invariant subvariety Y ⊂ X such that the codimension of a generic

G-orbit in Y is c(G/H), hence c(Y ) = c(G/H). Consider a G-invariant

valuation v of K(X) with centre Y . For the residue field K(v) we have

tr.deg K(v)B ≥ tr.deg K(Y )B, therefore tr.deg K(v)B = tr.deg K(X)B.

If the restriction of v to K(X)B is non-trivial, then, by Lemma 4.10,

tr.deg K(v)B < tr.deg K(X)B, a contradiction. Thus, v is central and

Y is a source of X . Lemma 4.12 provides a one-dimensional subtorus

S ⊆ AutG(X) ⊆ AutG(G/H) = W (H) that yields an extension of H of

the same complexity.

Note that Theorem 4.2 is a particular case of Theorem 4.7 with

aG(G/H) = 0.

Remark . If H is an observable subgroup and W (H) contains a non-

trivial subtorus, then the formula aG(G/H) = maxH1 c(G/H1) can be

obtained by the same arguments. In particular, Corollary 4.1 holds

for observable H . But for non-reductive H the group W (H) can be

unipotent [11]: this is the case when G = SL(3)× SL(3) and

H =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 a b + a2

2

0 1 a

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

1 b a + b2

2

0 1 b

0 0 1

⎞
⎟⎠ | a, b ∈ K

⎫⎪⎬
⎪⎭ .

For such subgroups our proof yields only the inequality aG(G/H) ≤

c(G/H) − 1.

Let us mention an application of Theorem 4.7 which may be re-

garded as its algebraic reformulation. Let G be a connected semisim-

ple group. Note that, for the action by left multiplication, one has

c(G) = 1
2 (dim G − rkG) and c(G/S) = 1

2 (dim G − rkG) − 1, where S

is a one-dimensional subtorus in G. Applying Theorem 4.7 to the case

H = {e}, we obtain
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Theorem 4.13 ([8]). Let A ⊂ K[G] be a left G-invariant finitely gen-

erated subalgebra and I ⊂ A a G-invariant prime ideal. Then

tr.deg (Q(A/I))G ≤
1

2
(dim G − rk G) − 1. (1)

Moreover, there exist a subalgebra A and an ideal I such that (1) is an

equality.

Example 4.14. The closure of an SL(3)-orbit in an algebraic SL(3)-

variety X may contain at most a 3-parameter family of SL(3)-orbits. If

X is affine then the maximal number of parameters equals 2.

4.3 Equivariant automorphisms and symmetric embeddings

The group AutG(G/H) of G-equivariant automorphisms of G/H is iso-

morphic to W (H). The action W (H) : G/H is induced by the action

NG(H) : G/H by right multiplication, i.e. n ∗ gH = gn−1H . Let

G/H ↪→ X be an embedding. The group AutG X preserves the open

orbit, and may be considered as a subgroup of W (H).

Definition 4.15. An embedding G/H ↪→ X is said to be symmetric

if W (H)0 ⊆ AutG(X). If AutG(X) = W (H), we say that X is very

symmetric.

Lemma 4.16. The following affine embeddings are very symmetric:

1) an affine embedding of a spherical homogeneous space;

2) the canonical embedding CE(G/H);

3) an affine monoid M considered as the embedding G(M)/{e} ↪→ M .

Proof. 1) Let G/H be a quasi-affine spherical homogeneous space. By

the Schur Lemma, the group W (H) acts on any isotypic component of

K[G/H ] by dilation. Hence any G-invariant subspace of K[G/H ] is also

W (H)-invariant.

2) The group W (H) acts on G/H and on K[G/H ], thus on Spec K[G/H ].

3) The group W (H) ∼= G(M) acts on M by right multiplication.

Proposition 4.17. Let H be a reductive subgroup of G. The following

conditions are equivalent:

(1) there exists a unique symmetric embedding X = G/H;

(2) W (H)0 is a semisimple group.
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Proof. The existence of a non-trivial affine embedding G/H ↪→ X with

dim AutG(X) = dimW (H) means that G/H as a (G×W (H)0)-homogeneous

space is not affinely closed. Denote by L the (G × W (H)0)-stabilizer of

the point eH . Then L = {(n, nH) | n ∈ κ−1(W (H)0)} and the group

NG×W (H)0(L)/L is finite if and only if W (H) is semisimple.

Proposition 4.17 implies that in the case of affine SL(2)-embeddings

only the trivial embedding X = SL(2) is symmetric. In fact, in all

other cases with normal X the group AutSL(2) X is a Borel subgroup of

SL(2) [37, III.4.8, Satz 1]. The theorem below is a partial generalization

of this result.

