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Abstract By an additive action on a hypersurface H in P
nC1 we mean an effective

action of a commutative unipotent group on P
nC1 which leaves H invariant and

acts on H with an open orbit. Brendan Hassett and Yuri Tschinkel have shown that
actions of commutative unipotent groups on projective spaces can be described in
terms of local algebras with some additional data. We prove that additive actions
on projective hypersurfaces correspond to invariant multilinear symmetric forms on
local algebras. It allows us to obtain explicit classification results for non-degenerate
quadrics and quadrics of corank one.
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1 Introduction

Let K be an algebraically closed field of characteristic zero and Ga the additive
group .K; C/. Consider the commutative unipotent affine algebraic group G

n
a.

In other words, Gn
a is the additive group of an n-dimensional vector space over K.

The first aim of this paper is to survey recent results on actions of Gn
a with an open

orbit on projective algebraic varieties. To this end we include a detailed proof of
the Hassett–Tschinkel correspondence, discuss its corollaries, interpretations, and
related examples. Also we develop the method of Hassett and Tschinkel to show
that the generically transitive actions of the group G

n
a on projective hypersurfaces

correspond to invariant multilinear symmetric forms on finite-dimensional local
algebras. This leads to explicit classification results for non-degenerate quadrics
and quadrics of corank one.

By an additive action on a variety X we mean a faithful regular action of the
group G

n
a on X such that one of the orbits is open in X . The study of such

actions was initiated by Brendan Hassett and Yuri Tschinkel [11]. They showed
that additive actions on the projective space P

n up to equivalence are in bijection
with isomorphism classes of local algebras of K-dimension n C 1. In particular, the
number of additive actions on P

n is finite if and only if n � 5.
Additive actions on projective subvarieties X � P

m induced by an action G
n
a �

P
m ! P

m can be described in terms of local .mC1/-dimensional algebras equipped
with some additional data. This approach was used in [2, 15] to classify additive
actions on projective quadrics. Elena Sharoiko proved in [15, Theorem 4] that an
additive action on a non-degenerate quadric Q � P

nC1 is unique up to equivalence.
Recently Baohua Fu and Jun-Muk Hwang [9] used a different technique to show the
uniqueness of additive action on a class of Fano varieties with Picard number 1. This
result shows that an abundance of additive actions on the projective space should be
considered as an exception.

A variety with a given additive action looks like an “additive analogue” of a toric
variety. Unfortunately, it turns out that two theories have almost no parallels, see
[2, 11].

Generalized flag varieties G=P of a semisimple algebraic group G admitting
an additive action are classified in [1]. Roughly speaking, an additive action on
G=P exists if and only if the unipotent radical P u of the parabolic subgroup P

is commutative. The uniqueness result in this case follows from [9]. In particular,
it covers the case of Grassmannians and thus answers a question posed in [2].
Another proof of the uniqueness of additive actions on generalized flag varieties
is obtained by Rostislav Devyatov [7]. It uses nilpotent multiplications on certain
finite-dimensional modules over semisimple Lie algebras.

Evgeny Feigin proposed a construction based on the PBW-filtration to degenerate
an arbitrary generalized flag variety G=P to a variety with an additive action, see
[8] and further publications.
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In [5], Ulrich Derenthal and Daniel Loughran classified singular del Pezzo
surfaces with additive actions; see also [6]. By the results of [4], Manin’s Conjecture
is true for such surfaces.

In this paper we prove that additive actions on projective hypersurfaces of
degree d in P

nC1 are in bijection with invariant d -linear symmetric forms on
.n C 2/-dimensional local algebras. The corresponding form is the polarization of
the equation defining the hypersurface. As an application, we give a short proof
of uniqueness of additive action on non-degenerate quadrics and classify additive
actions on quadrics of corank one. The case of cubic projective hypersurfaces is
studied in the recent preprint of Ivan Bazhov [3].

The paper is organized as follows. In Sect. 2 we define additive actions and
consider the problem of extension of an action G

n
a � X ! X on a projective

hypersurface X to the ambient space P
nC1. The Hassett–Tschinkel correspondence

is discussed in Sect. 3. Section 4 is devoted to invariant multilinear symmetric
forms on local algebras. Our main result (Theorem 2) describes additive actions
on projective hypersurfaces in these terms. Also we give an explicit formula for an
invariant multilinear symmetric form (Lemma 1) and prove that if a hypersurface
X in P

nC1 admits an additive action and the group Aut.X/0 is reductive, then X is
either a hyperplane or a non-degenerate quadric (Proposition 5). Additive actions on
non-degenerate quadrics and on quadrics of corank one are classified in Sect. 5 and
Sect. 6, respectively.

