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Low-temperature Hall effect in bismuth chalcogenides thin films
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Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures, thin films
of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization
should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature
decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier
mobility), and by using a purely phenomenological approach, with no microscopic theory, we show that the
low-temperature growth of the resistivity is accompanied by growth of the Hall coefficient, in agreement with the
diffusive electron-electron interaction correction mechanism. Our data reasonably explain the low-temperature
resistivity upturn.
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I. INTRODUCTION

Among numerous three-dimensional (3D) topological in-
sulators, Bi2Se3 and Bi2Te3 are the most studied materials.
They have a large band gap in the bulk, 300 and 150 meV,
respectively, and can be rather easily synthesized.

Revealing topological and spin related properties in these
systems as a rule requires reduced temperatures. Lowering
the temperature, in its turn, not merely simplifies the system,
but leads to new questions. One of them is the so-called
low-temperature transport paradox [1]: almost all films in
weak fields demonstrate positive magnetoresistance due to
suppression of the weak antilocalization (WAL) correction.
The WAL correction should lead to a decrease of resistivity
as temperature decreases (dρ/dT > 0, i.e., “metallic” tem-
perature dependence). Contrary to this expectation, almost
all films, grown by various methods [2–4], and crystalline
flakes split off the bulk materials [5] at low temperatures
demonstrate “insulating”-type dependence (dρ/dT < 0) [6].
These observations mean that some other mechanism exists on
top of the weak antilocalization and drives the system towards
insulator as temperature decreases.

In Refs. [1,4,5,7–11], it was conjectured that the electron-
electron interaction correction to conductivity �σee could
be the reason for such insulating behavior. In order to
substantiate their point, the authors in Refs. [1,4,5,7–11] refer
to the microscopic electron-electron interaction (EEI) theory
[12,13]. Several groups attempted to fit their transport data with
EEI theory, using the Fermi-liquid coupling constant Kee ≡
2π2

�/e2 × d(�σee)/d ln(T ) as a fitting parameter; however,
the latter values extracted from fittings appeared to be very
much scattered even for the samples with nominally similar
carrier density.

Experimentally, the conjecture about a quantitative con-
tribution of EEI to the transport does not have a solid
ground. Indeed, the EEI correction, so far, was extracted
only in one manner: by assuming that all low-T transport
properties are determined by only two effects, i.e., WAL and
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EEI. It was assumed that the subtraction of the theoretically
calculated WAL contribution leaves a temperature dependence
of conductivity that is only related to the EEI correction. This
assumption, however, has not been checked independently.
From the theoretical point of view, all TI thin films are
multicomponent systems, and as it was shown, e.g., in
Refs. [1,14], generalization of the electron-electron interaction
correction on a multicomponent system is not reduced to the
simple results of Ref. [12]. Moreover, taking into account
scattering between the subsystems further complicates the
problem [15,16]. Therefore, from a fitting of the temperature
dependence of the resistivity solely, one can not rule out other
mechanisms on top of the WAL and EEI corrections (such
as, e.g., density-of-states correction [17], Maki-Thompson
correction [18], etc). In order to overcome this problem, we use
a theoretically substantiated fully phenomenological approach
that has already been experimentally tested for disordered
two-dimensional systems with a simple spectrum [19].

In this paper, we measure not only the temperature
dependence of the resistivity, but also of the Hall resistivity.
We found that the low-temperature growth of the resistivity is
accompanied by growth of the Hall coefficient, in agreement
with the diffusive electron-electron interaction correction
mechanism [20,21]. We discuss only the phenomenology of
the EEI correction and do not address its microscopic structure.
We compare two methods to determine Kee: (i) from the
temperature dependence of the resistivity Kxx

ee , similarly to the
previous investigators [4,5,7–11], and (ii) from the temperature
dependence of the Hall resistivity K

xy
ee . We show that in some

samples Kxx
ee and K

xy
ee coincide, whereas in some other samples

these two values deviate from each other.

