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Abstract: In this paper, we consider limit laws for the model, which is
a generalisation of the random energy model (REM) to the case when the
energy levels have the mixture distribution. More precisely, the distribution
of the energy levels is assumed to be a mixture of two normal distributions,
one of which is standard normal, while the second has the mean

√
na with

some a ∈ R, and the variance σ 6= 1. The phase space (a, σ) ⊂ R × R+

is divided onto several domains, where after appropriate normalisation,
the partition function converges in law to the stable distribution. These
domains are separated by the critical surfaces, corresponding to transitions
from the normal distribution to α−stable with α ∈ (1, 2), after to 1-stable,
and finally to α−stable with α ∈ (0, 1). The corresponding phase diagram
is the central result of this paper.
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1. Introduction

In this paper, we study the limit theorems for the sums of random exponentials

Sn(β) =

benc∑
j=1

eβ
√
nZj , (1)

where Z1, Z2, ... are i.i.d. random variables with distribution equal to

Fa,σ(x) =
1

2
Φ (x) +

1

2
Φ

(
x−
√
na

σ

)
, (2)

∗ The study has been funded by the Russian Science Foundation (project №17-11-01098).
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and by Φ(·) we denote the probability distribution function of the standard
normal random variable. The sum Sn(β) is the generalisation of the famous
random energy model (REM) introduced by Derrida ([7], [8]) as the simplified
version of the Sherrington-Kirkpatrick model of spin glass. Up to the technical
detail (benc instead of 2n), the system in the classical REM is determined by
the partition function

Sn(β) =

benc∑
i=1

eβ
√
nξi , (3)

where ξi are i.i.d random variables with standard normal distribution. Physical
interpretation assumes that n is the size of the system with benc energy levels√
nξi. On the other side, in this paper we give different interpretation of the

model (1) in terms of the popular Anderson parabolic problem, see Section 2.
Mathematical study of the systems (1) and (3) is mainly concentrated on

finding the free energy of the model, and on the consideration of the limit laws
depending on the value of the parameter β. As for the free energy for the classical
REM (3), Eisele [9], Olivieri and Picco [17] show that

P (β) = lim
n→∞

lnSn(β)

n
=

{
1 + β2/2, β ≤

√
2,

√
2β, β >

√
2.

In particular, the first line of the r.h.s. follows from the fact that for β ≤
√

2
the law of large numbers holds, that is,

Sn(β)

E[Sn(β)]

p−→ 1, n→∞,

Other limit laws for classical REM model were proven many years later, in the
paper by Bovier, Kurkova, Löwe [5]. For instance, it was shown that if β ≤

√
2/2,

then the central limit theorem holds, whereas for β >
√

2/2 the fluctuations of
the sum Sn(β) are non-Gaussian.

Returning to the model (1), it would be it would be important to note that
the free energy for this model was recently studied by Grabchak and Molchanov
[13]. The results are based on the observation that the free energy of the whole
system is in fact the maximum

P (β) = max {P1(β), P2(β)} , (4)

where P1 and P2 are the free energy functions of the system corresponding to
benc energy levels with N (0, 1) distribution, and to benc energy levels with
N (
√
na, σ2) distribution respectively. Nevertheless, similar arguments cannot

be applied for proving other limit laws such that the central limit theorem and
convergence to the stable distributions.

In this paper, we aim to show the limiting laws for the model (1). It turns
out that the limiting distributions are stable. The Lévy triplet (µ, 0, ν) is such
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that µ = µ(β) ∈ R+ is a drift and ν is a Lévy measure on R+ defined by

ν((x,+∞)) =
1√
2π
x−α(β), ∀ x > 0,

with α = α(β) ∈ (0, 2]. In this article we provide the exact forms of the param-
eters α(β) and µ(β) and show how these parameters change when the relation
between a and σ varies. Our findings are illustrated by a phase diagram. It
would be a worth mentioning that the explicit values of the parameters of the
limiting stable distribution were not described previously even for more simple
model (3), and below we also present the corresponding results for this case.

The rest of the paper is organised as follows. In the next section, we provide
some physical motivation of the considered systems in terms of the Anderson
parabolic problem. Next, in Section 3, we give a new formulation of the re-
sults for the sums (3), corresponding to the classical case of standard normal
energy levels. Our main findings related to the case of energy levels with mix-
ture distribution are given in Section 4. All proofs are collected in Section 5.
For convenience, we also provide a statement of the main results from [13] in
Appendix A.