2 Additive Actions on Projective Varieties

Let X be an irreducible algebraic variety of dimension n and G
n
a be the commutative

unipotent group.

Definition 1. An inner additive action on X is an effective action G
n
a � X ! X

with an open orbit.

It is well known that for an action of a unipotent group on an affine variety all
orbits are closed, see, e.g., [14, Sect. 1.3]. It implies that if an affine variety X admits
an additive action, then X is isomorphic to the group G

n
a with the G

n
a-action by left

translations.
In general, the existence of an inner additive action implies that the variety X

is rational. For X normal, the divisor class group Cl.X/ is freely generated by
prime divisors in the complement of the open G

n
a-orbit. In particular, Cl.X/ is a

free finitely generated abelian group.
The most interesting case is the study of inner additive actions on complete

varieties X . In this case an inner additive action determines a maximal commutative
unipotent subgroup of the linear algebraic group Aut.X/0. Two inner additive
actions are said to be equivalent, if the corresponding subgroups are conjugate in
Aut.X/.
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Proposition 1. Let X be a complete variety with an inner additive action. Assume
that the group Aut.X/0 is reductive. Then X is a generalized flag variety G=P ,
where G is a linear semisimple group and P is a parabolic subgroup.

Proof. Let X 0 be the normalization of X . Then the action of Aut.X/0 lifts to X 0.
By the assumption, some unipotent subgroup of Aut.X/0 acts on X 0 with an open
orbit. Then a maximal unipotent subgroup of the reductive group Aut.X/0 acts on
X 0 with an open orbit. It means that X 0 is a spherical variety of rank zero, see
[16, Sect. 1.5.1] for details. It yields that X 0 is a generalized flag variety G=P ,
see [16, Proposition 10.1], and Aut.X/0 acts on X 0 transitively. The last condition
implies that X D X 0. ut

A classification of generalized flag varieties admitting an inner additive action is
obtained in [1]. In particular, the parabolic subgroup P is maximal in this case.

Definition 2. Let X be a closed subvariety of dimension n in the projective
space P

m. Then an additive action on X is an effective action G
n
a � P

m ! P
m

such that X is Gn
a-invariant and the induced action G

n
a � X ! X has an open orbit.

Two additive actions on X are said to be equivalent if one is obtained from another
via automorphism of Pm preserving X .

Clearly, any additive action on a projective subvariety X induces an inner additive
action on X . The converse is not true, i.e., not any action G

n
a � X ! X with an

open orbit on a projective subvariety X can be extended to the ambient space P
m.

Example 1. Consider a subvariety

X D V.x2z � y3/ � P
2

and a rational Ga-action on X given by

�y

x
; a

�
7! y

x
C a:

Using affine charts one can check that this action is regular. On the other hand, it
cannot be extended to P

2, because the closure of a Ga-orbit on P
2 cannot be a cubic,

see Example 2.

At the same time, if the subvariety X is linearly normal in P
m and X is

normal, then an extension of a G
n
a-action to P

m exists. Indeed, the restriction
L DW O.1/jX of the line bundle O.1/ on P

m can be linearized with respect to
the action G

n
a � X ! X , see, e.g., [12]. The linearization defines a structure

of a rational Gn
a-module on the space of sections H 0.X; L/. Since X is linearly

normal, the restriction H 0.Pm; O.1// ! H 0.X; L/ is surjective. Consider a vector
space decomposition H 0.Pm; O.1// D V1 ˚ V2, where V1 is the kernel of the
restriction. The complementary subspace V2 projects to H 0.X; L/ isomorphically.
This isomorphism induces a structure of a rational Gn

a-module on V2. Further, we
regard V1 as the trivial Gn

a-module. This gives a structure of a rational Gn
a-module on
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H 0.Pm; O.1//. Since Pm is the projectivization of the dual space to H 0.Pm; O.1//,
we obtain a required extended action G

n
a � P

m ! P
m.

From now on we consider additive actions on projective subvarieties X � P
m.

3 The Hassett–Tschinkel Correspondence

In [11] Brendan Hassett and Yuri Tschinkel established a remarkable correspon-
dence between additive actions on the projective space P

n and local algebras of
K-dimension n C 1. Moreover, they described rational cyclic G

n
a-modules in terms

of local algebras. In this section we recall these results. The proofs given here are
taken from [2]. By a local algebra we always mean a commutative associative local
algebra with unit.