II. THEORETICAL BACKGROUND

The idea to determine Kee from the temperature dependence
of the Hall resistance goes back to 1980s, and originates from
the unique property, which is independent of dimensionality,
of the diffusive electron-electron interaction correction not to
affect the Hall conductivity [20,21]. In other words, for the
magnetoconductivity tensor in a perpendicular magnetic field

2469-9950/2016/94(23)/235401(8) 235401-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.235401


A. YU. KUNTSEVICH et al. PHYSICAL REVIEW B 94, 235401 (2016)

TABLE I. Summary of sample parameters.

n,1012 μ, cm2 ρD , L w d

Sample cm−2 V−1s−1 �/� μm μm nm α Kxy
ee Kxx

ee Comment

Bi2Se3-724 5.9 5000 ± 500 205 ± 20 560 ± 50 165 ± 5 10 0.33 ± 0.03 1.6 ± 0.15 1.6 ± 0.15 Se-covered, scratched
Bi2Se3-685 61 85 1170 125 80 15 0.5 ± 0.15 3.1 ± 0.3 3.1 ± 0.3 mesa-etched
Bi2Se3-691 140 37 1216 120 75 18 0.5 ± 0.1 2.5 ± 0.3 2.8 ± 0.3 unprotected, mesa-etched
Bi2Te3-677 62 630 160 460 ± 50 125 ± 5 23 0.7 ± 0.1 1.4 ± 0.15 1.95 ± 0.2 12 nm BaF2-covered, scratched
Bi2Se3-707 61 410 245 770 ± 80 195 ± 10 17 0.65 ± 0.1 1.4 ± 0.2 3.25 ± 0.4 Al2O3 substrate, scratched

one has

σ = σD +
(

�σee 0
0 �σee

)
. (1)

The first term, Drude conductivity for a single-component two-
dimensional system can be written as

σD = neμ

1 + μ2B2

(
1 μB

−μB 1

)
. (2)

Inverting the conductivity tensor and assuming that �σee �
neμ, we obtain for the resistivity tensor:

ρ ≈ 1

neμ

(
1 −μB

μB 1

)

− �σee

(neμ)2

(
1 − μ2B2 −2μB

2μB 1 − μ2B2

)
.

(3)

In the limit of low-magnetic fields μB � 1, we come to the
famous relation [21]

�ρxy

ρxy

= 2
�ρxx

ρxx

= −2
�σee

σD

. (4)

In practice, for topological insulator thin films, the top and
bottom conductive channels, and the bulk are connected in
parallel and the Drude conductivity tensor is multicomponent;
however, this fact does not affect the low-field limit (see Ap-
pendix I). Since it is very hard to achieve mobilities exceeding
0.5 m2 V−1 s−1 in epitaxial films of bismuth chalcogenides
[22], for most of the films the low-field linear Hall effect
regime (B < 1/μ) extends to several T . Another important
fact is that WAL does not affect the Hall resistivity [21,23],
i.e., one can determine the EEI contribution straightforwardly
by using Eq. (4), provided the temperature dependence of the
Hall effect originates from the EEI correction solely.

Correspondingly, we exploit two ways to determine Kee

experimentally: (i) from the low-field magnetoresistance we
determine the amplitude of the WAL correction and subtract
it from the low-temperature σ (T ) dependence. The resultant
temperature dependence of the resistivity is believed to be
�σee = Kxx

ee e2/(2π2
�) ln(T ). (ii) We analyze the temperature

dependence of the Hall resistance, using Eq. (4). Assuming that
correction is much smaller than the Drude value of the resis-
tivity, we get �σee(T ) = σD × [ρxy(B,T ) − ρD

xy(B)]/ρD
xy(B).

Here the Drude value of the Hall resistance ρD
xy(B) is

taken at elevated temperatures, T τ > 1, beyond the diffusive
interaction regime. Since the variation of the Hall resistivity
with temperature is small, the particular choice of ρD

xy is not

important. Moreover, as we can see from our data at low
enough fields, thus calculated �σee(T ) is B independent.