Theorem 4.18 ([12]). Let G/H ↪→ X be an affine embedding with

a finite number of G-orbits and with a G-fixed point. Then the group

AutG(X)0 is solvable.

We begin the proof with the following

Lemma 4.19. Let X be an affine variety with an action of a connected

semisimple group S. Suppose that there is a point x ∈ X and a one-

parameter subgroup γ : K∗ → S such that limt→0 δ(t)x exists in X for

any subgroup δ conjugate to γ. Then x is a γ(K∗)-fixed point.

Proof. Let T be a maximal torus in S containing γ(K∗). One can realize

X as a closed S-stable subvariety in V for a suitable S-module V . Let

x = xλ1 + · · ·+xλn
be the weight decomposition (with respect to T ) of x

with weights λ1, . . . , λn. One-parameter subgroups of T form the lattice

Ξ∗(T ) dual to the character lattice Ξ(T ). The existence of limt→0 γ(t)x

in X means that all pairings 〈γ, λi〉 are non-negative. Let γ1, . . . , γm be

all the translates of γ under the action of the Weyl group W = NS(T )/T .

By assumption, 〈γj , λi〉 ≥ 0 for any i = 1, . . . , n, j = 1, . . . , m, hence

〈γ1 + · · ·+ γm, λi〉 ≥ 0. Since γ1 + · · ·+ γm = 0, one has 〈γj , λi〉 = 0 for

all i, j. This shows that the points xλi
(and x) are γ(K∗)-fixed.

The next proposition is a generalization of [28, Th.4.3].

Proposition 4.20. Suppose that G/H ↪→ X is an affine embedding with

a non-trivial G-equivariant action of a connected semisimple group S.

Then the orbit S ∗ x is closed in X, for every x ∈ G/H.

Proof. We may assume x = eH . If S ∗ x is not closed, then, by [31,

Th.1.4], there is a one-parameter subgroup γ : K∗ → S such that the
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limit

lim
t→0

γ(t) ∗ x

exists in X and does not belong to S ∗ x. Replacing S by a finite cover,

we may assume that S embeds in NG(H) (and thus in G) with a finite

intersection with H . By the definition of ∗-action, one has γ(t) ∗ x =

γ(t−1)x. For any s ∈ S the limit

lim
t→0

(sγ(t)) ∗ x = lim
t→0

γ(t−1)s−1x

exists. Hence limt→0 sγ(t−1)s−1x exists too. This shows that for any

one-parameter subgroup δ of S, conjugate to −γ, limt→0 δ(t)x exists

in X . Lemma 4.19 implies that x = limt→0 γ(t)∗x, and this contradiction

proves Proposition 4.20.

Proof (of Theorem 4.18). Suppose that AutG(X)0 is not solvable. Then

there is a connected semisimple group S acting on X G-equivariantly.

By Proposition 4.20, any (S, ∗)-orbit in the open G-orbit of X is closed

in X .

Let X1 be the closure of a G-orbit in X . Since G has a finite num-

ber of orbits in X , the variety X1 is (S, ∗)-stable. Applying the above

arguments to X1, we show that any (S, ∗)-orbit in X is closed. But in

this case all (S, ∗)-orbits have the same dimension dim S. On the other

hand, a G-fixed point is an (S, ∗)-orbit, a contradiction.

Corollary (of the proof). Let X be an affine G-variety with an open

G-orbit. Suppose that

(1) a semisimple group S acts on X effectively and G-equivariantly;

(2) the dimension of a closed G-orbit in X is less than dimS.

Then the number of G-orbits in X is infinite.

Corollary . Let M be a reductive algebraic monoid with zero. Then the

number of left (right) G(M)-cosets in M is finite if and only if M is

commutative.

The following corollary gives a partial answer to a question posed in

Subsection 4.1.

Corollary . The number of G-orbits in CE(G/P u) is finite if and only

if either P ∩Gi = Gi or P ∩Gi = B∩Gi for each simple factor Gi ⊆ G.
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In many cases, Theorem 4.18 may be used to show that the group

AutG(X) cannot be very big. On the other hand, the group AutG(X)

may be finite (trivial), in particular, for X = G/H with affinely closed

G/H . Answering a question from [11], I. V. Losev proposed an example

of an observable non-reductive subgroup H in SL(n), where W (H) is

finite. (This example is included in the electronic version of [12].) Note

that any affine embedding of SL(n)/H gives an example of a locally

transitive non-transitive reductive group action on an affine variety with

a finite group of equivariant automorphisms.

Finally, we give a variant of Theorem 4.2 for symmetric embeddings.

Theorem 4.21 ([11, Prop.2]). Let H be a reductive subgroup of G.

