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Abstract. Given a convex body K � R
n with the barycenter at the origin we

consider the corresponding K�ahler-Einstein equation e�� = detD2�. If K is a
simplex, then the Ricci tensor of the Hessian metric D2� is constant and equals
n�1

4(n+1) . We conjecture that the Ricci tensor of D2� for arbitrary K is uniformly

bounded by n�1
4(n+1) and verify this conjecture in the two-dimensional case. The

general case remains open.

1. Introduction

We consider a convex body K � R
n with the barycenter at the origin and the

associated equation of the Monge-Amp�ere type

e�� = detD2�; (1.1)

r�(Rn) = K: (1.2)

The function �: Rn ! R is assumed to be convex. Given a solution � to (1.1)
one considers the naturally associated Hessian (Riemannian) metric D2� on Rn,
the so-called K�ahler-Einstein metric. After a suitable complexi�cation this metric
indeed becomes a K�ahler metric which is Einstein.
The interest in this equation is motivated by various problems of di�erential and

algebraic geometry. In patricular, equation (1.1) naturally arises in the theory of
toric varietes. The situation when K is a rational convex polytope is of particular
interest, because in this case K is a moment polytope of a toric orbifold M . We
refer to [2], [4], [15], [7], [14] for more information on K�ahler geometry, toric varietes
and the importance of the equation (1.1) in convex geometry. The existence and
uniqueness of a solution to (1.1) under various assumptions has been proved in a
series of papers [15], [7], [14], [4], [5].
Another motivation for study (1.1) comes from convex analysis. There are deep

reasons to believe that equation (1.1) can contribute to understanding a number of
di�cult open conjectures (KLS conjecture, slicing problem) from asymptotic convex
geometry (see [8], [9], [13]). See also [12], [10], [11], where Hessian metrics have been
considered in a more general measure-transportational setting. A comprehensive
overview of classical and modern results as well as open problems in convex analysis
the reader can �nd in [1].
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An important example of K is given by the simplex

S =

(
(x1; : : : ; xn) 2 Rn ;

nX
i=1

xi � 1; 8i; xi � �1
)
:

It is known that forK = S equation (1.1) admits an explicit solution (see Section 4.3
below). The corresponding Hessian metric D2� is isometric to a spherical orthant
fx 2 Rn

+ ;
Pn

i=1 x
2
i = 4(n + 1)g. In particular, the corresponding Ricci tensor has

the form

RicS =
n� 1

4(n+ 1)
�D2�:

Motivated by problems from convex geometry we suggest the following conjecture.

Conjecture 1.1. The Ricci curvature of D2� is bounded by n�1
4(n+1)

. In particular,

the largest value is realized on S uniformly.

The aim of this article is to provide an a�rmative answer to this conjecture in
the two-dimensional case. We pursue the approach initiated in the classical papers
of Calabi and prove the main resut by di�erentiating equation (1.1) and applying
the maximum principle. Here we follow the computational technique developed in
earlier papers [12], [10], [11]. Finally, we present the computations for the simplex
to demonstrate that our result is sharp, and also for the ball and the cube. The
general problem remains open.

2. Notations and preliminary results

We assume throughout that we are given the standard Euclidean coordinate sys-
tem fxig. For an arbitrary convex body K satisfyingZ

K

xidx = 0

we consider �, the smooth solution to (1.1) which is uniquely-determined up to
translation.
The space Rn is equipped with the metric

h = hijdx
idxj = �ijdx

idxj = (@2xixj�)dx
idxj

and with the measure � = e��dx.
We give below a list of useful computational formulas, the reader can �nd the

proof in [12]. It is convenient to use the following notation:

�i = @xi�; �ij = @2xixj�; �ijk = @3xixjxk�

We follow the standard conventions of Riemannian geometry (i.e., �ij is inverse to
�ij, Einstein summation, raising indices etc.).
The measure � has the following density with respect to the Riemannian volume

� = e�Pdvolh; P =
1

2
�:

The associated di�usion generator (weighted Laplacian) L has the form

Lf = �ijfij:

Di�erentiating the K�ahler-Einstein equation, one gets the folowing important
identity, that for any �xed index i, setting f = �i,

Lf = �iab�
ab = ��i: (2.1)
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The following non-negative symmetric tensor g plays prominent role in our anal-
ysis

gij = �iab�
ab
j :

Finally, we give a list of formulas for the most important quantities (see [12], [11]).