2. Anderson parabolic problem

On the lattice Zd, let us consider the cube Qn = [−n, n]
d

and the random
Anderson Hamiltonian

Hn = ∆ + βVn(x, ω), (5)

where β is the reciprocal temperature, Vn(x, ω), x ∈ Qn, is the random i.i.d.
potential (on some probability space, ”environment”, (Ω,F ,P)), and

∆ψ(x) =
∑

x′:|x′−x|=1

ψ(x′)

is the lattice Laplacian on Qn with the Dirichlet boundary condition

ψ(x) = 0, x ∈ ∂Qn.

We assume that potential is ”very strong”: Vn(x, ω) =
√
nξ(x, ω), where ξ(x, ω)

are i.i.d. r.v.’s with the law (5). Here the factor
√
n is related to the Gaussian

law. If, say, P {ξ > a} = exp {−aα/α} , α > 1 (Weibull’s law), like in [1], instead
of
√
n one have to use n1/α.

Consider the parabolic problem

∂u

∂t
= Hnu, t ≥ 0, x ∈ Qn,

u(t, x) = 0, x ∈ ∂Qn,
u(0, x) = δy(x),
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where y ∈ Qn is considered as a parameter. Then the fundamental solution of
this problem is given by

un(t, x) = un(t, x, y) =

|Qn|∑
i=1

eλn,itψn,i(x)ψn,i(y), (6)

where λn,i, ψn,i are the eigenvalues and (normalised) eigenfunctions of the op-
erator Hn, that is, Hnψn,i = λn,iψn,i. Now

Tr etHn =
∑
x∈Qn

un(t, x, x) =

|Qn|∑
i=1

etλn,i (7)

is the random exponential sum. The asymptotic analysis of this sum and related
concepts of the intermittency and localisation were discussed in numerous works,
e.g., [2], [3], [6], [10], [11], [12].

The limit theorems for the parabolic Anderson model become the subject of
the studies only recently and the picture here is still not complete. In comparison
with the setup discussed in [1] and [5], the main difficulty is the dependence
of λn,i(ω). However, for the ”very strong” potentials the situation is simplier.
In this case, we can naturally use the parameter y instead of i, because for
any y there exists the eigenfunction equal to the δ-function. More precisely, if
Vn(x, ω) =

√
nξ(x, ω), x ∈ Qn, then with high accurancy

ψn,y(x) = δy(x), λn,y(ω) =
√
nξ(y, ω).

One can estimate the errors using usual perturbation arguments, but we will
not provide the caculations here. Let us simply state that at the level of physical
intuition the sum ∑

y∈Qn

eβ
√
nξ(y,ω) = Sn(β)

is close to sum (7) for t = β.
In this setting, the mixtures appear naturally. Assume that we have two

highly disordered Hamiltonians with potentials

V1(x, ω) =
√
nη(x, ω), V2(x, ω) =

√
nζ(x, ω), x ∈ Qn,

where η, ζ are two independent systems of i.i.d. Gaussian r.v.’s with different
parameters. Let us consider the new alloy-type potential

Vn(x, ω) =
√
nξ(x, ω), where ξ(x, ω) =

{
η(x, ω) with probability 1/2,

ζ(x, ω) with probability 1/2.

The trace of the parabolic Anderson problem with this potential is close to the
sum (1).
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3. Limit laws for the sums of normal exponentials

Before we will present our results for the model (1), we would like to shortly
discuss the corresponding results for the classical REM model.

The limit laws for the sums (3) with standard normal r.v. ξi were firstly
shown in [5] and later generalised in [1]. Below we formulate Proposition 3.1,
which can be considered as a new version of the results from [5]. The main
advantage of our version in comparison with the previously known facts (given
in [5] and [15]) is that we provide the exact form of the limiting distribution.
As follows from the next proposition, this distribution is in fact from the class
of stable laws.

Proposition 3.1. (i) If β <
√

2, then the law of large numbers holds, that
is,

Sn(β)

E[Sn(β)]

p−→ 1, n→∞.

If β =
√

2, then

Sn(β)

E[Sn(β)]

p−→ 1/2, n→∞.

(ii) If β <
√

2/2, then the central limit theorem holds, that is,

Sn(β)− E[Sn(β)]√
Var(Sn(β))

d−→ N (0, 1), n→∞.

If β =
√

2/2, then

Sn(β)− E[Sn(β)]√
Var(Sn(β))

d−→ N (0, 1/2), n→∞.