III. EXPERIMENTAL

We studied several samples with various mobilities, and
carrier densities, their main parameters are summarized in
Table I. Epitaxial Bi2Se3 and Bi2Te3 layers were grown
on (111)-oriented BaF2 substrates similarly to Refs. [24,25]
(Bi2Se3-707 sample was grown on an Al2O3 substrate)
by molecular beam epitaxy using a compound bismuth
selenide/telluride effusion cell and an additional sele-
nium/tellurium cell, respectively. Corresponding fluxes were
calibrated before and after the growth using an ion gauge
beam flux monitor. The beam equivalent pressure flux ratio
of Se:Bi2Se3 (Te:Bi2Te3) was maintained to be 2:1 for the
stoichiometry control. The film growth was performed at about
320 ◦C at the 0.3 nm/min growth rate. Streaky RHEED
patterns during the growth evidenced of single crystalline
films with a smooth surface. After growth, the films on the
substrate were cooled down to room temperature and 30-nm
Se or 100-nm BaF2 protective cap layers were deposited on
the surface of the film or the films remained unprotected (see
Table I). X-ray diffraction scans show only the 3l allowed
peaks indicating clear c-axis orientation in all the grown films.
For film thicknesses ranging from 9 to 50 nm, the full width
at half maximum of the (0006) rocking curve does not exceed
0.1◦ confirming high crystalline quality of the samples. The
thickness of the films was determined from (0006) and (00015)
Bragg peaks thickness fringes as well as from atomic force
microscopy measurements [see an example in Fig. 1(d)].

The studied samples were either defined lithographically as
Hall bars (using a laser beam lithography system Heidelberg
μPG101) and mesa-etched in oxygen plasma [see optical
image in Fig. 1(c)] or manually cut with a razor blade. Manual
scratching makes the geometry of the sample (see error bars
in Table I) not so well-defined, however, it helps to preserve
the active layer intact. The leads to the contact pads were
attached with either graphite or silver paint. The results on
both scratched and etched samples are similar. The charge
transport in the most disordered Bi2Se3 samples showed noise,
increasing with lowering temperature (see data for sample
Bi2Se3-685 below). The resistivity of all samples did not
exceed 1.5 k� per square, so they all can be treated as “good”
metals where charge transport is slightly affected by quantum
corrections.

From the electronic transport point of view our thin films are
quasi-two-dimensional systems, i.e., they contain at least three
interacting subsystems (two surfaces and the bulk), connected
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FIG. 1. (a) Magnetoconductance in B⊥ field, due to weak antilo-
calization, for sample Bi2Se3-685 (dots). Temperatures from top to
bottom are 32, 16, 8, 4, and 2 K, respectively. Black lines show the
fit with Eq. (5). (b) The corresponding temperature dependencies of
the fitting parameters lφ (left axis, filled boxes) and α (right axis,
open circles) in Eq. (5). (c) Optical image of the mesa for sample
Bi2Se3-685. (d) Typical AFM image of the epitaxial Bi2Se3 film
before lithography. Step heights correspond to one quint-layer (about
1 nm).

in parallel. We consider the system as two-dimensional,
i.e., throughout the paper, from the measured resistance R

(in �), we calculate the resistance per square ρ = R(w/l)
(in � per square) and call it, for simplicity, “resistivity”;
we further discuss corrections to its inverse value, the 2D
conductivity. We believe that we can do so because (i) in the
low-temperature limit the out-of-plane motion of carriers is
coherent (the phase breaking length presented below much
exceeds the film thickness), (ii) the resistivity of our thin films
very weakly responds to the parallel magnetic field, and (iii)
logarithmic corrections to conductivity, observed by us and by
other investigators in similar films [4,8–10], are intrinsic to
two-dimensional systems solely.

The resistivity and the Hall resistance were measured using
a standard lock-in amplifier (f = 13–33 Hz) at temperatures
0.3–300 K and in magnetic fields up to 7 T. We used
PPMS-9 T and Cryogenic-21 T systems. The measurement
current was chosen in the range 0.1–2 μA to ensure the
absence of overheating at the lowest temperature. In order
to compensate contact asymmetry, the magnetic field was
swept from positive to negative values and the ρxx(ρxy) data
were (anti)symmetrized. Weak antilocalizaton was studied in
separate low-field sweeps.

IV. RESULTS

Weak field magnetoresistance due to the weak antilocaliza-
tion is typically processed using the simplified Hikami-Larkin-
Nagaoka (HLN) formula:

�ρWAL(B)

ρ2
D

= α
e2

2π2�

[



(
�

4el2
φB

+ 1

2

)
− ln

(
�

4el2
φB

)]
.