(1) Connection

�kij =
1

2
�k
ij:

(2) Hessian of f

r2
hfij = fij � 1

2
�k
ijfk:

(3) Riemann tensor

Riemikjl =
1

4
(�ila�

a
kj � �ija�

a
kl):

(4) Ricci tensor

Ricij =
1

4

�
�iab�

ab
j + �ijk�

k
�
=

1

4
(gij + �ijk�

k):

(5) Bakry-Emery tensor

(Ric�)i;j = Ricij +r2
hPij =

1

4
gij +

1

2
�ij:

Let us recall some details about computations of the weighted Laplacian. We
stress that in this section we omit the subscript h for the sake of simplicity,
i.e. the symbols r;r2 etc. are always related to the Hessian metric h, but not to
Eudlidean metric.
Let us recall that given a tensor T its Laplacian is de�ned as follows:

�T = �pqrprqT:

Here rpT is the covariant derivative, which means, in particular, that

rp�ij = 0; ��ij = 0:

Similarly, one can compute the weighted Laplacian

LT = �T � 1

2
�krkT:

The following weighted Leplacians of several important tensors are taken from
[11].

Lemma 2.1.

L�i =
1

2
�i +

1

4
gki �k:

Lemma 2.2.

L�iab =
1

2
�iab � 1

2
�l
ik�

m
al�

k
bm +

1

4

�
gki �kab + gka�kib + gkb�kia

�
:

Lemma 2.3.

Lgij = gij +
1

2
gkig

k
j + 2rp�iabrp�ab

j + 8RiemiabcRiem
abc
j :
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Let us specify some of these results in the two-dimensional case.
We deal throughout with the orthonormal frame (n; v), where

n =
r�
jr�j :

Therefore �n = 1 and �v = 0. We will often write �ijnjr�j instead of �ijk�
k.

Let us recall that in the two-dimensional case

Ricij = R�ij;

where R is the sectional curvature. In order to make the formulas less heavy we will
use throughout the following quantity instead of R:

� = 4R:

In particular, we have

4Ricij = gij + �ijnjr�j = ��ij: (2.2)

Applying this identity to couples of vectors (n; n); (v; v); (n; v), one gets

g(n; n) + �nnnjr�j = g(v; v) + �vvnjr�j = �

g(n; v) + �vnnjr�j = 0:

Remark 2.4. (Bound for � from below). Applying identities

g(v; v) = �2
vvv + 2�2

vvn + �2
vnn

and
g(v; v) + �vvnjr�j = �

we get

� � 2�2
vvn + �vvnjr�j � �jr�j

2

8
:

Remark 2.5. The two-dimensional Riemann tensor has a particular simple struc-
ture

Riemijkl =
1

4
(�ila�

a
kj � �ika�jla) = R(�ik�j` � �i`�jk):

Hence

Riemnvnv =
1

4
(�nva�

a
nv � �nna�vva) = R =

�

4

Riemnvnv = �Riemvnnv = �Riemnvvn = Riemvnvn = R =
�

4
:

Other components equal zero.
In particular

RiemabcdRiem
abcd = 4R2 =

�2

4
: (2.3)

We list below other important identities which will be applied in the computations.
First, there are several trace identities obtained by di�erentiating the K�ahler-
Einstein equation (see (2.1)).

(T1)
�abc�

ab = ��c

(T2) Taking the covariant derivative of (T1) one gets

ra�bcd�
cd = �(r2�)ab
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(T3) Taking trace of ��ij = gij + �ijk�
k one gets

2� = Trg � jr�j2 = �abc�
abc � jr�j2:

(T4) Di�erentiating the identity (T3) one gets

(rp�abc)�
abc = (r2�)pk�

k +rp� = (r2�)pnjr�j+rp�: (2.4)

Similar computations show:

Lemma 2.6. (Tr) Trace

Tr(r2�) = �ij

�
�ij � 1

2
�k
ij�k

�
= 2 +

jr�j2
2

:

(HS) Hilbert-Schmidt norm

kr2�k2 = (�ij � 1

2
�k
ij�k)(�

ij � 1

2
�ij
` �

`) = 2 + jr�j2 + 1

4
g(n; n)jr�j2:

(D) Determinant

detr2� =
1

2

�
Tr(r2�)

�2 � 1

2
kr2�k2 = 1 +

jr�j2
2

+
jr�j2
8

�jr�j2 � g(n; n)
�
:

Finally, the following results for Laplacians follow from Lemma 2.1 and Lemma
2.3.