Let � W Gn
a ! GLmC1.K/ be a faithful rational representation. The differential

defines a representation d� W g ! glmC1.K/ of the tangent algebra g D Lie.Gn
a/

and the induced representation � W U.g/ ! MatmC1.K/ of the universal enveloping
algebra U.g/. Since the group G

n
a is commutative, the algebra U.g/ is isomorphic

to the polynomial algebra KŒx1; : : : ; xn�, where g is identified with the subspace
hx1; : : : ; xni. The algebra R WD �.U.g// is isomorphic to the factor algebra
U.g/= Ker � . As �.x1/; : : : ; �.xn/ are commuting nilpotent operators, the algebra
R is finite-dimensional and local. Let us denote by X1; : : : ; Xn the images of the
elements x1; : : : ; xn in R. Then the maximal ideal of R is m WD .X1; : : : ; Xn/. The
subspace W WD �.g/ D hX1; : : : ; Xni generates R as an algebra with unit.

Assume that KmC1 is a cyclic Gn
a-module with a cyclic vector v, i.e., h�.Gn

a/vi D
K

mC1. The subspace �.U.g//v is g- and G
n
a-invariant; it contains the vector v and

therefore coincides with the space K
mC1. Let I D fy 2 U.g/ W �.y/v D 0g. Since

the vector v is cyclic, the ideal I coincides with Ker � , and we obtain identifications

R Š U.g/=I Š �.U.g//v D K
mC1:

Under these identifications the action of an element �.y/ on K
mC1 corresponds

to the operator of multiplication by �.y/ on the factor algebra R, and the vector
v 2 K

mC1 goes to the residue class of unit. Since G
n
a D exp.g/, the G

n
a-action on

K
mC1 corresponds to the multiplication by elements of exp.W / on R.
Conversely, let R be a local .m C 1/-dimensional algebra with a maximal ideal

m, and W � m be a subspace that generates R as an algebra with unit. Fix a basis
X1; : : : ; Xn in W . Then R admits a presentation KŒx1; : : : ; xn�=I , where I is the
kernel of the homomorphism

KŒx1; : : : ; xn� ! R; xi 7! Xi:

These data define a faithful representation � of the group G
n
a WD exp.W / on

the space R: the operator �..a1; : : : ; an// acts as multiplication by the element
exp.a1X1 C � � � C anXn/. Since W generates R as an algebra with unit, one checks
that the representation is cyclic with unit in R as a cyclic vector.
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Summarizing, we obtain the following result.

Theorem 1 ([11, Theorem 2.14]). The correspondence described above estab-
lishes a bijection between

.1/ equivalence classes of faithful cyclic rational representations

� W Gn
a ! GL

mC1
.K/I

.2/ isomorphism classes of pairs .R; W /, where R is a local .m C 1/-dimensional
algebra with the maximal ideal m and W is an n-dimensional subspace of m
that generates R as an algebra with unit.

Remark 1. Let � W G
n
a ! GLmC1.K/ be a faithful cyclic rational representation.

The set of cyclic vectors in K
mC1 is an open orbit of a commutative algebraic group

C with �.Gn
a/ � C � GLmC1.K/, and the complement of this set is a hyperplane.

In our notation, the group C is the extension of the commutative unipotent group
exp.m/ Š G

m
a by scalar matrices.

A faithful linear representation � W G
n
a ! GLmC1.K/ determines an effective

action of the group G
n
a on the projectivization P

m of the space K
mC1. Conversely,

let G be a connected affine algebraic group with the trivial Picard group, and
X be a normal G-variety. By [12, Sect. 2.4], every line bundle on X admits a
G-linearization. Moreover, if G has no non-trivial characters, then a G-linearization
is unique. This shows that every effective G

n
a-action on P

m comes from a (unique)
faithful rational .m C 1/-dimensional Gn

a-module.
An effective Gn

a-action on P
m has an open orbit if and only if n D m. In this case

the correspondingGn
a-module is cyclic. In terms of Theorem 1 the condition n D m

means W D m, and we obtain the following theorem.

Proposition 2 ([11, Proposition 2.15]). There is a one-to-one correspondence
between

.1/ equivalence classes of additive actions on P
n;

.2/ isomorphism classes of local .n C 1/-dimensional algebras.

Remark 2. It follows from Remark 1 that if the group G
n
a acts on P

m and some
orbit is not contained in a hyperplane, then the action can be extended to an additive
action G

m
a � P

m ! P
m. It seems that such an extension exists without any extra

assumption.

Given the projectivization P
m of a faithful rational Gn

a-module and a point x 2
P

m with the trivial stabilizer, the closure X of the orbit Gn
a � x is a projective variety

equipped with an additive action. Closures of generic orbits are hypersurfaces if and
only if n D m � 1. If such a hypersurface is not a hyperplane, then P

m comes from
the projectivization of a cyclic G

n
a-module, it is given by a pair .R; W /, and the

condition n D m � 1 means that W is a hyperplane in m. We obtain the following
result.
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Proposition 3. There is a one-to-one correspondence between

.1/ equivalence classes of additive actions on hypersurfaces in P
nC1 of degree at

least two;
.2/ isomorphism classes of pairs .R; W /, where R is a local .n C 2/-dimensional

algebra with the maximal ideal m and W is a hyperplane in m that generates R

as an algebra with unit.