(iii) For β >
√

2/2, it holds

Sn(β)− δn(β)

γn(β)

d−→ Fα(β),µ(β), n→∞,

where Fα(β),µ(β) stands for a stable distribution on R+, that is, an infinitely
divisible distribution with Lévy triplet (µ, 0, ν) such that µ = µ(β) ∈ R+ is
a drift and ν is a Lévy measure on R+ defined by

ν((x,+∞)) =
1√
2π
x−α(β), ∀ x > 0.

Moreover,

α(β) =
√

2/β,

γn(β) = (2n)−β/(2
√

2)e
√

2βn,
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and the choices of µ(β) and δn(β) are related to each other; for instance,
they can be taken as follows:

(µ(β), δn(β)) =


(
0,E[Sn(β)]

)
, if β ∈ (

√
2/2,
√

2),(
0, 1

2E[Sn(β)]
)
, if β =

√
2,(

1√
π(β−

√
2)
, 0
)
, if β ∈ (

√
2,+∞).

Proof. We provide the proof of this statement in Section 5.1.

4. Main results

Now let us return to the model (1), which can be rewritten as

Sn(β) =

ν1
n∑

j=1

exp
{
β
√
nξ1
j

}
+

ν2
n∑

j=1

exp
{
β
(
σ
√
nξ2
j + an

)}
:= S1

n(β) + S2
n(β),

where ξ1
j , ξ

2
j are 2 independent sequences of i.i.d. standard normal r.v.’s, ν1

n, ν
2
n

have binomial distribution with parameters (benc, 0.5), and satisfy ν1
n + ν2

n =
benc.

The next 3 theorems yield the values of β, for which the law of large numbers,
the central limit theorem and the convergence to stable distributions hold.

Theorem 4.1 (Law of large numbers). It holds

Sn(β)

E[Sn(β)]

p−→ 1, n→∞, (8)

provided that β < β+, where

β+ =


√

2/σ, if a >
(
1− σ2

)
/(
√

2σ),

β◦ := 2a
1−σ2 , if

(
1− σ2

)
/
√

2 < a <
(
1− σ2

)
/(
√

2σ),√
2, if a <

(
1− σ2

)
/
√

2.

(9)

Theorem 4.2 (Central limit theorem). It holds

Sn(β)− E[Sn(β)]√
Var(Sn(β))

d−→ N (0, 1), n→∞, (10)

provided that β < β+/2, where β+ is defined by (9).

Theorem 4.3 (Convergence to the stable distribution).

(i) If a <
√

2(1 − σ), then there exists a deterministic sequence a]n(β) such
that

Sn(β)− a]n(β)

γn(β)

d−→ F√2/β,0, n→∞,
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for any β > β], where

β] =

{
β�/2, if σ < 1 and a > (1− σ2)/

√
2,√

2/2, otherwise,

with β� =

(
(
√

2− a)−
√(√

2− a
)2 − 2σ2

)
/σ2.

(ii) If a >
√

2(1 − σ), then there exists a deterministic sequence ăn(β) such
that

Sn(β)− ăn(β)

eβanγn(βσ)

d−→ F√2/(βσ),0, n→∞,

for any β > β̆,where

β] =

{
β∗/2, if σ > 1 and a < (1− σ2)/(

√
2σ),√

2/(2σ), otherwise,

with β∗ =
(
σ
√

2 + a
)
−
√(

σ
√

2 + a
)2 − 2.

Theorems 4.1, 4.2, 4.3 basically mean that there exist 6 essentially different
types of relation between a and σ). Figure 1 illustrates the division of the area
(a, σ) ∈ R×R+ into 6 subareas with different asymptotic behaviour of the sums
Sn(β).

Remark 4.4. Analogously to Proposition 3.1, for the critical values β = β+

and β = β+/2 the convergence in (24) and (25) holds, but the limits are equal
to 1/2 and N (0, 1/2) resp.

5. Proofs

5.1. Proof of Proposition 3.1

The proof is based on the Proposition 3.1 from [18], which is in fact a combi-
nation of Theorem 1.7.3 from [14], Theorem 3.2.2 from [16], and a number of
theorems given in Chapter IV from [19]. Below we provide the proof for (iii),
because other parts of this proposition were shown in previous papers.