(L1)

Ljr�j2 = L(�i�i) = 2L(�i)�
i + 2rp�irp�i = 2L(�i)�

i + 2kr2�k2

= jr�j2 + 1

2
g(n; n)jr�j2 + 2kr2�k2 = 4 + 3jr�j2 + g(n; n)jr�j2:

(L2)

L(Trg) = Trg +
1

2
kgk2 + 8RiemabcdRiem

abcd + 2rp�abcrp�abc;

where kgk is the Hilbert-Schmidt norm of the tensor g.

3. Main result

In this section

n = 2:

Theorem 3.1. Let � = 4R, where R is the sectional curvature of the Hessian metric
D2�. Then

2L(�) = (3��1)(�+1)+ jr�j2
8�+ jr�j2 (3��1)

2+
16jr�j2 + 2

�
4(1� �) + jr�j2�hr�;r�i
8�+ jr�j2 :

We postpone the proof of Theorem 3.1 for now, and present its following corollary:

Corollary 3.2. The sectional curvature function R satis�es

R � 1

12
:
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Proof. The idea is to apply Theorem 3.1 and the maximum principle. We proceed
as follows:
Step 1. Assume �rst that for any " > 0

lim sup
x!1

�(x)e�"�(x) � 0: (3.1)

In particular, �e�"� has a local maximum for every " > 0. Applying the maximum
principle to this function we get at the maximum point

r�
�

= "r�;
L�

�
�
���r�
�

���2 � 2"

(we use here the relation L� = 2). By theorem 3.1

2L(�) = �(3�� 1)
h
1 +

3jr�j2 + 8

8�+ jr�j2
i
+

16jr�j2 + 2
�
4(1� �) + jr�j2�hr�;r�i
8�+ jr�j2 :

Substituting the above relations into this formula one gets that at any local maxi-
mum point the following inequality holds

(3��1)
h1
2
+

3jr�j2 + 8

16�+ 2jr�j2
i
+
16"2�jr�j2 + 2"

�
4(1� �) + jr�j2�jr�j2

16�+ 2jr�j2 � 2"+"2jr�j2:

Rearranging the terms one gets

(3�� 1)
h1
2
+

3jr�j2 + 8

16�+ 2jr�j2
i
+

8"(1� �) + 2"(1� ")jr�j4
16�+ 2jr�j2 � 2":

Equivalently,

3�� 1

2
� 2"+

[3(3�� 1) + 2"(1� ")]jr�j2 + 8[(3� ")�� 1] + 8"

16�+ 2jr�j2 � 0: (3.2)

We may assume that " � 1, as later " would tend to zero. We thus deduce from
(3.2) that

3�� 1� 4"

2
+

3(3�� 1)jr�j2 + 8[(3� ")�� 1] + 8"

16�+ 2jr�j2 � 0:

It is therefore impossible that both 3�� 1 � 4" and (3� ")� � 1. Hence

� � max
�1 + 4"

3
;

1

3� "

�
;

at any local maximum of �e�"�. By the maximum principle, we have that everywhere
in Rn,

�e�"� � max
�1 + 4"

3
;

1

3� "

�
e�"min�; (3.3)

Tending " to zero we get � � 1
3
, hence R � 1

12
.

Step 2. Rational polytopes.