(5)

Here, lφ is the phase coherence length and α is the prefactor,
i.e., an adjustable parameter that denotes a number of WAL
channels. This formula is applicable in the so-called diffusive
transport regime, i.e., when both lφ and the magnetic length
lB ≡ √

�/eB much exceed the mean free path l. Figure 1 shows
examples of magnetoconductance due to WAL for sample
Bi2Se3-685 and their fits with HLN formula. Similarly to
Refs. [4,11,26–28], we find that the prefactor α is close to 0.5
and does not demonstrate temperature dependence (average
prefactors are summarized in Table I), indicating strong
spin-orbit coupling. The phase coherence length is roughly
proportional to T −0.5, as it should be for dephasing caused by
electron-electron scattering [21], similarly to observations of
Refs. [4,5,26,27]. The zero-field temperature dependence of
the resistivity due to WAL is expressed as

�ρWAL(T )

ρ2
D

= −α
e2

π2�
ln(lφ/ l). (6)

The amplitude of thus determined WAL correction is shown
by black stars in Figs. 3, 4(a), and 5(a). Alternatively, the
WAL contribution might be estimated similarly to Refs. [7,10]
as a difference of conductivities at B = 0 and at some
elevated magnetic field B0, where the T dependence of the
WAL is already suppressed: �σWAL ≈ σ (B = 0) − σ (B0).
Interestingly, the results obtained by this method [empty stars
in Figs. 2, 4(a), and 5(a)] with reasonable precision coincide
with those obtained from data fitting with Eqs. (5) and (6).

FIG. 2. B⊥ field magnetoresistivity (left axis) and Hall resistivity
(right axis) for sample Bi2Se3-685 at temperatures 2, 4, 8, 16, and
32 K (indicated on the panel). The inset shows Hall coefficient ρxy/B

vs magnetic field for the same data set.
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FIG. 3. Temperature dependence of the resistivity/conductivity
(left/right axis) for sample Bi2Se3-685 (red curve). Symbols denote
quantum corrections: triangles are from EEI, determined from the
Hall slope according to Eq. (4); circles: temperature dependence
of the resistivity minus WAL contribution; black stars: WAL
correction, determined from magnetoresistance using Eqs. (5) and
(6); empty stars: T dependence of the WAL correction determined as
�σWAL = ρ(B = 0)−1 − ρ(B = 1 T)−1. The blue dashed line shows
a theoretical fit to determine Kee.

The effect of EEI correction for the low mobility mesa-
etched sample Bi2Se3-685 is the most pronounced. Figure 2
shows magnetoresistance and Hall effect versus magnetic
field in a wide range of temperatures. As the magnetic field
increases, there is a weak positive temperature-independent
MR on top of WAL. This MR is a consequence of several
parallel conducting channels with various mobilities (bulk and
surfaces, see Appendix A). The Hall resistance is linear-in-B
and has an interesting feature: the Hall slope grows with
decrease of temperature, as it is clearly seen from Fig. 2. Such
huge variation of the Hall slope with temperature (∼20%,
see insert to Fig. 2) would be prohibited by the overall
electro-neutrality of the system were the Hall resistance related
to the inverse carrier density; however, it is possible that the
EEI correction comes into play and should be added to the
Drude conductivity, as Eq. (3) suggests.

If we interpret the temperature-dependent part of the Hall
slope within Eq. (4) [for more details, see section “theoretical
background”, method (ii)], we directly get the temperature de-
pendence of the EEI correction and may use it for comparison
with the corresponding variation of the resistivity (triangles
in Fig. 3). When we subtract WAL (stars in Fig. 2) from
the ρxx(T ) dependence, we get an almost indistinguishable
temperature dependence of the resistivity (see circles in
Fig. 2). The observed agreement is the one of the central
results of our paper. Moreover, this temperature dependence is
visibly logarithmic, �σee = Kee × e2/(2π2

�) ln(T ), and our
observation means that Kxx

ee = K
xy
ee .