1. Choice of γn. First, we find a sequence γn such that the sum

Σn(x) :=

benc∑
i=1

P
{
eβ
√
nξi > γnx

}
has non-trivial limit as n tends to infinity. We get

Σn(x) = benc · P {ξ1 > κn(x)} = benc · (1− Φ (κn(x))) ,
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Fig 1. Illustration of the asymptotic behavior of the sums Sn depending on a and σ:
- Zone 1(orange), a >

(
1− σ2

)
/(
√

2σ): CLT holds for any β <
√

2/(2σ) whereas the sum

converges to stable distribution for any β >
√

2/(2σ); LLN holds for β <
√

2σ.
- Zone 4 (red), a <

(
1− σ2

)
/
√

2: CLT holds for any β <
√

2/2, whereas the sum converges

to stable distribution for any β >
√

2/2; LLN holds for β <
√

2.
- Other zones,

(
1− σ2

)
/
√

2 < a <
(
1− σ2

)
/(
√

2σ): CLT holds for any β < β◦/2, LLN - for
β < β◦, and the fluctuations are stable if
C Zone 2 (blue): σ > 1 and

√
2(1− σ) < a <

(
1− σ2

)
/(
√

2σ): β > β∗/2;

C Zone 3 (green): σ > 1 and
(
1− σ2

)
/
√

2 < a <
√

2(1− σ): β >
√

2/2;

C Zone 5 (yellow): σ < 1 and
(
1− σ2

)
/
√

2 < a <
√

2(1− σ): β > β�/2;

C Zone 6 (purple): σ < 1 and
√

2(1− σ) < a <
(
1− σ2

)
/(
√

2σ): β >
√

2/(2σ).
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where Φ(x) stands for the distribution of the standard normal random variable
and κn(x) := log(γnx)/ (β

√
n). Next, taking into account that

Φ(x) = 1− (
√

2πx)−1e−x
2/2(1 + o(1)), as x→∞, (11)

we conclude that

Σn(x) =
1√
2π

benc
κn(x)

e−κ
2
n(x)/2

=
1√
2π

benc
log γn
β
√
n

+ log(x)
β
√
n

· e−
1
2

(
log(γn)

β
√
n

)2
− log(γn)

β
√
n

log(x)

β
√
n
− 1

2

(
log(x)

β
√
n

)2

.

Let us find γn in the form

log(γn)

β
√
n

= C
√
n+ g(n),

where g(n) = o(
√
n). We get

Σn(x) =
1√
2π

benc
C
√
n+ g(n) + log(x)

β
√
n

· e−
1
2 (C
√
n+g(n))

2−Cβ log(x)(1 + o(1)).

Therefore, under the choice C =
√

2, g(n) = − log(
√

2n)/
√

2n, the sum Σn
converges to a non-trivial limit, namely,

Σn(x)→ 1√
2π
x−
√

2/β , as n→∞.

Therefore, we conclude that the choice

γn = (2n)−β/(2
√

2)e
√

2βn

yields the convergence of Sn/γn to a non-trivial limit.
2. Condition on the truncated moments. Let us analyse the asymptotic

behaviour of the expression

Jn(s, τ) := benc
∫ τ

0

xsµn(dx), (12)

where µn is the distribution of eβ
√
nξ1/γn, τ > 0 and s = {1, 2}. Our choice of

γn yields

Jn(s, τ) =
benc
β
√
n

∫ τ

0

xs−1p

(
log(γnx)

β
√
n

)
dx

=
benc
γsn

∫ log(γnτ)

β
√
n

−∞
eβ
√
nsyp (y) dy

=
benceβ2ns2/2

γsn

∫ log(γnτ)

β
√
n

−∞

1√
2π
e−(y−β

√
ns)2/2dy

=
benceβ2ns2/2

γsn
Φ

(
log(γnτ)

β
√
n
− βs

√
n

)
, (13)
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where p is the density of a standard normal random variable. Since log(γn) �√
2βn, we get that

log(γnτ)

β
√
n
− βs

√
n =

(√
2− βs+

log(τ)

βn

)√
n− 1

2
√

2

log(2n)√
n

.

Finally, applying (11), we conclude that as n→∞

Jn(s, τ) �


(√
π
(
βs−

√
2
))−1

τβs−
√

2, if
√

2− βs < 0,

benc · E
[
eβs
√
nξ1
]
γ−sn , if

√
2− βs > 0,

1
2be

nc · E
[
eβs
√
nξ1
]
γ−sn , if

√
2− βs = 0

(14)

where E
[
eβs
√
nξ1
]

= eβ
2ns2/2, because of the fact that

Eecξ =
1√
2π

∫
R
ecxe−x

2/2dx =
1√
2π

∫
R
e−(x−c)2/2dx · ec

2/2 = ec
2/2. (15)

Therefore

lim
τ→0

lim
n→∞

(
Jn(2, τ)− 1

benc
(Jn(1, τ))

2

)
= 0,

and therefore the condition (14) from [18] is fulfilled for any β >
√

2/2. To
conlcude the proof, it is sufficient to note that an = Jn(1, 1) + o(1), and its
asymptotical behaviour follows from (27).