Assume that the convex body K � R
n is a rational polytope, in the sense that

all the coordinates of all of the vertices of K are rational numbers. It is known that
in this case,

sup
x2Rn

j�(x)j <1; (3.4)
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and in particular (3.1) holds true. In fact, in this case, one may consider the Rie-
mannian metric on the complex torus Cn=(2�

p�1 � Zn) given by

~h(x; y) = �ij(x)dx
idxj + �ij(x)dy

idyj (3.5)

where (x; y) = (x1; : : : ; xn; y1; : : : ; yn) 2 Rn�Rn �= C
n are the standard coordinates,

and where the 1-forms dx1; : : : ; dxn; dy1; : : : ; dyn are well-de�ned on Cn and also on
the quotient Cn=(2�

p�1 �Zn). The Riemannian metric ~h is in fact a K�ahler metric
on the complex manifold Cn=(2�

p�1 � Zn). The equation (1.1) is equivalent to the

assertion that the metric ~h is an Einstein metric. Thus, up to translation, � is the
unique function on Rn satisfying (1.2) for which the metric ~h as de�ned in (3.5) is
an Einstein metric.

This toric K�ahler-Einstein metric ~h was studied extensively in the complex ge-
ometry literature. We refer the reader to Legendre [14] and references therein for

the following non-trivial fact: When K is a rational polytope, the metric ~h admits
a completion which is a smooth, compact orbifold. In particular all sectional curva-
tures of ~h are uniformly bounded on Cn=(2�

p�1 �Zn). Since R = �=4 is a sectional

curvature of ~h, the proof of (3.4) is complete.

Step 3. Approximation by rational polytopes. Assume that K � R
n is

a convex body with barycenter at the origin. Then there exist rational polytopes
K1; K2; : : : with barycenters at the origin such that Km �! K in the Hausdor�
metric. By solving (1.1) for Km we obtain a sequence of convex functions �m, and
according to [9, Proposition 2.1] we may assume that

�m �! � (3.6)

locally uniformly in Rn. We claim that

D2�m �! D2� (3.7)

locally uniformly in Rn. Indeed, it follows from (3.6) that if a subsequence of D2�m

converges locally uniformly to a certain limit, then this limit must equal D2�. Thus
it su�ces to show that the sequence D2�m is precompact in local uniform norm.
This follows from the Arzela-Ascoli theorem and the local uniform bound on the
third derivatives (see Corollary 5.7). Thus (3.7) is proven.

For a point x 2 Rn and r > 0 write Bm(x; r) for the collection of all points whose
Riemannian distance from x, with respect to the metric induced byD2�m, is at most
r. We set B(x; r) for the corresponding ball with respect to the metric induced by
D2�. It follows from (3.7) that for any x 2 Rn and r0 > 0 for which B(x; r0) � R

n

is compact, Z
Bm(x;r0)

p
detD2�m dx

m!1�!
Z
B(x;r0)

p
detD2� dx: (3.8)

Thanks to the previous step, we know that the sectional curvature Rm of the metric
induced by D2�m satis�es Rm(x) � 1=12 for any x 2 Rn and m � 1. Fix x 2 Rn

and r0 > 0 such that B(x; r0) is compact with a unique geodesic connecting any
point y 2 B(x; r0) to x. Then for a su�ciently large m, also Bm(x; r0) is compact
with unique geodesics to the center x, with respect to the metric induced by D2�m.
By the Rauch comparison theorem (e.g., [3, Section 6.5]), for any 0 < r < r0 there
is a metric-contraction from the Riemannian ball Bm(x; r) onto the geodesic ball of
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radius r in a two-dimensional sphere of radius
p
12. Consequently, we may compare

areas and obtain the inequalityZ
Bm(x;r)

p
detD2�m dx � 24� � (1� cos(r=

p
12));

where the right-hand side is the area of the geodesic ball in the sphere. It thus
follows from (3.8) that for all 0 < r < r0,

12

�r4

�
�r2 �

Z
B(x;r)

p
detD2�

�
dx � 12

�r4

�
�r2 � 24� � (1� cos(r=

p
12))

�
: (3.9)

When r ! 0+, the right-hand side of (3.9) tends to 1=12, while the left hand-side
tends to the sectional curvature R(x). Therefore R � 1=12. �

Remark 3.3. The fact that R = 1
4
(�abc�

abc � jr�j2) is bounded from above looks
highly non-trivial. It can be shown that the quantity �abc�

abc tends to in�nity and,
moreover, has exponential growth. We show in the last section that in general R is
not bounded from below.