The value of Kee = 3.1 is enormously large and exceeds
those reported in Refs. [7–11]. Moreover, even within the
theoretical predictions [1] there is no way to obtain Kee

more than 2. A possible physical origin of the enhanced Kee

could be an effective decoupling of the conductive channels.
This mechanism was suggested in Ref. [4], where Kee > 2
was also observed. Indeed, for such high electron densities,

FIG. 4. (a) Temperature dependence of the resistiv-
ity/conductivity (left/right axis) for sample Bi2Se3-724 at low
temperatures (red curve). Symbols show quantum corrections;
triangles: EEI, determined from the Hall slope according to Eq. (4);
circles: temperature dependence of the resistivity minus WAL
contribution; black stars: WAL determined from magnetoresistance
using Eqs. (5) and (6); empty stars: T dependence of the WAL
correction determined as ρ(B = 0) − ρ(B = 50 mT). Dashed line:
fit to determine Kee. (b) Hall slope vs magnetic field for the same
sample at various temperatures and (c) low-field magnetoresistance
due to the weak antilocalization.

many quantization subbands are filled. If all these subbands
generated independent conductive channels, each of them
should have its own EEI correction to conductivity �σi

ee,
with Ki

ee ∼ 1. In this case, the total EEI correction should
be a sum of all contributions and may be large. In practice,
however, electrons from different subbands interact with each
other and the amount of singlet terms may be reduced to
one. The question why in this particular sample Bi2Se3-685
(and probably Bi2Se3-691, see Table I) such interaction is
suppressed remains open.

Importantly, the coincidence of Kxx
ee and K

xy
ee is not

occasional, rather, it is observed in several samples (see
Table I). For example, sample Bi2Se3-724 (see Fig. 4)
contains high mobility (presumably surface) carriers atop
of low-mobility (presumably bulk) carriers. As a result, its
Hall coefficient visibly drops with field (see Appendix A)
starting from already ∼1 T [see Fig. 4(b)]. Nevertheless, the
temperature dependence of the Hall effect is easily seen, its
relative variation �ρxy/ρxy ≡ [ρxy(B0,T ) − ρxy(B0,T0)]/ρxy

is almost B0-independent (here B0 is the magnetic field
at which the Hall effect is analyzed), and we again get
Kxx

ee ≈ K
xy
ee .

The prefactor α has a reasonable value of about 0.33.
Similar values of α were also reported in Refs. [4,10]. The
value of Kee = 1.6 is also comparable with those observed
in Ref. [10]. Both nonideal Kee and α values were explained
theoretically in Ref. [1]. Prefactor α might also differ from
0.5 because the effective w/l ratio for a sample made
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FIG. 5. (a) Temperature dependence of the resistiv-
ity/conductivity (left/right axis) for sample Bi2Te3-677 at low
temperatures (red curve). Symbols are the quantum corrections;
triangles: from EEI, determined from the Hall slope according
to Eq. (4); circles: temperature dependence of the resistivity
minus WAL contribution; black stars: temperature dependence of
the WAL contribution determined from magnetoresistance using
Eqs. (5) and (6). Empty stars: T dependence of WAL determined as
ρ(B = 0) − ρ(B = 50 mT). Dashed blue line, ∝ ln(T ), is a fit to
determine Kxy

ee , solid violet line, ∝ ln(T ), is a fit to determine Kxx
ee .

An optical image of the sample is also indicated in the main panel.
(b) Hall slope vs magnetic field for the same sample at various
temperatures. (c) Low-field magnetoresistance due to the weak
antilocalization.

by scratching, might be determined only roughly; however,
within our phenomenological approach, this uncertainty does
not modify the overall result (see discussion below and
Appendix B).

We note that the coincidence of Kxx
ee and K

xy
ee is not observed

universally in all samples. For example, Fig. 5 shows the
temperature dependence of the resistivity, WAL, and Hall
effect in bismuth telluride sample Bi2Te3-677 with the same
carrier density as Bi2Se3-685 and an order of magnitude higher
mobility. In bismuth telluride, the phonon-scattering-limited
metallic temperature dependence of the resistivity is much
stronger and extends to much lower temperatures.

The correction to the Hall coefficient is logarithmic in
temperature [see Fig. 5(b) recalculated using Eq. (4) to blue
triangles in Fig. 5(a)], but this temperature dependence is even
weaker than the temperature dependence of resistivity. If we
subtract WAL from the resistivity, we get circles in Fig. 5(a)
with stronger temperature dependence. In other words, Kxx

ee is
about a factor of two larger than K

xy
ee . Possible reasons for the

difference are discussed below. At the same time, the WAL
prefactor in this sample has a reasonable and T -independent
value of 0.7 [see Fig. 6(c)]. The Bi2Se3-707 sample is pretty
much similar to Bi2Te3-677.