5.2. Proof of Theorem 4.1

1. Denote

S̃n(β) =
Sn(β)

E[Sn(β)]
− 1 =

∑M
j=1

(
eβ
√
nZj − Eeβ

√
nZj
)

M · Eeβ
√
nZ1

,

where M := benc. Our aim is to show that there exists a constant r > 1 such

that E|S̃n(β)|r → 0 as n→∞. This will imply that S̃n(β)
p−→ 0, and therefore

the result will follow.
Applying the Bahr-Esseen inequality for r ∈ (1, 2), see [20], we get that

E
[
|S̃n(β)|r

]
≤ Cr

∑M
j=1 E

[∣∣∣eβ√nZj − Eeβ
√
nZj

∣∣∣r](
M · Eeβ

√
nZ1
)r = CrM

1−r Mn(r)(
Eeβ

√
nZ1
)r , (16)

where Cr is some constant depending on r, andMn(r) := E|eβ
√
nZ1−Eeβ

√
nZ1 |r.

The further analysis consists in establishing the asymptotical behavior of the
numerator and denominator of the last fraction in (16).
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2. Note that for any c ∈ R,

EecZ1 =
1

2
Eecξ +

1

2
· Eec(

√
na+σξ)

=
1

2
· ec

2/2 +
1

2
· ec
√
na+c2σ2/2,

where we use (15). Therefore, the denominator in (16) is equal to the r− th
power of

Eeβ
√
nZ1 =

1

2
e(β2/2)n +

1

2
· e(βa+β2σ2/2)n (17)

= κeγ(β)n (1 + o(1)) , n→∞.

3. Next, we proceed with studying the asymptotics of Mn(r). Taking into
account (15), we get

Mn(r) ≤ 2r
(
Eerβ

√
nZ1 +

(
Eeβ

√
nZ1

)r)
≤ 2r

[
1

2
· e(r2β2/2)n +

1

2
· erβan+(r2β2σ2/2)n

+

(
1

2
e(β2/2)n +

1

2
eβan+(β2σ2/2)n

)r]
= 2r

(
1

2
e(r2β2/2)n +

1

2
e(rβa+r2β2σ2/2)n

)
(1 + o(1)). (18)

4. Finally, returning to (16), we conclude that

E
[
|S̃n(β)|r

]
≤ Gr · exp

{
Hr(β)n

}
(1 + o(1)) , (19)

where Gr > 0 is a constant depending on r,

Hr(β) := (1− r) + r (λr(β)− γ(β)) ,

and

λr(β) = max(rβ2/2, βa+ rβ2σ2/2),

γ(β) = max(β2/2, βa+ β2σ2/2).

For further analysis it would be convenient to consider 4 cases:

(i) σ > 1, a > 0 : in this case, λr(β) = βa + rβ2σ2/2, γ(β) = βa + β2σ2/2,
and therefore the rhs in (19) tends to zero iff

Hr(β) =
(
1− r

)(
1− rβ

2σ2

2

)
< 0.

There exists an r ∈ (1, 2) such that this inequality is fulfilled iff β <
√

2/σ.



S.Molchanov and V.Panov/Limit theorems for the alloy-type REM 12

(ii) σ < 1, a < 0 : in this case, λr(β) = rβ2/2, γ(β) = β2/2, and therefore

Hr(β) =
(
1− r

)(
1− rβ

2

2

)
< 0

for some r ∈ (1, 2) iff β <
√

2.
(iii) σ > 1, a < 0 : it follows that

λr(β) =

{
rβ2/2, if β ≤ β◦/r,
βa+ rβ2σ2/2 if β > β◦/r,

and

γ(β) =

{
β2/2, if β ≤ β◦,
βa+ β2σ2/2 if β > β◦,

Therefore,

Hr(β) =


(
1− r

)(
1− r β

2

2

)
, if β < β◦/r,(

1− r
)

+ r
(
βa+

(
rσ2 − 1

)
β2

2

)
, if β◦/r < β < β◦,(

1− r
)(

1− r β
2σ2

2

)
, if β > β◦.

(20)

Taking into account the first and the third lines, we conclude that there
exists some r ∈ (1, 2) such that Hr(β) < 0 if β < min(

√
2, β◦) or β◦ < β <√

2/σ. Therefore, the further analysis depends on the order of numbers β◦
and
√

2/σ <
√

2. More precisely,

• If a >
(
1− σ2

)
/(
√

2σ) (that is, β◦ <
√

2/σ <
√

2), then the LLN

holds for β <
√

2/σ.