Every symmetric affine embedding of G/H has finitely many G-orbits if

and only if either (AF) holds or W (H)0 is semisimple.

5 Application One: Invariant algebras on homogeneous

spaces of compact Lie groups

5.1 Invariant algebras and self-conjugate algebras

For any compact topological space M the set C(M) of all continuous

C-valued functions on M is a commutative Banach algebra with respect

to pointwise addition, multplication, and the uniform norm. We shall

consider the case where M = K/L is a homogeneous space of a compact

connected Lie group K. Let us recall that A is an invariant algebra on

M if A is a K-invariant uniformly closed subalgebra with unit in C(M).

In this section G, H denote the complexifications of K, L respectively.

The group G is a complex reductive algebraic group with a reductive

subgroup H .

The main problem is to describe all invariant algebras on a given space

M and to study their properties. Let us start with a particular class of

invariant algebras.

Definition 5.1. An invariant algebra A is self-conjugate if f ∈ A implies

f ∈ A, where the bar denotes the complex conjugation.

The classification of self-conjugate invariant algebras is based on the

Stone-Weierstrass Theorem. Here we follow [39].

The Stone-Weierstrass Theorem. Let R be a compact topological

space and A a subalgebra with unit in C(R) such that
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1) A separates points on R, i.e. for any x1 
= x2 ∈ R there exists f ∈ A

such that f(x1) 
= f(x2);

2) A is invariant under complex conjugation.

Then A is dense in C(R).

Given a self-conjugate invariant algebra A, define an equivalence re-

lation on M : x ∼ y if and only if f(x) = f(y) for any f ∈ A. The space

M ′ of equivalence classes is a homogeneous K-space, hence M ′ = K/L′,

where L′ is a closed subgroup containing L. By construction, the self-

conjugate algebra A separates points on M ′ and thus A = C(M ′). Con-

versely, for any L ⊆ L′ ⊆ K the inverse image of C(K/L′) under the

projection K/L → K/L′ determines a self-conjugate invariant algebra

on M . This shows that self-conjugate invariant algebras on M are in

one-to-one correspondence with closed subgroups L′, L ⊆ L′ ⊆ K.

5.2 Spherical functions

The space M = K/L may be considered as a compact subset of the affine

homogeneous space X0 = G/H . Moreover, M is a real form of X0 in

the natural sense. In particular, the restriction of polynomial functions

to M determines an embedding C [X0] ↪→ C(M). Denote the image of

this embedding by C [M ].

Definition 5.2. A function f ∈ C(M) is called spherical if the linear

span 〈Kf〉 is finite-dimensional. More generally, for a linear action of a

Lie group K on vector space V , a vector v ∈ V is spherical if dim〈Kv〉 <

∞.

Denote by Vsph the subspace of all spherical vectors in V .

Proposition 5.3. The algebra C [M ] coincides with C(M)sph.

Proof. Any regular function is contained in a finite-dimensional invari-

ant subspace. Conversely, any complex finite-dimensional representa-

tion of K is completely reducible and any irreducible component may

be considered as a simple G-module. Hence the matrix entries of such

a module are in C [M ]. If f ∈ C(M) is spherical and V = 〈Kf〉, then f

is a linear combination of the matrix entries of the dual representation

K : V ∗. Indeed, let f1, . . . , fk be a basis in V . For any f ∈ V, g ∈ K

one has fi(g
−1eL) =

∑
aij(g)fj(eL) and fi(gL) =

∑
cjaij(g

−1), where

cj = fj(eL) are constants.
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By the Peter-Weyl Theorem, the matrix entries (with respect to some

orthonormal basis) over all irreducible finite-dimensional representations

of K form an orthonormal basis in space L2(K). Spherical functions are

finite linear combinations of the basic elements. They form a uniformly

dense subspace in C(K). The following generalization of this result plays

a key role in this section.

Proposition 5.4 ([51, Th.5.1], [48, 2.16]). Given a continuous linear

representation of a compact Lie group K in a Fréchet space E, the sub-

space Esph is dense in E.

In particular, in any invariant algebra, spherical functions form a dense

subalgebra. Moreover, if S is K-invariant subspace in C(M)sph and S

is its uniform closure in C(M), then S ∩ Csph(M) = S. (For the proof

see [26, Lemma 14].) Finally, we get

Theorem 5.5. There is a natural bijection ψ between invariant algebras

on the space M and invariant subalgebras in C [M ]. More precisely,

ψ(A) = A = Asph = A ∩ C [M ] and ψ−1(A) = A.