It is shown in [2, Theorem 5.1] that the degree of the hypersurface corresponding
to a pair .R; W / is the maximal exponent d such that the subspace W does not
contain the ideal md .

Example 2. There exist two 3-dimensional local algebras,

KŒx�=.x3/ and KŒx; y�=.x2; xy; y2/:

In the first case m3 D 0, and in the second one we have m2 D 0. This shows that for
every Ga-action on P

2 the orbit closures are either lines or quadrics.

4 Invariant Multilinear Forms on Local Algebras

Consider a pair .R; W / as in Proposition 3 and let H � P
nC1 be the corresponding

hypersurface. Let us fix a coordinate system on R D h1i ˚ m such that x0 is the
coordinate along h1i and x1; : : : ; xnC1 are coordinates on m.

Assume that H is defined by a homogeneous equation

f .x0; x1; : : : ; xnC1/ D 0

of degree d . Since H is invariant under the action of Gn
a, the polynomial f is Gn

a-
semi-invariant [14, Theorem 3.1]. But the group G

n
a has no non-trivial characters,

and the polynomial f is G
n
a-invariant. Equivalently, f is annihilated by the Lie

algebra g.
It is well known that for a given homogeneous polynomial f of degree d on a

vector space R there exists a unique d -linear symmetric map

F W R � R � � � � � R ! K

such that f .v/ D F.v; v; : : : ; v/ for all v 2 R, see, e.g., [14, Sect. 9.1]. The map F

is called the polarization of the polynomial f .
Since the representation d� of the Lie algebra g on R is given by multiplication

by elements of W; a homogeneous polynomial f on R is annihilated by g if and
only if

F.ab1; b2; : : : ; bd / C F.b1; ab2; : : : ; bd / C � � � C F.b1; b2; : : : ; abd / D 0 8 a 2 W;

b1; : : : ; bd 2 R: (1)
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Definition 3. Let R be a local algebra with the maximal ideal m. An invariant
d -linear form on R is a d -linear symmetric map

F W R � R � � � � � R ! K

such that F.1; 1; : : : ; 1/ D 0, the restriction of F to m is nonzero, and there exists
a hyperplane W in m which generates R as an algebra with unit and such that
condition (1) holds.

If F1 (resp. F2) are invariant d1-linear (resp. d2-linear) forms on R with respect
to the same hyperplane W , then the product F1F2 defines an invariant .d1 C d2/-
linear form. An invariant multilinear form is said to be irreducible, if it cannot be
represented as such a product.

One can show that there is no invariant linear form. It implies that any invariant
bilinear or 3-linear form is irreducible.

We are ready to formulate our main result.

Theorem 2. Additive actions on hypersurfaces of degree d � 2 in P
nC1 are in

natural one-to-one correspondence with pairs .R; F /, where R is a local algebra
of dimension n C 2 and F is an irreducible invariant d -linear form on R up to a
scalar.

Proof. An additive action on a hypersurface H in P
nC1 is given by a faithful

rational representation � W G
n
a ! GLnC2.K/ making K

nC2 a cyclic G
n
a-module.

In our correspondence we identify K
nC2 with the local algebra R. We choose

coordinates x0; x1; : : : ; xnC1 compatible with the decomposition R D h1i ˚ m.
Let f .x0; x1; : : : ; xnC1/ D 0 be the equation of the hypersurface H , where f is
irreducible. Then the algebra of Gn

a-invariants on K
nC2 is freely generated by x0

and f .
Every G

n
a-invariant hypersurface in P

nC1 is given by

f̨ .x0; x1; : : : ; xnC1/ C ˇxd
0 D 0; .˛; ˇ/ 2 K

2 n f.0; 0/g:
So we may assume that f does not contain the term xd

0 . Let F be the polarization
of f . Then condition (1) holds and F.1; : : : ; 1/ D 0. If the restriction of F to m is
zero, then x0 divides f , and f is not irreducible, a contradiction.