Corollary 3.4. The function � is uniformly convex in Riemannian metric, more
precisely

r2� � 5

6
:

In particular, the manifold (Rn; D2�) is geodesically convex.

Proof.

(r2�)ij = �ij� 1

2
�ijk�

k =
1

2
gij+�ij� 1

2

�
gij+�ijk�

k
�
=

1

2
gij+

�
1� �

2

�
�ij � 5

6
�ij:

Thus in the manifold (Rn; D2�) we have a global convex function � satisfying
limx!1�(x) = +1. This is known to imply that the manifold is geodesically
convex, that any two points have at least one geodesic connecting them. �

We continue with the proof of Theorem 3.1 and the required lemmata. The
argument involves linear algebra computations that are based on the di�erentiations
described in the previous section. We �x a point x0 in R

n, and our goal is to prove
the formula for 2L(�) from Theorem 3.1 at this point x0. The smooth function � is
strongly convex, as detD2� never vanishes. In particular, the di�erential of � can
vanish at most at one point. By continuity, in proving Theorem 3.1 we may assume
that r�(x0) 6= 0.

We proceed with algebraic computations at the point x0. Let (e; u) be an two
tangent vectors at the point x0, which constitute an orthonormal frame consisting
of eigenvectors of r2�. Let

�(e);�(u)

be the corresponding eigenvalues. In particular,

0 =
�r2�

�
eu
= �eu � 1

2
�eun�n:

Since �eu = 0 and �n 6= 0 then
�eun = 0:

Remark 3.5. The tensor
Qabcd = ra�bcd

is symmetric with respect to any permutation of coordinates.
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From (T2) we infer that the components of the tensor Q do satisfy the following
linear equations.

Qeeee +Qeeuu = ��r2�
�
ee
= ��(e) (3.10)

Qeeeu +Qeuuu = ��r2�
�
eu
= 0 (3.11)

Qeeuu +Quuuu = ��r2�
�
uu

= ��(u) (3.12)

Lemma 3.6. At the point x0, we have

2L(�) = 2�+ 3�2 + �jr�j2 + 16
�
Q2
eeuu +Q2

eeeu

�
+ 2Qeeuu(4 + jr�j2)

Proof. By (2.2) and (T1), one gets

kgk2 = 

��ij � �ijnjr�j


2 = 2�2 + 2�jr�j2 + g(n; n)jr�j2; (3.13)

where kgk2 is the square of the Hilbert-Schmidt norm of the tensor g. Then it follows
from (L2), (2.3) and (3.13).

L(Trg) = Tr(g) + 3�2 + �jr�j2 + 1

2
g(n; n)jr�j2 + 2rp�abcrp�abc:

Then the identities 2L(�) = L(Trg � jr�j2) (follows from (T3)) and (L1) imply

2L(�) = �4 + 2�+ 3�2 + (�� 2)jr�j2 � 1

2
g(n; n)jr�j2 + 2rp�abcrp�abc: (3.14)

Using (3.10)-(3.12) we rewrite rp�abcrp�abc in terms of Q:

rp�abcrp�abc = Q2
eeee + 4Q2

eeeu + 6Q2
eeuu + 4Q2

euuu +Q2
uuuu

= (Qeeuu + �(e))2 + 8Q2
eeeu + 6Q2

eeuu + (Qeeuu + �(u))2

= 8(Q2
eeuu +Q2

eeeu) + 2QeeuuTr(r2�) + kr2�k2

= 8(Q2
eeuu +Q2

eeeu) +Qeeuu

�
4 + jr�j2

�
+ 2 + jr�j2 + 1

4
g(n; n)jr�j2:

Substituting the above formula into (3.14) we get the result. �

Our next goal is to rewrite the result of Lemma 3.6 in terms of �;r�. Note that
(r2�)enjr�j = (r2�)ee�e + (r2�)eu�u = �(e)�e:

Analogously

(r2�)unjr�j = �(u)�u:

From (T4) we thus obtain the following Lemma.