This result provides nice connections between functional and algebraic

problems. To make this link really useful we need to reformulate func-

tional properties in algebraic terms and conversely. For this purpose we

are going to use the geometric language of affine embeddings.

5.3 Finitely generated invariant algebras and affine

embeddings

Definition 5.6. An invariant algebra A is finitely generated if it is

generated (as a Banach algebra) by a K-invariant finite-dimensional

subspace.

An invariant algebra A is finitely generated if and only if Asph is a

finitely generated algebra. It is clear that C(M) is finitely generated. As

follows from the discussion above, any self-conjugate invariant algebra

is finitely generated. The question as to when any invariant subalgebra

in C [M ] is finitely generated will be considered in the last section.

Any finitely generated subalgebra A ⊂ C [G/H ] defines an affine G-

variety X = Spec A with an open orbit isomorphic to G/F , where F

is an observable subgroup containing H . The inclusion A ⊂ C [G/H ]

defines the morphism φ : G/H → X and the base point x0 = φ(eH). If
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we look at A as at an abstract G-algebra, then there may exist differ-

ent equivariant inclusion homomorphisms A → C [G/H ] with the same

image. Two different base points x0 ∈ X and x′
0 ∈ X determine the

same subalgebra A ⊂ C [G/H ] if and only if there exists n ∈ AutG(X)

such that x0 = nx′
0. (Corresponding inclusions A ⊂ C [G/H ] differ by a

G-equivariant automorphism of A.) Let us denote the subalgebra A by

A(X, x0) and the corresponding invariant algebra A(X, x0) by A(X, x0).

We have proved:

Theorem 5.7. Invariant finitely generated algebras on the space M =

K/L are in one-to-one correspondence with the following data:

1) an affine embedding G/F ↪→ X, where F ⊆ G is an observable sub-

group containing H;

2) an H-fixed point x0 in the open G-orbit on X, which is defined up to

the action of AutG(X).

It is natural to classify invariant algebras up to some equivalence.

The group of K-equivariant automorphisms of M is the group N =

NK(L)/L, acting as n∗kL = kn−1L. This action defines a K-equivariant

action N : C(M). The group N acts transitively on the set ML.

Definition 5.8. Two invariant algebras A1 and A2 on M are equivalent

if there exists n ∈ N such that n ∗ A1 = A2.

Clearly, this equivalence preserves all reasonable properties of invari-

ant algebras. In terms of Theorem 5.7, it is reasonable to expect that

base points from the same K-orbit in X determine equivalent invariant

algebras.

Definition 5.9. Two invariant algebras A(X, x0) and A(X ′, x′
0) on M

are weakly equivalent if X ∼=G X ′ and there exist n ∈ AutG(X) and

k ∈ K such that x0 = n ∗ kx′
0.

An invariant algebra A on M may be regarded as an invariant algebra

Ã on K such that every element f ∈ Ã is fixed by right L-multiplication.

Two such subalgebras A1 and A2 are weakly equivalent if A1 may be

shifted to A2 by the map R(k) : f(x) → f(xk) for some k ∈ K.

Clearly, equivalent invariant algebras are weakly equivalent, but the

converse is not always true. One may suppose that x0 = kx′
0 (AutG(X)-

action does not change the subalgebra). Consider the subgroups L1 =

Kx0, L2 = Kx′
0
, and the map φ : K/L → X , φ(eL) = x0. Denote

by Aut(X, x0) the subgroup of AutG(X) that preserves Kx0. (In fact,

Aut(X, x0) ⊂ NK(L1)/L1.)
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Definition 5.10. A closed subgroup L ⊂ K is an A-subgroup if any two

weakly equivalent finitely generated invariant algebras on M = K/L are

equivalent.

Proposition 5.11. A subgroup L ⊂ K is an A-subgroup if and only

if for any affine embedding G/F ↪→ X, H ⊂ F , and any base point

x0 ∈ (G/F )H one has Aut(X, x0)φ((K/L)L) = (Kx0)
L.

Proof. Let x′
0 = kx0 be an L-fixed point. The equivalence of invariant

algebras A(X, x0) and A(X, x′
0) means that there is an element n ∈

NK(L) such that A(X, nx0) = A(X, x′
0), i.e. nx0 and x′

0 are in the

same AutG(X)-orbit. If m ∈ AutG(X) and m ∗ nx0 = x′
0, then m ∈

Aut(X, x0). But the set of points nx0, n ∈ NK(L), coincides with

φ((K/L)L).

If for any L ⊆ L1 the natural map (K/L)L → (K/L1)
L is surjective,

then L is an A-subgroup. In particular, the unit subgroup and any

maximal subgroup in K are A-subgroups.