V. DISCUSSION

Importantly, inexact definition of the sample geometry by
scratching [see an example in the inset to Fig. 5(a)] does not
affect the results obtained within our phenomenological ap-
proach. Indeed, according to Eq. (4), the correction to the Hall
coefficient is recalculated directly from the correction to the
diagonal resistance. When evaluating the WAL contribution,
we measure the prefactor α using Eq. (5) and then substitute the
result with the same prefactor α into Eq. (6). If the geometrical
factor (w/L in case of the Hall bar geometry) is calculated
incorrectly, we automatically get the modified value of α, but
the total contribution of WAL in the temperature dependence
of the resistivity, calculated using Eq. (6) will remain correct.
Observation of α ≈ 0.5 in almost all cases means that we are
not mistaken with the w/L ratio.

A remarkable property of both WAL and EEI corrections
is their logarithmic temperature dependence. This logarithm
has a high-temperature cut off when the corresponding length
(interaction or phase breaking) becomes comparable with the
mean free path (in our samples this equality corresponds to
10–300 K, i.e., above the resistivity minimum temperature).
In this low-temperature limit, we neglect the temperature
dependence of the mean free time. The functional dependence
of the result for the amplitude of both WAL corrections to
conductivity �σWAL and EEI correction �σee is similar: the
amplitude is roughly proportional to (i) the corresponding
amplitude factor of the order of unity (α in case of WAL,
and Fermi-liquid coupling dependent term Kee in case of
EEI), (ii) ln(T τ ) [19,21] in case of EEI (where τ is the
mean free time), and ln(τφ/τ ) in case of WAL. τφ is usually
inversely proportional to temperature, therefore we get the
same dependence. Since �ρ = −ρ2

D�σ ∝ ρ2
D ln(ρD), the

main parameter that governs the amplitude of the correction
to resistivity is the sheet resistance value. Indeed, in Fig. 2 for
Bi2Se3-685 with resistivity about 1 k� per square, we see huge
variation of the resistivity with temperature (about 10% i.e.,
100 �), whereas for Bi2Se3-724 with resistivity about 200 �

per square (see Fig. 4), the overall variation of resistivity is
about 0.5%, i.e., 1 �.

It should be discussed why the data for samples Bi2Te3-
677 and Bi2Se3-707 deviate from those for the other bismuth
selenides. Naively, the difference between Bi2Te3 and Bi2Se3

thin films is as follows: (i) selenides are n-doped, whereas
sample Bi2Te3-677 is p-doped; (ii) the spectra of carriers in
Bi2Te3 are hexagonally wrapped. This wrapping was shown
to modify the ordinary low-temperature resistivity behavior
[29]. It is not clear whether the wrapping somehow affects the
EEI correction to conductivity. The close similarity between
Bi2Te3-677 and Bi2Se3-707 samples does not support the latter
possibility.

The agreement between resistivity and Hall resistivity
in these samples would become much better if instead of
Eq. (4) one would use �ρxx/ρxx = �ρxy/ρxy. Such functional
temperature dependence of the Hall effect might originate from
variable number of carriers; this mechanism was suggested,
e.g., in Refs. [30,31]. Indeed, if only one group of high
mobility carriers determines transport, then ρxx = (neμ)−1,
and ρxy = B · (ne)−1. Variation of n in this case leads to
�ρxx/ρxx = �ρxy/ρxy , contrary to Eq. (4). Nevertheless, we
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think that this mechanism is irrelevant here, because we
clearly observe a logarithmic temperature dependence of the
Hall effect, instead of the expected exponential activated
dependence [30,31].

In fact, the lack of quantitative agreement with quantum
correction theory is not surprising because of the complexity
of the studied films and was observed several times even for
systems with a much simpler spectrum [19,32]. As a possible
clue to the explanation of this discrepancy, the prefactor α >

0.5 was found to be unexpectedly high in samples Bi2Te3-677
and Bi2Se3-707. Theoretically (see Ref. [1] and references
therein), one expects −0.5 < α < 0.5. Observation of the
anomalous prefactor value out of this interval means that the
sample is more complicated than the naive model presumes.
There are many unexplored factors, whose effect on transport
properties of bismuth chalcogenides is not yet explored, e.g.,
formation of Bi bilayers [37], spatial inhomogeneity, surface
oxidation, and irreproducible band bending [36], intersubband
scattering, etc. The task of further studies will be to understand
why the validity of Eq. (4) in quantum transport is sample-
dependent.