Conversely, let .R; F / be such a pair and W be a subspace from the definition
of F . Then .R; W / gives rise to a structure of a rational Gn

a-module on R. Consider
the hypersurface f D 0 in P.R/ Š P

nC1, where f .v/ D F.v; v; : : : ; v/. It is
invariant under the action of Gn

a. By the assumptions, f is irreducible and thus the
hypersurface f D 0 coincides with the closure of a generic Gn

a-orbit. ut
Given a hyperplane W in the maximal ideal m of a local algebra R that generates

R as an algebra with unit, let d be the maximal exponent such that the subspace
W does not contain the ideal md . By Theorem 2 and [2, Theorem 5.1], there exists
a unique up to a scalar irreducible invariant (with respect to W ) d -linear form FW

on R. Let us write down this form explicitly.
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By linearity, we may assume that each argument of FW is either the unit 1 or
an element of m. Fix an isomorphism m=W Š K and consider the projection
�Wm ! m=W Š K. We define the form

FW .b1; : : : ; bd / WD .�1/kkŠ.d � k � 1/Š �.b1 : : : bd /;

where k is the number of units among b1; : : : ; bd , and for k D d we let
FW .1; : : : ; 1/ D 0.

Lemma 1. The form FW is an irreducible invariant d -linear form on R.

Proof. We begin with condition (1). Since abi 2 m for all a 2 W and bi 2 R, with
0 < k < d this condition can be rewritten as

.k.�1/k�1.k � 1/Š.d � k/Š C .d � k/.�1/kkŠ.d � k � 1/Š/ �.ab1 : : : bd / D 0;

and it is obvious. For k D 0 we have ab1 : : : bd 2 mdC1 � W , and thus
�.ab1 : : : bd / D 0. For k D d we have �.d � 2/Š�.a/ D 0, because a 2 W .

The restriction of F to m is nonzero since md is not contained in W .
It follows from [2, Theorem 5.1] that the form F is irreducible. Finally, we have
FW .1; : : : ; 1/ D 0 by definition. ut

The next proposition follows immediately from [13, Theorems 1 and 4]. Let us
obtain this result using our technique.

Proposition 4. Let H be a smooth hypersurface in P
nC1 admitting an additive

action. Then H is either a hyperplane or a non-degenerate quadric.

Proof. Assume that an additive action on H is given by a triple .R; W; F /. Let
e0; e1; : : : ; enC1 be a basis of R compatible with the decomposition

R D h1i ˚ W ˚ henC1i:

Moreover, we may assume that enC1 2 md , where mdC1 is contained in W . Then
in the notation of Lemma 1 we have �.benC1/ D 0 for all b 2 m. It means that the
variable xnC1 can appear in the equation f .x0; : : : ; xnC1/ D 0 of the hyperplane H

only in the term xd�1
0 xnC1. Thus the point Œ0 W : : : W 0 W 1� lies on H and it is singular

provided d � 3. It remains to note that the only smooth quadric is a non-degenerate
one. ut
Proposition 5. Let H be a hypersurface in P

nC1 which admits an additive action
and such that the group Aut.H/0 is reductive. Then H is either a hyperplane or a
non-degenerate quadric.

Proof. By Proposition 1, the variety H is smooth, and the assertion follows from
Proposition 4. ut
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Remark 3. Take a triple .R; W; F / as in Definition 3 and consider the sum I of
all ideals of the algebra R contained in W . It is the biggest ideal of R contained
in W . Taking a compatible basis of R, we see that the equation of the corresponding
hypersurface does not depend on the coordinates in I . Moreover, for the factor
algebra R0 D R=I we have

R0 D h10i ˚ W 0 ˚ .m0/d

with m0 D m=I , W 0 D W=I , and dim.m0/d D 1. The invariant form F descents to
R0, the subspace W 0 contains no ideal of R0, and the algebra R0 is Gorenstein. Such
a reduction is useful in classification problems.

5 Non-degenerate Quadrics

In this section we classify non-degenerate invariant bilinear symmetric forms on
local algebras. These results are obtained in [15], but we give a short elementary
proof.

Let R be a local algebra of dimension n C 2 with the maximal ideal m and F a
non-degenerate bilinear symmetric form on R such that F.1; 1/ D 0. Assume that
for some hyperplane W in m generating R we have

F.ab1; b2/ C F.b1; ab2/ D 0 for all b1; b2 2 R and a 2 W: (2)

We choose a basis e0 D 1; e1; : : : ; en; enC1 of R such that W D he1; : : : ; eni
and m D he1; : : : ; enC1i. For any b 2 R let b D b.0/ C b.1/ C � � � C b.nC1/ be the
decomposition corresponding to this basis.

Lemma 2. (1) F.1; a/ D 0 for all a 2 W ;
(2) F.1; b/ D F.1; b.nC1// for all b 2 R;
(3) If a; a0 2 W and aa0 2 W , then aa0 D 0;
(4) The restriction of the form F to W is non-degenerate.