Corollary . If L is an A-subgroup, two subgroups L1 and L2 contain L

and are K-conjugate, then they are NK(L)-conjugate.

Proof. On K/L1 any point fixed by L has the form m ∗ nL1, where

m ∈ NK(L1) and n ∈ NK(L). In particular, for L2 = kL1k
−1, k ∈ K,

one has kL1 = m ∗ nL1 and L2 = nm−1L1mn−1 = nL1n
−1.

Example 5.12. Put K = SU(5), L = {e} × {e} × {e} × SU(2), L1 =

SU(2)× SU(3), L2 = SU(3)× SU(2) as shown on the picture. Here L1

and L2 are K-conjugate, contain L, but are not NK(L)-conjugate. This

proves that L is not an A-subgroup.

����
�

���
����
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5.4 Some classes of invariant algebras

The results of Subsection 5.1 and Theorem 5.5 imply:

Proposition 5.13 ([39]). An invariant algebra A = A(X, x0) is self-

conjugate if and only if X = Gx0 and Gx0 is the complexification of

Kx0.
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Remark. There is one more characterization of this class of K-

orbits obtained by V. M. Gichev and I. A. Latypov. Consider any

G-equivariant embedding of X into a G-module V . Then the condi-

tions of Proposition 5.13 are equivalent to the polynomial convexity of

the orbit Kx0 in V ; see [26] for details.

The following theorem due to I. A. Latypov may be regarded as a

variant of Luna’s theorem (see 3.1) for compact groups.

Theorem 5.14 ([38]). Any invariant algebra on M is self-conjugate if

and only if the group N = NK(L)/L is finite.

In this case any invariant algebra on M is finitely generated. It follows

from the results of Section 6 that any invariant algebra on M is finitely

generated if and only if either N is finite or K = U(1). (Here we assume

that the action K : M is effective.)

Now we introduce a class of invariant algebras, which are in some

sense opposite to self-conjugate algebras.

Definition 5.15. An invariant algebra A is said to be antisymmetric if

the set {f ∈ A | f ∈ A} coincides with the set of constant functions.

It is easy to see that antisymmetry is equivalent to either of the fol-

lowing conditions:

1) any real-valued function in A is a constant;

2) A contains no non-trivial self-conjugate invariant subalgebra.

Hence an invariant algebra A = A(X, x0) is antisymmetric if and only

if there exists no G-equivariant map φ : X → G/H ′, where G/H ′ is

an affine homogeneous space of positive dimension and Gφ(x0) is the

complexification of Kφ(x0). In particular, if X contains a G-fixed point,

then A(X, x0) is antisymmetric.

Example 5.16. Let K = SU(2), G = SL(2), and L = H = {e}. Con-

sider X = SL(2)/T . Any point x0 ∈ X may be regarded as a base

point for some invariant algebra A(X, x0) on M = K. If the stabilizer

of x0 contains a torus from K, then A(X, x0) is self-conjugate, and any

two such invariant algebras are equivalent. Other base points determine

antisymmetric algebras: we obtain a 1-parameter family of mutually

non-equivalent antisymmetric invariant algebras on SU(2). In partic-

ular, this example shows that the property ‘A(X, x0) separates points

on M ’ depends on the choice of the base point x0 on X . For more

information on invariant algebras on SU(2), see [40].
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Finally we consider one more natural class of invariant algebras.

Definition 5.17. An invariant algebra A on M is called a Dirichlet

algebra if the real parts of functions from A are uniformly dense in the

algebra of real-valued continuous functions on M .

Any Dirichlet algebra separates the points of M , but the converse

is not true. Some results on Dirichlet invariant algebras on compact

groups can be found in [58]. In particular, it is proved there that there

exists a biinvariant antisymmetric Dirichlet algebra on K if and only if

K is connected and commutative. It would be interesting to characterize

Dirichlet algebras A(X, x0) in terms of affine embeddings.

5.5 Biinvariant algebras and invariant algebras on spheres.

A biinvariant algebra on K is a uniformly closed subalgebra with unit

in C(K) invariant with respect to both left and right translations (here

M = (K × K)/∆(K)).

Suppose that F is a subgroup in G × G containing ∆(G). Then the

subgroup F0 = {g ∈ G | (g, e) ∈ F} is normal in G. This shows that F

is the preimage of ∆(G̃) for the homomorphism G×G → G̃× G̃, where

G̃ = G/F0. Moreover, ∆(G)-fixed points in (G̃ × G̃)/∆(G̃) correspond

to central elements of G̃. These elements form an orbit of the center

Z(G̃), and Z(G̃) acts (G̃ × G̃)-equivariantly on any affine embedding of

(G̃ × G̃)/∆(G̃). Hence different base points on such embeddings define

the same invariant algebras. An affine embedding of the space (G̃ ×

G̃)/∆(G̃) is nothing else but an algebraic monoid S̃ with G(S̃) = G̃

(Proposition 1.12).