The Kxx
ee values for the majority of our samples are

comparable with those measured by other groups [4,5,9–11],
whereas the temperature dependence of the Hall effect in these
papers was not analyzed. However, in Ref. [31] [7 nm film
shown in Figs. 4(a) and 4(d)], and in Ref. [33] (Fig. 8), one
can see a correlation between the low-T resistivity upturn and
the increase of the Hall coefficient; remarkably, the resistivity
per square for these films and the scale of the Hall coefficient
variation are comparable to those for our samples.

In several papers [9,11], attempts have been made to deduce
the EEI correction from its Zeeman splitting dependence
by applying a magnetic field parallel to the sample plane
and comparing the data with the classical theory by Lee
and Ramakrishnan [13]. Two notes should be made here:
(i) straightforward application of the Lee and Ramakrishnan
theory [13] to chalcogenides is not justified, because even
without Zeeman splitting, the electron-electron interaction in
a multicomponent carrier system in a topological insulator is
not simple [1,14]. Possible scattering between bulk and surface
states and between the opposite surface states will further
complicate the EEI correction, similarly to the multivalley
system [15,16]. Moreover, in the case of a strong spin-orbit
coupling, triplet terms of the EEI correction are already
suppressed, and additional Zeeman splitting is not expected
to affect the EEI correction [21]. (ii) Experimentally, the
Zeeman effect on the EEI correction in topological insulators
can be revealed and disentangled from all other possible
orbital effects by the temperature dependence of the Hall
effect in the presence of a Zeeman field. Similar measurements
were already performed in a two-dimensional system with an
ordinary spectrum [32].

VI. CONCLUSIONS

We have shown that in various thin films of Bi2Te3

and Bi2Se3 topological insulators, the low-temperature Hall
coefficient shows a logarithmic temperature correction. In
several samples, the low-T behavior of both resistivity and
Hall effect was consistently quantitatively explained by only

two mechanisms: weak antilocalization and electron-electron
interaction correction, with the latter being dominant in the
temperature dependence of the resistivity. We have come to
this conclusion by using only the phenomenological property
of the electron-electron interaction correction not to affect
the Hall conductivity. Thus our method is an alternative way
to determine the electron-electron interaction constant Kee.
On the basis of our data, it is impossible to say where the
EEI correction comes from: topological surface states or bulk.
In our studies, we tested the robustness of the relationship
between the corrections to Hall resistance and diagonal
resistivity for samples with different mobility, substrate, and
composition. As a result, we found that the agreement with
interaction correction theory is perfect in some cases and
imperfect in others. However, we did not reveal a strong
contradiction with theory and this is one of our main findings.

Our study poses new questions: why the amplitude of the
electron-electron interaction correction to the conductivity
in high-density low-mobility films is so large? Why in
some samples the phenomenological agreement between the
experimental data and the theory of quantum corrections is
not perfect? A practical consequence of our results is that
the Hall slope in topological insulator thin films does not
exactly correspond to the carrier density: it includes quantum
corrections that may be as high as few 10% in low-mobility
films and should be taken into account.
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APPENDIX A: ELECTRON-ELECTRON INTERACTION
CORRECTION TO CONDUCTIVITY IN

MULTY-COMPONENT SYSTEM

In this section, we consider the conductivity of a multicom-
ponent system in the presence of EEI correction. We assume
that the property (1) for the EEI correction is valid and the
classical part of the conductivity tensor is just a sum of the
contributions from all components, i.e.,

σ =
N∑

i=1

nieμi

1 + (μiB)2

(
1 μiB

−μiB 1

)

+
(

�σee 0

0 �σee

)
. (A1)

Here, N is the number of conductive channels. The
calculations of the inverse tensor are trivial but very lengthy.
We therefore restrict ourselves to two relevant cases. The first
case is the low-field limit Bμi � 1 for all i. In this limit,
we can neglect all quadratic-in-field terms and consider only
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linear-in-field Hall resistance. Correspondingly, we have