• If
(
1− σ2

)
/
√

2 < a <
(
1− σ2

)
/(
√

2σ) (that is,
√

2/σ < β◦ <
√

2),
then the LLN holds for β < β◦.

• If a <
(
1− σ2

)
/
√

2 (that is, β◦ >
√

2), then the LLN holds for

β <
√

2. Note that in this case, a <
√

2(1−σ) and therefore the LLN
is not fulfilled for any β >

√
2 due to the fact that P (β) = P 1(β).

(iv) σ < 1, a > 0. The proof follows the same lines as in the previous case. In
particular, we get that

Hr(β) =


(
1− r

)(
1− r β

2σ2

2

)
, if β < β◦/r,(

1− r
)

+ r
(
β2

2 − βa−
β2σ2

2

)
, if β◦/r < β < β◦,(

1− r
)(

1− r β
2

2

)
, if β > β◦,

(21)

and the condition Hr(β) < 0 holds when β < min(
√

2/σ, β◦) or β◦ < β <√
2. To conclude the proof it is sufficient to consider 3 cases depending on

the order of numbers β◦ and
√

2 <
√

2/σ.
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5.3. Proof of Theorem 4.2

Let us show 2 methods, which lead to the proof of this theorem. The first one is
rather classical and is essentially based on the Lyapounov condition. The second
proof is based on the third part of Proposition 3.1 from [18].

Method 1. Let us check that the Lyapounov condition holds (see (27.16)
from [4]): there exists δ > 0 such that

Ωn :=
Mn(2 + δ)

(benc)δ/2
(
Var(eβ

√
nZ1)

)1+δ/2
→ 0, as n→∞.

Applying (17) and (18),

Ωn �
22+δ

(
1
2e

((2+δ)2β2/2)n + 1
2 · e

((2+δ)βa+(2+δ)2β2σ2/2)n
)

(benc)δ/2
(

1
2e

2β2n + 1
2 · e2(βa+β2σ2)n

)1+δ/2

� 22∆−1 exp {[1−∆ + ∆ (g∆(β)− h(β))]n} ,

where ∆ = 1 + δ/2, and

g∆(β) = max
(
2∆β2, 2βa+ 2∆β2σ2

)
,

h(β) = max
(
2β2, 2βa+ 2β2σ2

)
,

There, one should find the condition on the existence of ∆ > 1 such that

G∆(β) := 1−∆ + 2∆ (g∆(β)− h(β)) < 0. (22)

Note that this task was in fact previously considered on Step 4 of the proof of
Theorem 4.1. The only difference is that β should be changed to 2β everywhere.
This observation completes the proof.

Method 2. Alternatively, let us show how the proof can be derived from the
CLT for the summands. From the proof of Proposition 3.1, we get the following
2 statements.

1. For any sequence γn, the distribution µn of the random variable eβ
√
nξ1/γn

satisfies

Jn(s, τ) := benc
∫ τ

0

xsµn(dx)

=
benceβ2ns2/2

γsn
Φ

(
log(γnτ)

β
√
n
− βs

√
n

)
,

where τ > 0, s = {1, 2}. Assume now that

γn = en(1+2β2)/2R(n) (23)

with some R(n). Then
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• if R(n) � c for some c > 0, then Jn(2, τ) � c−s for any β <
√

2/2;

• if R(n)→∞ as n→∞ then Jn(2, τ)→ 0.

2. If the sequence γn is such that

lim
n→∞

γn

e
√

2βn
= +∞, (24)

then

benc∑
i=1

P
{
eβ
√
nξi > γnx

}
→ 0.

Similar outcomes are valid also for the second distribution:

1. for any sequence γn, the distribution µ̃n of eβ(σ
√
nξi+an)/γn satisfies

J̃n(s, τ) := benc
∫ τ

0

xsµ̃n(dx)

=
benceβans+β2ns2σ2/2

γsn
Φ

(
log(γnτ)− βan

βσ
√
n

− βσs
√
n

)
,

where τ > 0, s = {1, 2}; in particular, from here it follows then if

γn = en(1+2σ2β2+2βa)/2R(n)

with some R(n), then

• if R(n) � c for some c > 0, then J̃n(2, τ) � c−s when β <
√

2/2;

• if R(n)→∞, then J̃n(2, τ)→ 0;

2. if the sequence γn is such that

lim
n→∞

γn

e(
√

2σ+a)βn
= +∞, (25)

then

benc∑
i=1

P
{
eβ(σ

√
nξi+an) > γnx

}
→ 0.