Proof. Assertion (1) follows from (2) with b1 D b2 D 1. For (2), note that

F.1; b/ D F.1; b.0// C F.1; b.1/ C � � � C b.n// C F.1; b.nC1//:

The first term is 0 because of F.1; 1/ D 0, and the second one is 0 by (1).
If a; a0; aa0 2 W , then for any b 2 R we have

F.b; aa0/ D �F.ab; a0/ D F.aa0b; 1/ D �F.b; aa0/;

and F.b; aa0/ D 0. Since F is non-degenerate, we obtain (3).



Additive Actions on Projective Hypersurfaces 27

For (4), assume that for some 0 ¤ a 2 W we have F.a; a0/ D 0 for all a0 2 W .
Since F is non-degenerate, it yields F.a; enC1/ D � for some nonzero � 2 K.
If F.1; enC1/ D �, then F.�a � �1; enC1/ D 0, and the vector �a � �1 is in the
kernel of the form F . ut

Let us denote by M.F / the matrix of a bilinear form F in a given basis.

Proposition 6. In the notation as above, the triple .R; W; F / can be transformed
into the form

R D KŒe1; : : : ; en�=.e2
i � e2

j ; ei ej I 1 � i < j � n/; W D he1; : : : ; eni;

M.F / D

0
BBBBB@

0 0 : : : 0 1

0 �1 : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : �1 0

1 0 : : : 0 0

1
CCCCCA

Proof. Since F is non-degenerate, we may assume that F.1; enC1/ D 1. Using
Lemma 2, (4), we may suppose that F.ei ; ej / D �ıij for all 1 � i; j � n. Now the
matrix of the form F looks like

0
BBBBB@

0 0 : : : 0 1

0 �1 : : : 0 �
:::

:::
: : :

:::
:::

0 0 : : : �1 �
1 � : : : � �

1
CCCCCA

For all 1 � i < j � n we have F.1; eiej / D �F.ei ; ej / D 0. It follows from
Lemma 2, (2) that .eiej /.nC1/ D 0. We conclude that ei ej 2 W and thus eiej D 0

by Lemma 2, (3).
Since F.1; e2

i / D �F.ei ; ei / D 1, we have e2
i D enC1 C fi , where fi 2 W .

Then

.e1 C ei /.e1 � ei / D e2
1 � e2

i D f1 � fi 2 W:

By Lemma 2, (3) we obtain e2
1 D e2

i .
Without loss of generality it can be assumed that enC1 D e2

1 . Let n � 2. Then
enC1ei D e2

j ei D 0, where 1 � i ¤ j � n. If n D 1 then enC1e1 D e3
1 2 m3 D 0.

Hence enC1b D 0 for any element b 2 m, and R is isomorphic to
KŒe1; : : : ; en�=.e2

i � e2
j ; ei ej /.
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It remains to prove that enC1 ?F m. Indeed, we have

F.enC1; b/ D F.e2
1; b/ D �F.e1; e1b/ D F.1; e2

1b/ D F.1; 0/ D 0 8b 2 m:

This completes the proof of the proposition. ut
As a corollary we obtain the result of [15, Theorem 4].

Corollary 1. A non-degenerate quadric Qn � P
nC1 admits a unique additive

action up to equivalence.

6 Quadrics of Corank One

Let us classify invariant bilinear symmetric forms of rank n C 1 on local
.n C 2/-dimensional algebras. Geometrically these results can be interpreted as
a classification of additive actions on quadrics of corank one in P

nC1.
Let R be a local algebra of dimension n C 2, n � 2, with the maximal ideal

m and F a bilinear symmetric form of rank n C 1 on R such that F.1; 1/ D 0.
Assume that for some hyperplane W in m condition (2) holds. We choose a basis
e0 D 1; e1; : : : ; en; enC1 of R such that W D he1; : : : ; eni and m D he1; : : : ; enC1i.

Lemma 3. The kernel Ker F is contained in W .

Proof. Let Ker F D hli. Assume that l is not in W . Then we should consider four
alternatives.

1. Let hli D h1i. Then F.a; b/ D �F.1; ab/ D 0 for all a 2 W; b 2 R, and
dim Ker F � 2, a contradiction.

2. Let hli � m n W . Without loss of generality it can be assumed that l D enC1.
As we have seen, F.1; b/ D F.1; b.nC1// D 0 for all b 2 R. Thus we have
1 2 Ker F , which leads to a contradiction.

3. Let hli � R n .m [ h1; W i/. Without loss of generality it can be assumed that
l D 1 C enC1. We have 0 D F.1; l/ D F.1; 1/ C F.1; enC1/ D F.1; enC1/.
It again follows that 1 2 Ker F .