ρxx = 1∑N
i=1 nieμi

(
1 − �σee∑N

i=1 nieμi

)
, (A2)

ρxy =
∑N

i=1 nieμ
2
i B(∑N

i=1 nieμi

)2

(
1 − 2�σee∑N

i=1 nieμi

)
. (A3)

It is easy to see that Eq. (4) is fulfilled also in the multicom-
ponent system. Another case, related to sample Bi2Se3-724,
considers a high-mobility sample, where condition μB � 1
is not fulfilled. In order to avoid cumbersome formulas, we
consider N = 2 and assume a small density n1 of high-mobility
(μ1 
 μ2) surface electrons and much larger density n2 
 n1

of bulk electrons. The linear in field terms of Hall resistance are
given by Eq. (A3), while for cubic-in-field terms, neglecting
(μ2B)2, we have

d3ρxy

6dB3
= n1μ

4
1

σD

[
2�σee

σD

(
1 − n1μ1n2μ2

σ 2
D

)
− n2

2μ
2
2

σ 2
D

]
. (A4)

This equation means that not only the linear in field term
in Hall resistivity should slightly vary with temperature, but
also the cubic in field one. Indeed, as it can be obtained from
Fig. 4(b), the slope of the ρxy/B versus B2 increases by ∼1% as
temperature increases from 0.3 to 30 K. This effect appears to
be too small to identify a logarithmic dependence, although the
sign of the effect agrees with Eq. (A4). We believe that taking
higher order terms and more groups of carries into account
one would make the agreement better.

APPENDIX B: ESTIMATES OF ERRORS

In our case, there are two types of errors: systematic and
random. The systematic ones are related to the uncertainty
of the geometry, i.e., to the definition of the w/L ratio. In
Fig. 6(a), we demonstrate that the average width fluctuates
across the sample, correspondingly, the conductivity recalcu-
lated from the resistance has an uncertainty (about 10%–15%
in all scratched samples). As a result, both α and Kee have
the same geometrical uncertainty (�αg/α = �Keeg/Kee =
�w/w + �L/L). Nevertheless, this type of error does not
affect mutual relations between various mechanisms, or
between Kee, determined from different methods, i.e., it does
not affect the main statement of the paper. Random errors in
our case come from several sources: (1) the errors related to
the spread of α values at different temperatures, or the spread
of �σee(ln(T )) values used for linear interpolation. (2) For
lithographically defined low-mobility samples, the resistivity
signal was noisy (see, e.g., Fig. 1). Such noise might come from
bulk carriers [34,35] or from unstable contacts. Sometimes

FIG. 6. (a) Digitized photography of the manually scratched
sample Bi2Te3-677 with numbers (in micrometers) used to estimate
the w/l ratio and its error. (b) Weak antilocalization magnetoresis-
tance data and two HLN curves for the noisy sample Bi2Se3-685,
the parameters of the curves are indicated on the panel. (c) Weak
antilocalization data and two HLN curves for the low-resistive sample
Bi2Te3-677, the parameters of the curves are indicated on the panel.

resistivity exhibited jumps (see, e.g., 4 and 16 K curves in
Fig. 1), that makes the overall fitting procedure ill-defined,
because the fit is nonlinear and depends on symmetrization,
the definition of B = 0 resistivity, and the field range used
for fitting. The best thing we can do is to play manually
with all these parameters, find α and lφ/ l by minimizing the
standard deviation in each case and see how these parameters
are scattered. Figure 6(b) illustrates that the noisy data cause
large uncertainty in the determined α and lφ/ l values: indeed,
to make the WAL curve fit visibly distinguishable from the
experimental data, one has to vary α by 50% and lφ by 30%.
For comparison, we show in Fig. 6(c) the data for a much
cleaner sample, where variations of α and lφ are significantly
smaller.

Having estimated all types of errors we evaluate the error
of α or Kee as

�α

α
=

√√√√∑
i

(
�αi

α

)2

, (B1)

�Kee

Kee
=

√√√√∑
i

(
�Ki

Kee

)2

. (B2)

These values are indicated in Table I.
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