Consider now the mixture of 2 distributions. Our aim is to find a normalizing
sequence γ̆n such that both condition of Proposition 3.1 from [18] (part 3) are
fulfilled. Natural candidate is γ̆n :=

√
Var(Sn(β)). Note that

γ̆n =

benc∑
j=1

Var eβ
√
nZj

1/2

=

(
benc ·

(
Ee2β

√
nZ1 −

(
Eeβ

√
nZ1

)2
))1/2

�
(

1

2
benc · e2βmax{β,a+βσ2}n

)1/2

,
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since for any c ∈ R,

EecZ1 =
(
ec

2/2 + ec
√
na+c2σ2/2

)
/2.

Therefore, γ̆n has different asymptotics in the cases when β(1 − σ2) > a is

fulfilled or not. In the first case, γ̆n � 2−1/2en(1+2β2)/2. Under this choice of γ̆n,
(24) trivially holds, and moreover from

lim
n→∞

γn

e(
√

2σ+a)βn
≥ 2−1/2 lim

n→∞

e(1+2βa+2β2σ2)n/2

e(
√

2σ+a)βn

= 2−1/2 lim
n→∞

en(1−
√

2βσ)2/2 = +∞,

we conclude that (25) also holds. Therefore,

Σ̆n = benc · P
{
eβ
√
nZ1 ≥ γ̆nx

}
=

1

2
benc · P

{
eβ
√
nξ1 ≥ γ̆nx

}
+

1

2
benc · P

{
eβ(σ

√
nξ1+an) ≥ γ̆nx

}
→ 0.

On another hand,

benc
∫ τ

0

xsmn(dx) =
1

2
Jn(s, τ) +

1

2
J̃n(s, τ), (26)

where mn stands for the distribution of eβ
√
nZ1/γn. Note that Jn(2, τ) � 2 if

β <
√

2/2, and moreover J̃n(2, τ)→ 0. Therefore, we conclude that the sequence
Sn(β)/γ̆n converges to a standard normal random variable, and

an =
1

2
Jn(1, 1) +

1

2
J̃n(1, 1)

=
benc
γn

(
1

2
E
[
eβs
√
nξ1
]

+
1

2
E
[
eβs(σ

√
nξi+an)

])
= E[Sn(β)].

Finally, we conclude that the CLT holds if β belongs to one of the following
areas:

B1 :=
{
β : β(1− σ2) > a, β <

√
2/2
}
,

B2 :=
{
β : β(1− σ2) < a, β <

√
2/(2σ)

}
(the proof for B2 follows the same lines). Consideration of these areas depending
on the relations between a and σ concludes the proof.

5.4. Proof of Theorem 4.3

Due to Proposition 3.1 (iii), we get that for β >
√

2/2, it holds∑benc
i=1 eβ

√
nξi − δn

γn

d−→ Fα(β),µ(β), n→∞.
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From this result, it follows that∑benc
i=1 eβ(σ

√
nξi+an) − δ̃n(β)

γ̃n(β)

d−→ Fα(βσ),µ(βσ), n→∞,

where γ̃n(β) = eβanγn(βσ), δ̃n(β) = eβanδn(βσ).
As for the mixtures, we should find some γ̆n = γ̆n(β) such that the sum

Σ̆n = benc · P
{
eβ
√
nZ1 ≥ γ̆nx

}
=

1

2
benc · P

{
eβ
√
nξ1 ≥ γ̆nx

}
+

1

2
benc · P

{
eβ(σ

√
nξ1+an) ≥ γ̆nx

}
,

converges to a non-trivial limit. Note that if γn(β) . γ̃n(β) (equivalently, a >√
2(1−σ)) then the choice γ̆n = γ̃n yields the second summand in Σ̆n converges

to
(
2
√

2π
)−1

x−
√

2/(βσ), while the first tends to 0:

1

2
benc · P

{
eβ
√
nξ1 ≥ γ̆nx

}
=

1

2
benc · P

{
eβ
√
nξ1 ≥ γn

(
x
γ̃n
γn

)}
� 1

2
√

2π

(
x
γ̃n
γn

)−√2/β

→ 0, as n→∞.