4. Let hli � h1; W i n W . We can assume that l D 1 C f , where W 3 f ¤ 0. Then

F.1; b/ D �F.f; b/ D F.1; fb/ D � � � D F.1; f nC3b/ D 0 8 b 2 R:

Thus we again have 1 2 Ker F .

This completes the proof of the lemma. ut
Proposition 7. In the notation as above, the triple .R; W; F / can be transformed
into the form
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M.F / D

0
BBBBBBBB@

0 0 : : : 0 0 1

0 �1 : : : 0 0 0
:::

:::
: : :

:::
:::

:::

0 0 : : : �1 0 0

0 0 : : : 0 0 0

1 0 : : : 0 0 0

1
CCCCCCCCA

; W D he1; : : : ; eni;

and R is isomorphic to one of the following algebras:

1. KŒe1; : : : ; en�=.eiej � �ijen; e2
i � e2

j � .�ii � �jj/en; esen; 1 � i < j � n � 1;

1 � s � n; n � 3/ where �ij are elements of a symmetric block diagonal
.n � 1/ � .n � 1/-matrix ƒ such that each block ƒk is

�k

0
BBBB@

1 0 0

0
: : :

: : :

: : :
: : : 0

0 0 1

1
CCCCA

C 1

2

0
BBBB@

0 1 0

1
: : :

: : :

: : :
: : : 1

0 1 0

1
CCCCA

C i

2

0
BBBB@

0 1 0
: : :

: : : �1

1
: : :

: : :

0 �1 0

1
CCCCA

with some �k 2 K;
2. KŒe1; e2�=.e3

1; e1e2; e2
2/ or KŒe1�=.e4

1/ with e2 D e3
1; e3 D e2

1 .

Remark 4. Blocks ƒk of size 1 are
�
�k

�
. Blocks ƒk of size 2 are

0
B@

�k C i

2

1

2
1

2
�k � i

2

1
CA

Proof of Proposition 7. By Lemma 3 we may assume that Ker F D heni and
F.1; enC1/ D 1, because of F.1; a/ D 0 for all a 2 W . Let V be the linear span
he1; : : : ; en�1i. As in Lemma 2, (4) one can show that the restriction of F to V is
non-degenerate. Thus we can assume that the matrix of F has the form

0
BBBBBBBB@

0 0 : : : 0 0 1

0 �1 : : : 0 0 �
:::

:::
: : :

:::
:::

:::

0 0 : : : �1 0 �
0 0 : : : 0 0 �
1 � : : : � � �

1
CCCCCCCCA

:

We have 1 D �F.ei ; ei / D F.1; e2
i / D F.1; .e2

i /.nC1// ) e2
i D enC1 C fi for

some fi 2 W and every i D 1; : : : ; n � 1. We may assume that enC1 D e2
1 .
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Then fi D e2
i � e2

1 D .ei C e1/.ei � e1/ and, as in Lemma 2, (3), we obtain
fi D �iien.

Again as in Lemma 2, (3), we have eiej D �ijen for all 1 � i < j � n � 1.
Thus multiplication on the subspace V is given by the matrix InenC1 C ƒen,

where In is the identity matrix and a symmetric matrix ƒ is defined up to adding a
scalar matrix.

It is easy to check that the symmetric matrix ƒ D .�ij/ under orthogonal
transformations on V transforms as the matrix of a bilinear symmetric form.
It follows from [10, Chap. 11, Sect. 3] that ƒ can be transformed into the canonical
block diagonal form by orthogonal transformation. Here each block ƒk has the form

�k

0
BBBB@

1 0 0

0
: : :

: : :

: : :
: : : 0

0 0 1

1
CCCCA

C 1

2

0
BBBB@

0 1 0

1
: : :

: : :

: : :
: : : 1

0 1 0

1
CCCCA

C i

2

0
BBBB@

0 1 0
: : :

: : : �1

1
: : :

: : :

0 �1 0

1
CCCCA

; �k 2 K:

We claim that enm D 0. Indeed, F.aen; b/ D �F.en; ab/ D 0 for all a 2 W and
b 2 R, and thus aen D ˛en for some ˛ 2 K. But a is nilpotent, and ˛ D 0. Finally,
we have enenC1 D ene2

1 D 0.
Further,

F.enC1a; 1/ D �F.enC1; a/ D �F.e2
1; a/ D �F.1; e2

1a/

D �F.1; enC1a/ ) F.enC1; a/ D 0 (3)

for all a 2 W .