Lemma 3.7. The components of the tensor Q satisfy the following equations:

Qeeee�eee + 3Qeeeu�eeu + 3Qeeuu�euu +Qeuuu�uuu = �(e)�e + �e (3.15)

Qeeeu�eee + 3Qeeuu�eeu + 3Qeuuu�euu +Quuuu�uuu = �(u)�u + �u: (3.16)

Let us consider equations (3.10)-(3.12) and (3.15)- (3.16) as a system of �ve linear
equations with �ve unknown variables which are the components of the symmetric
tensor Q. This is an important feature of dimension n = 2, in higher dimensions
the number of unknown variables in this approach seems to exceed the number of
linear equations. This system is solved in the next lemma. From (T1) we obtain

�eee + �euu = ��e; �uuu + �eeu = ��u:
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Lemma 3.8. One has

Qeeuu =
AC +BD

C2 +D2
; Qeeeu =

AD �BC

C2 +D2
;

and hence

Q2
eeuu +Q2

eeeu =
A2 +B2

C2 +D2
;

where
A = ��euu�(e) + �e;

B = ��uee�(u) + �u;

C = 3�euu � �eee = 4�euu + �e;

D = 3�eeu � �uuu = 4�uee + �u:

Proof. Substituting Qeeee = ��(e)�Qeeuu, Quuuu = ��(u)�Qeeuu, Qeuuu = �Qeeeu

into (3.15), (3.16) one gets two linear equations:

CQeeuu +DQeeeu = �(e)�e + �(e)�eee + �e = ��euu�(e) + �e;

DQeeuu � CQeeeu = �(u)�uuu + �(u)�u + �u = ��uee�(u) + �u:

We rewrite these two real equation as a single complex-linear equation

(C � iD)(Qeeuu + iQeeeu) = A� iB:

Solving this equation one gets the desired result. �

c

Lemma 3.9. (1) For any orthonormal frame (e; u)

� = 2(�2
euu + �2

eeu) + �e�uue + �u�eeu

(2) For the frame (e; u) of eigenvectors of r2�,

� =
2�euu

�e

�
�(e)� �(u)

�
=

2�uee

�u

�
�(u)� �(e)

�
(3) For the frame (e; u) of eigenvectors of r2�,

2
�
�e�euu � �u�uee

�
(�(u)� �(e)) = ��hr�;r�i:

Proof. 1) Follows from the trace identity ��e = �eab�
ab = �eee+�euu, the relations

g(e; e) = �2
eee+2�

2
eeu+�

2
euu = (�euu+�e)

2+2�2
eeu+�

2
euu = 2(�2

euu+�
2
eeu)+2�e�euu+�

2
e;

g(u; u) = 2(�2
euu + �2

eeu) + 2�u�eeu + �2
u;

and g(e; e) + g(u; u) = 2�+ jr�j2, according to (T3).
2) From the equation �eun = 0 we infer 0 = �e�eeu + �u�euu. Hence

�euu

�e
= ��uee

�u
: (3.17)

We note that by (T1),

�(e) = (r2�)ee = 1� 1

2
�e�eee � 1

2
�u�eeu = 1 +

�2
e

2
+

1

2

�
�e�euu � �u�eeu

�
:

�(u) = 1 +
�2
u

2
� 1

2

�
�e�euu � �u�eeu

�
:
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Hence

�(e)� �(u) =
1

2

�
�2
e � �2

u

�
+
�
�e�euu � �u�eeu

�
: (3.18)

Applying relation �euu
�e

= ��uee
�u

and formula (1) one gets

� = 2(�2
euu + �2

eeu) + �e�uue + �u�eeu = 2(�2
euu + �2

eeu) +
�euu

�e

�
�2
e � �2

u

�

=
2�euu

�e

��2
e � �2

u

2
+

�e

�euu
(�2

euu + �2
eeu)

�
=

2�euu

�e

��2
e � �2

u

2
+ �e�euu +

�e

�euu
�2
eeu)

�
=

2�euu

�e

�1
2

�
�2
e � �2

u

�
+
�
�e�euu � �u�eeu

��
=

2�euu

�e

�
�(e)� �(u)

�
:

3) In view of (2), it su�ces to prove that

2(�e�euu � �u�uee)(�(u)� �(e)) = �2�euu

�e

�
�(e)� �(u)

�
(�e�e + �u�u):

This is equivalent to

�e�euu � �u�uee = (�e�e + �u�u)
�euu

�e

which holds true in view of (3.17). �

The next lemma follows immediately from Lemma 3.8 and Lemma 3.9(1).