Let us summarize all these observations in the following one-to-one

correspondences (all biinvariant algebras are supposed to be finitely gen-

erated):

• { self-conjugate biinvariant algebras on K } ⇐⇒ { quotient groups

G̃ of the group G };

• { biinvariant algebras on K } ⇐⇒ { algebraic monoids S̃ with

G(S̃) = G̃ };

• { biinvariant algebras separating points on K } ⇐⇒ { algebraic

monoids S with G(S) = G };

• { antisymmetric biinvariant algebras on K }⇐⇒ { algebraic monoids

S̃ with zero and G(S̃) = G̃ }.

To explain the last equivalence, we note that S̃ has a zero if and only
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if the closed (G̃ × G̃)-orbit in S̃ is a point. Embeddings with a G-fixed

point correspond to antisymmetric invariant algebras (see 5.4). If the

closed orbit has positive dimension, it is isomorphic to (G̃1×G̃1)/∆(G̃1)

for a non-trivial quotient G̃1 of the group G̃, and the corresponding

projection (see 3.4) determines a non-trivial self-conjugate subalgebra

in our invariant algebra.

Theorem 5.14 (or Proposition 3.4) shows that any biinvariant algebra

on K is self-conjugate if and only if K is semisimple. This result was

proved by R. Gangolli [24] and J. Wolf [73].

Our final remark concerns invariant algebras on spheres Sn. The clas-

sification of transitive actions of compact Lie groups on spheres was ob-

tained by A. Borel, D. Montgomery and H. Samelson (see [50]). All cor-

responding homogeneous spaces are spherical with a unique exception:

there is a transitive action of the group Sp(n) = GL(n, H) ∩ U(2n) on

S4n−1 with stabilizer Sp(n−1) and the complexification of Sp(n)/Sp(n−

1) is a homogeneous space of complexity one. (This is the reason why

the clasification of invariant algebras on spheres was not completed in

this case only, see [39].)

The complexification of Sp(n)/Sp(n − 1) satisfies the conditions of

Theorem 4.2. This implies the following general result: the number of

radical invariant ideals in any invariant algebra on a sphere (with respect

to any transitive action) is finite.

6 Application Two: G-algebras with finitely generated

invariant subalgebras

6.1 The reductive case

In this section by A we denote a finitely generated G-algebra without

zero divisors. Let us introduce three special types of G-algebras.

Type C. Here A is a finitely generated domain of Krull dimension

KdimA = 1 (i.e. the transcendence degree of the quotient field QA

equals one) with any (for example, trivial) G-action. Such algebras may

be considered as the algebras of regular functions on irreducible affine

curves.

Type HV. Let λ be a dominant weight of the group G (with respect to

some fixed Borel subgroup) and V (λ) be a simple finite-dimensional G-

module with highest weight λ. Let λ∗ be the highest weight of the dual

module V (λ)∗. Consider a subsemigroup P in the additive semigroup of
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non-negative integers (it is automatically finitely generated), and put

A(P, λ) = ⊕p∈P V (pλ).

There exists a unique structure (up to G-isomorphism) of a G-algebra

on A(P, λ) such that V (pλ)V (mλ) = V ((p + m)λ). In fact, consider the

closure X(λ) = Gv of the orbit of a highest weight vector v in V (λ∗).

The algebra K[X(λ)] of regular functions on X(λ) as a G-module has

the isotypic decomposition

K[X(λ)] = ⊕k≥0K[X(λ)]kλ,

any K[X(λ)]kλ is a simple G-module, and

K[X(λ)]kλK[X(λ)]mλ = K[X(λ)](k+m)λ,

see 1.3. This allows us to realize A(P, λ) as a subalgebra in K[X(λ)]. The

proof of uniqueness of such multiplication is left to the reader. Further

we shall say that the algebra A(P, λ) is an algebra of type HV.

Example 6.1. Let G = SL(n) and ω1, . . . , ωn−1 be its fundamental

weights. The natural linear action G : Kn induces an action on regular

functions

G : A = K[x1, . . . , xn], (gf)(v) := f(g−1v).

The homogeneous polynomials of degree m form an (irreducible) isotypic

component corresponding to the weight mωn−1. The algebra A is of type

HV with λ = ωn−1 and P = Z+. The variety X(ωn−1) is the original

space Kn.

Type N. Let H be a closed subgroup of G and

A(H) = K[G]H = K[G/H ]

= {f ∈ K[G] | f(gh) = f(g) for any g ∈ G, h ∈ H}.