1. Let n � 3. We claim that enC1m D 0. Indeed, for 1 � i ¤ j � n � 1 we have

enC1ei D .e2
j � �jjen/ei D �ijej en � �jjenei D 0:

In this case the algebra R is isomorphic to

KŒe1; : : : ; en�=.eiej � �ijen; e2
i � e2

j � .�ii � �jj/en; esen;

1 � i < j � n � 1; 1 � s � n/:

2. Let n D 2. We have e2
3 D e4

1 2 m4 D 0 ) e2
3 D 0. Since F.e1e3; 1/ D

�F.e3; e1/ D 0, it follows that e1e3 2 W . Thus e1e3 D ˛e1 C ˇe2 and we have

0 D e4
1 D .e1e3/e1 D ˛e2

1 C ˇe1e2 D ˛e3 ) ˛ D 0:

If ˇ D 0, then R Š KŒe1; e2�=.e3
1; e1e2; e2

2/. If ˇ ¤ 0, then we may assume that
ˇ D 1, and R ' KŒe1�=.e4

1/ with e2 D e3
1; e3 D e2

1 .
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In all cases e2
nC1 D e2

1enC1 D 0, and it follows that F.enC1; enC1/ D
F.1; e2

nC1/ D 0. Combining this with (3), we obtain

M.F / D

0
BBBBBBBB@

0 0 : : : 0 0 1

0 �1 : : : 0 0 0
:::

:::
: : :

:::
:::

:::

0 0 : : : �1 0 0

0 0 : : : 0 0 0

1 0 : : : 0 0 0

1
CCCCCCCCA

:

Proposition 7 is proved. ut
Remark 5. The normal form of a symmetric matrix ƒ is unique up to permutation of
blocks. Indeed, we conjugate the matrix ƒ by the symmetric block diagonal matrix
T such that each block Tk is

1

2

0
BBBBB@

1 0 : : : 0 i

0 1 i 0
:::

: : :
:::

0 i 1 0

i 0 : : : 0 1

1
CCCCCA

;

and obtain the Jordan normal form of ƒ with the same block sizes and the same
eigenvalues.

We claim that the matrix ƒ defining a triple .R; W; F / is unique up to
permutation of blocks, scalar multiplication, and adding a scalar matrix. To see
this, let two matrices ƒ; ƒ0 define the same triple .R; W; F /. Notice that adding
a scalar matrix to ƒ we do not change the defining relations of R. Denote by � an
automorphism of R such that W D �.W / and

F D ��1T F��1:

It yields Ker F D �.Ker F / and �.en/ D ˛en. Multiplying the matrix ƒ0 by
˛�1 we obtain �.en/ D en. Moreover, � induces on W= Ker F an orthogonal
transformation, and thus two canonical forms of the matrix ƒ can differ only by
the order of blocks.

Example 3. Two cases in Proposition 7, (2), correspond to two non-equivalent
actions of G2

a on the quadric 2x0x3 � x2
1 D 0 in P

3, namely,

.a1; a2/ � Œx0 W x1 W x2 W x3� D
�
x0 W x1 C a1x0 W x2 C a2x0 W x3 C a2

1

2
x0 C a1x1

�
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and

.a1; a2/ � Œx0 W x1 W x2 W x3�

D
�
x0 W x1 C a1x0 W x2 C

�
a2 C a3

1

6

	
x0 C a2

1

2
x1 C a1x3 W x3 C a2

1

2
x0 C a1x1

�
:

For the first action there is a line of fixed points, while the second one has three
orbits.

Example 4. Let n D 3. If the matrix ƒ is diagonal, then up to scalar addition and

multiplication we have ƒ D
�

0 0

0 0

	
or ƒ D

�
0 0

0 1

	
. With non-diagonal ƒ we have

�
i=2 1=2

1=2 �i=2

	
. So there are three equivalence classes of additive actions in this case,

and they can be easily written down explicitly.

Example 5. Consider the case n D 4. We have six types of the matrix ƒ with one
depending on a parameter. Namely, in the diagonal matrix ƒ D diag.0; 1; t/,
where t 2 K n f0; 1g, the parameter t is defined up to transformations˚
t; 1

t
; 1 � t; t�1

t
; t

t�1
; 1

1�t



. Therefore, the parameters t and t 0 determine equivalent

actions if and only if

.t2 � t C 1/3

t2.1 � t/2
D .t 02 � t 0 C 1/3

t 02.1 � t 0/2
:

The action of G4
a on the quadric 2x0x5 � x2

1 � x2
2 � x2

3 D 0 in this case has the form

.a1; a2; a3; a4/ � Œx0 W x1 W x2 W x3 W x4 W x5�

D
�
x0 W x1 C a1x0 W x2 C a2x0 W x3 C a3x0 W x4 C 2a4 C a2

2 C ta2
3

2
x0

Ca2x2 C ta3x3 W x5 C a2
1 C a2

2 C a2
3

2
x0 C a1x1 C a2x2 C a3x3

�
:

This agrees with the results of [2, Sect. 4].
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