Now let us consider formula (26) with this choice of γ̆n. The asymptotic be-
haviour of the second summand follows from (27), namely,

Jn(s, τ) �


1√

π(βσs−
√

2)
τβσs−

√
2, if

√
2− βσs < 0,

exp
{
n(
√

2− βσs)2/2
}
, if

√
2− βσs > 0,

1
2 exp

{
n(
√

2− βσs)2/2
}
, if

√
2− βσs = 0,

and therefore limτ→0 lim supn→∞ Jn(2, τ) = 0 iff β >
√

2/(2σ). As for Jn(s, τ),
we get

Jn(s, τ) =
benceβ2ns2/2

γ̆sn
Φ

(
log(γ̆nτ)

β
√
n
− βs

√
n

)
Taking into account that log(γ̆n) � (a+

√
2σ)βn, and

log(γ̆nτ)

β
√
n
− βs

√
n =

(
a+
√

2σ − βs+
log(τ)

βn

)√
n− σ

2
√

2

log(2n)√
n

,

we conclude that

Jn(s, τ) �


c1n

r1er2n, if a+
√

2σ − βs < 0,

benc · E
[
eβs
√
nξ1
]
γ̆−sn , if a+

√
2σ − βs > 0,

1
2be

nc · E
[
eβs
√
nξ1
]
γ̆−sn , if a+

√
2σ − βs = 0.
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with r2 = 1 −
(
a+
√

2σ
)2
/2 < 0 and some r1. Note that in the second case

(a+
√

2σ − βs > 0),

log(Jn(2, τ)) �
(

2β2 − 2(a+
√

2σ)β + 1
)
n,

where the quadratic form has 2 roots,

β± =

(
a+
√

2σ
)
±
√(

a+
√

2σ
)2 − 2

2
,

where β− = β∗/2 and β− ≤ (a +
√

2σ)/2 ≤ β+, and therefore Jn(2, τ) → 0 iff
β > β∗/2. Finally, we conclude that the convergence to a stable law holds if and
only if

β > max

{
β∗
2
,

√
2

2σ
.

}
In the considered area

[
a >
√

2(1− σ)
]
, the first item is larger then the second

if and only if σ > 1 and a < (1 − σ2)/(
√

2σ). This observation concludes the
proof.

Appendix A: Previous research

As it was already mentioned in the introduction, the free energy of the consid-
ered system was recently studied by Grabchak, Molchanov [13]. In this appendix,
we shortly discuss the main results from that research.

Free energy of the system with benc standard normal energy levels is equal
to

P1(β) = lim
n→∞

lnS1
n(β)

n
=

{
1 + β2/2, β ≤

√
2,

√
2β, β >

√
2.
,

whereas the free energy of system with benc energy levels having N (
√
na, σ2)

distribution equals

P2(β) = lim
n→∞

lnS2
n(β)

n
=

 1 + βa+ β2σ2/2, β ≤
√

2/σ(
σ
√

2 + a
)
β, β >

√
2/σ.

It turns out that the free energy of the system with mixture distribution of
energy levels is equal to P (β) = max{P1(β), P2(β)}. This observation leads to
the conclusion, that P (β) essentially differs between 6 possible types of relations
between a and σ, see Figure 2:

1. Zone 1 (orange), a > 0 and a >
√

2(1− σ): P (β) = P2(β).
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Fig 2. Illustration of the asymptotic behavior of the free energy depending on the parameters
a and σ.

2. Zone 2 (green), a < 0 and a > (1− σ2)/(
√

2σ):

P (β) =

{
P1(β), β ≤ β◦
P2(β), β > β◦.

with β◦ = 2a/(1− σ2).
3. Zone 3 (blue), a < 0 and

√
2(1− σ) < a < (1− σ2)/(

√
2σ):

P (β) =

{
P1(β), β ≤ β∗
P2(β), β > β∗.

with β∗ =
(
σ
√

2 + a
)
−
√(

σ
√

2 + a
)2 − 2.

4. Zone 4 (red), a < 0 and a <
√

2(1− σ): P (β) = P2(β).
5. Zone 5 (purple), a > 0 and (1− σ2)/

√
2 < a <

√
2(1− σ):

P (β) =

{
1 + aβ + σ2β2/2, β ≤ β�,

√
2β, β > β�,

where β� =

(
(
√

2− a)−
√(√

2− a
)2 − 2σ2

)
/σ2.
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6. Zone 6 (yellow): a > 0 and a < (1− σ2)/
√

2:

P (β) =


1 + aβ + σ2β2/2, β ≤ β◦,

1 + β2/2, β◦ < β <
√

2,
√

2β, β >
√

2.

It would be a worth mentioning that these zones do not completely coincide
with the zones on Figure 1. Nevertheless, the critical values β∗ and β� appears
under the same assumptions on the relation between a and σ.
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