If H is reductive, then A(H) is finitely generated. We say that a G-

algebra A is of type N if there exists a reductive subgroup H ⊂ G with

|NG(H)/H | < ∞ and A is G-isomorphic to A(H).

Example 6.2. The algebra A(T ) = {f ∈ K[G] | f(gt) = f(g) for any t ∈

T } is a G-algebra of type N with respect to the left G-action.

Now we are ready to formulate the main result.
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Theorem 6.3 ([9]). Let A be a finitely generated G-algebra without zero

divisors. Then any G-invariant subalgebra of A is finitely generated if

and only if A is an algebra of one of the types C, HV or N.

We start the proof of Theorem 6.3 with a method of constructing a

non-finitely generated subalgebra. Let X be an irreducible affine alge-

braic variety and Y a proper closed irreducible subvariety. Consider the

subalgebra

A(X, Y ) = {f ∈ K[X ] | f(y1) = f(y2) for any y1, y2 ∈ Y } ⊂ A = K[X ].

Proposition 6.4. The algebra A(X, Y ) is finitely generated if and only

if Y is a point.

Proof. If Y is a point, then A(X, Y ) = K[X ]. Suppose that Y has

positive dimension and I = I(Y ) = {f ∈ K[X ] | f(y) = 0 for any y ∈

Y }. Then A/I is infinite-dimensional vector space. By the Nakayama

Lemma, we can find i ∈ I such that in the local ring of Y the element i

is not in I2. Then for any a ∈ k[X ]\I the element ia is in I\I2. Hence

the space I/I2 has infinite dimension.

On the other hand, suppose that f1, . . . , fn are generators of A(X, Y ).

Subtracting constants, one may assume that all fi are in I. Then

dimA(X, Y )/I2 ≤ n + 1, a contradiction.

Proposition 6.5. Let A be a finitely generated domain. Then any sub-

algebra in A is finitely generated if and only if KdimA ≤ 1.

Proof. If KdimA ≥ 2, then the statement follows from the previous

proposition. The case KdimA = 0 is obvious. It remains to prove that

if KdimA = 1, then any subalgebra is finitely generated. By taking

the integral closure, one may suppose that A is the algebra of regular

functions on a smooth affine curve C1. Let C be the smooth projective

curve such that C1
∼= C \ {P1, . . . , Pk}. The elements of A are rational

functions on C that may have poles only at points Pi. Let B be a

subalgebra in A. By induction on k, we may suppose that the subalgebra

B′ ⊂ B consisting of functions regular at P1 is finitely generated, say

B′ = K[s1, . . . , sm]. (Functions that are regular at any point Pi are

constants.) Let v(f) be the order of the zero/pole of f ∈ B at P1. The

set V = {v(f), f ∈ B} is an additive subsemigroup of integers. Such a

subsemigroup is finitely generated. Let f1, . . . , fn be elements of B such

that the v(fi) generate V . Then for any f ∈ B there exists a polynomial

P (y1, . . . , yn) with v(f−P (f1, . . . , fn)) ≥ 0, and thus f−P (f1, . . . , fn) ∈

B′. This shows that B is generated by f1, . . . , fn, s1, . . . , sm.
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Let A be a finitely generated G-algebra with KdimA ≥ 2. Consider

the affine variety X = Spec A. The action G : A induces a regular action

G : X .

Suppose that there exists a proper irreducible closed invariant sub-

variety Y ⊂ X of positive dimension. Then A(X, Y ) is an invariant

subalgebra, which is not finitely generated. In particular, this is the

case if G acts on X without a dense orbit. Hence we may assume that

either

(i) the action G : X is transitive, or

(ii) X consists of an open orbit and a G-fixed point p.

In case (i), X = G/H and H is reductive. If G/H is not affinely

closed then there exists a non-trivial affine embedding G/H ↪→ X ′,

and the complement in X to the open affine subset G/H is a union

of irreducible divisors. Let Y be one of these divisors. The algebra

A(X ′, Y ) is a non-finitely generated invariant subalgebra in K[X ′] and

the inclusion G/H ↪→ X ′ defines an embedding K[X ′] ⊂ K[X ] = A. On

the other hand,

Lemma 6.6. If X = G/H is affinely closed, i.e. A is of type N, then

any invariant subalgebra in A is finitely generated.

Proof. Suppose that there exists an invariant subalgebra B ⊂ A that

is not finitely generated. Let f1, f2, . . . be a system of generators of

B. Consider the finitely generated subalgebras Bi = K[〈Gf1, . . . , Gfi〉].

Infinitely many of them are pairwise different. For the corresponding

varieties Xi := Spec Bi one has natural dominant G-morphisms

X

�
���

�
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X1 ←− X2 ←− X3 ←− . . .

By Theorem 3.2, any Xi is an affine homogeneous space G/Hi, H ⊆

Hi. The infinite sequence of algebraic subgroups

H1 ⊃ H2 ⊃ H3 ⊃ . . .

leads to a contradiction.

Remark . As is obvious from what has been said, any invariant sub-

algebra in the algebra A(H) of type N has the form A(H ′), where

H ⊆ H ′ ⊆ G and also has type N. Algebras of type N can be char-

acterized by the following equivalent properties:
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(P1) any invariant subalgebra contains no proper invariant ideals;

(P2) the algebra contains no proper invariant ideals and the group of equiv-

ariant automorphisms is finite.

Now consider case (ii). Let us recall the following theorem due to F.

Bogomolov.

Theorem 6.7 ([16], see also [29, Th.7.6]). Let X be an irreducible affine

variety with a non-trivial G-action and with a unique closed orbit, which

is a G-fixed point. Then there exists a G-equivariant surjective morphism

φ : X → X(µ) for some dominant weight µ 
= 0.

In our case the preimage φ−1(0) is the point p, and thus all fibres of φ

are finite. This shows that X is a spherical variety of rank one (see [18]

for definitions), i.e.

K[X ] = ⊕m≥0K[X ]mλ,

where K[X ]mλ is either zero or irreducible, and µ = kλ for some k >

0. On the other hand, the stabilizer of any point on X(µ) contains

a maximal unipotent subgroup of G, and the same is true for X . By

Theorem 1.9, this implies K[X ]m1λK[X ]m2λ = K[X ](m1+m2)λ. Hence

A = K[X ] is an algebra of type HV.

Conversely, any subalgebra of the A(P, λ) is finitely generated because

it corresponds to some subsemigroup P ′ ⊂ P and P ′ is finitely generated.

This completes the proof of Theorem 6.3. �

6.2 The non-reductive case

Let us classify affine G-algebras with finitely generated invariant subal-

gebras for a non-reductive affine group G with the Levi decomposition

G = LGu. Surprisingly, the result in this case is simpler than in the

reductive case.

In the previous subsection we assumed that a G-algebra A has no zero

divisors. In fact, this restriction is inessential.

Lemma 6.8 ([10]). Let rad(A) be the ideal of all nilpotents in A. The

following conditions are equivalent:

(1) any G-invariant subalgebra in A is finitely generated;

(2) any G-invariant subalgebra in A/rad(A) is finitely generated and

dim rad(A) < ∞.



Affine embeddings of homogeneous spaces 51

Proof. Any finite-dimensional subspace in rad(A) generates a finite-

dimensional subalgebra in A. Hence if dim rad(A) = ∞, then the subal-

gebra generated by rad(A) is not finitely generated. On the other hand,

the preimage in A of any non-finitely generated subalgebra in A/rad(A)

is not finitely generated.

Conversely, assume that (2) holds. Then any subalgebra in A is gen-

erated by elements whose images generate the image of this subalgebra

in A/rad(A), and by a basis of the radical of the subalgebra.

If A contains non-nilpotent zerodivisors, then the proof of Theorem 6.3

goes through with small technical modifications, see [10]. The same

proof also goes well for a non-reductive G. The only difference is that

case HV is excluded by the result of V. L. Popov.

Proposition 6.9 ([53, Th.3]). If G acts on an affine variety X with an

open orbit, and

(1) the induced action Gu : X is non-trivial and

(2) the complement to the open G-orbit in X does not contain a component

of positive dimension,

then the action G : X is transitive.

These arguments prove

Theorem 6.10 ([10, Th.3]). Let A be a G-algebra without nilpotents

with the non-trivial induced Gu-action. The following conditions are

equivalent:

(1) any G-invariant subalgebra in A is finitely generated;

(2) any G-invariant subalgebra in A does not contain non-trivial G-invariant

ideals;

(3) any L-invariant subalgebra in AGu

does not contain non-trivial L-

invariant ideals;

(4) A = K[G/H ], where G/H is an affinely closed homogeneous space.
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[72] T. Vust. Sur la théorie des invariants des groupes classiques. Ann. Inst.
Fourier, 26:1–31, 1976.

[73] J. A. Wolf. Translation-invariant function algebras on compact groups.
Pacif. J. Math., 15:1093–1099, 1965.

Department of Higher Algebra

Faculty of Mechanics and Mathematics

Moscow State University

Leninskie Gory, 119992 Moscow

Russia

arjantse@mccme.ru