Lemma 3.10.

16(Q2
eeuu +Q2

eeeu) + 2Qeeuu(4 + jr�j2) = 16(A2 +B2) + 2(4 + jr�j2)(AC +BD)

C2 +D2
;

C2 +D2 = (4�euu + �e)
2 + (4�uee + �u)

2 = 8�+ jr�j2:
Lemma 3.11. The following identity holds

16(A2 +B2) + 2(4 + jr�j2)(AC +BD)

= �
h
jr�j2��� jr�j2�� 6jr�j2 � 8

i
+ 16jr�j2 + 2

�
4(1� �) + jr�j2�hr�;r�i:

Proof. Using identities A = ��(e)�euu + �e; B = ��(u)�eeu + �u one gets

A2 +B2 = �2(e)�2
euu + �2(u)�2

eeu + jr�j2 � 2(�e�(e)�euu + �u�(u)�eeu):

AC +BD = [��(e)�euu + �e](4�euu + �e) + [��(u)�eeu + �u](4�eeu + �u)

= �4�(e)�2
euu � 4�(u)�2

eeu � �(e)�e�euu � �(u)�u�eeu

+ �e(4�euu + �e) + �u(4�eeu + �u):

From the trace identity �ab(r2�)ab = 2 + jr�j2

2
we infer

4 + jr�j2 = 2(�(e) + �(u)):
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Thus,

16(A2 +B2) + 2(4 + jr�j2)(AC +BD)

= 16(�2(e)�2
euu + �2(u)�2

eeu) + 16jr�j2 � 32(�e�(e)�euu + �u�(u)�eeu):

�4(�(e) + �(u))(4�(e)�2
euu + 4�(u)�2

eeu + �(e)�e�euu + �(u)�u�eeu)

+4(�(e) + �(u))
�
�e(4�euu + �e) + �u(4�eeu + �u)

�
= �8�(e)�(u)(�� �e�euu � �u�eeu)� 4(�(e) + �(u))(�(e)�e�euu + �(u)�u�eeu)

+16jr�j2 + 2(4 + jr�j2)hr�;r�i+ 16�e�euu(�(u)� �(e)) + 16�u�uee(�(e)� �(u))

= �8� detr2� + 4
�
�(e)�(u)(�e�euu + �u�uee)� �2(e)�e�euu � �2(u)�u�eeu

�
+16jr�j2 + 2(4 + jr�j2)hr�;r�i+ 16

�
�e�euu � �u�uee

�
(�(u)� �(e))

= �8�
�
1 + jr�j2

2
+ jr�j2

8

�jr�j2 � g(n; n)
��

+ 4(�(u)� �(e))(�(e)�e�euu � �(u)�u�eeu)

+16jr�j2 + 2(4 + jr�j2)hr�;r�i+ 16
�
�e�euu � �u�uee

�
(�(u)� �(e)):

Next we note that by (3.18),

(�(e)�e�euu � �(u)�u�eeu) = �(e)�e�euu + �(u)�
2
u

�e
�euu

= �euu
�e

�
�(e)�2

e + �(u)�2
u

�
= �euu

�e
r2�(r�;r�):

Consequently,

(�(u)� �(e))(�(e)�e�euu � �(u)�u�eeu) = (�(u)� �(e))
�euu

�e
r2�(r�;r�)

and using Lemma 3.9(2) we get

(�(u)� �(e))(�(e)�e�euu � �(u)�u�eeu) = ��
2
r2�(r�;r�):

Finally, recall that by Lemma 3.9(3)

16
�
�e�euu � �u�uee

�
(�(u)� �(e)) = �8�hr�;r�i:

Hence

16(A2 +B2) + 2(4 + jr�j2)(AC +BD)

= �8�
h
1 + jr�j2

2
+ jr�j2

8

�jr�j2 � g(n; n)
�
+ 1

4
jr�j2(r2�(n; n))

i
+16jr�j2 + 2

�
4(1� �) + jr�j2�hr�;r�i:

Finally, as r2�(n; n) = 1� jr�j � �nnn=2,

1 + jr�j2

2
+ jr�j2

8

�jr�j2 � g(n; n)
�
+ 1

4
jr�j2(r2�(n; n))

= 1 + 3jr�j2

4
+ jr�j2

8

�jr�j2 � g(n; n)� �nnnjr�j
�
= 1 + 3jr�j2

4
+ jr�j2

8

�jr�j2 � �
�
:

Substituting this identity one gets the claim. �

Proof of Theorem 3.1. By Lemma 3.6 and Lemma 3.10,

2L(�) = 2�+ 3�2 + �jr�j2 + 16(A2 +B2) + 2(4 + jr�j2)(AC +BD)

8�+ jr�j2
We now plug in the formula from Lemma 3.11, and apply direct computations to
complete the proof of the theorem. �
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4. Examples

It follows from (L2) above that L(jr�j2) > 0 and in particular, jr�j2 cannot be
a constant function. From Theorem 3.1 we thus conclude that there are only two
cases of the constant corvature in the two-dimensional case: � = 0 (cube) and � = 1

3
(simplex). In this section we consider both examples. In addition, we consider the
ball and demonstrate that the Ricci tensor can be unbounded from below.

4.1. Cube. In the case of the cube

K = [�1; 1]n
the solution

�(x) =
nX
i=1

'(xi)

is a sum of one-dimensional independent potentials solving the following:

'00 = e�';

'0(R) = (�1; 1):
So '(t) = log[2 cosh2(t=2)]. Since the Riemannian manifold (Rn; D2�) is Euclidean
(it is in fact isometric to a cube of sidelength

p
2 � �), one has

Ric = 0:

In particular, the following holds:

�abc�
abc =

nX
i=1

('
000

)2

('00)3
(xi) =

nX
i=1

('0)2

'00
(xi) = jr�j2 =

nX
i=1

e'(xi)('0)2(xi):

The latter expression has exponential growth. This means, in particular, that the
natural Riemannian norms of the �rst and third derivatives of the potential � are
in general unbounded.

4.2. Ball. Here K = Bn and n � 2. By uniqueness, the solution � of (1.1) with
r�(Rn) = Bn is (up to translation) of the form

�(x) = '(jxj)
where the smooth function ' on the half-line is increasing and it satis�es '0(0) = 0
and '0(+1) = 1. The equation (1.1) takes the form

det

�
'0(jxj) Idjxj + ('00(jxj)� '0(jxj)=jxj) x
 x

jxj2
�
= exp(�'(jxj))

or equivalently, �
'0(r)

r

�n�1

� '00(r) = e�'(r):

In the Riemannian manifold (Rn; D2�), rays emanating from the origins are geodesics.
Denote

Dn :=

Z 1

0

p
'00(r)dr =

Z 1

0

e�'(r)=2
�

r

'0(r)

�n�1

2

dr <1
since the integral clearly converges at 0 (as '0(0) = 0 and ' is smooth) and at in�nity
(as the integrand decays exponentially). Then the Riemannian manifold (Rn; D2�)
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is in fact an open Riemannian ball of a �nite radius Dn around 0, denoted by
B(0; Dn). For 0 < R < Dn let t = t(R) > 0 be such that

t =

Z R

0

p
'00(r)dr:

Then limR!Dn
t(R) = +1. Recall that the volume of the Euclidean unit sphere

Sn�1 is �n = n�n=2=�(1 + n=2). Then the Riemannian volume of the Riemannian
sphere @B(0; R) equals

�nt
n�1e�'(t)=2 � 1p

'00(t)
= �n(t'

0(t))
n�1

2 �! +1

as t!1 or as R! Dn. Thus in this Riemannian manifold, a sequence of spheres
of bounded radius have volumes tending to in�nity. This means that the Ricci
curvature is not bounded from below.

Remark 4.1. What are the sharp estimates from below for the sectional curvature?
One bound is given in Remark 2.4. One might expect the two dimensional ball to
be a natural example to prove sharpness of this estimate. However, this is not the
case.
Indeed in polar coordinates, the metric is separated nicely as

h = '00(r)(dr)2 + (r'0(r))(d�)2:

In the two-dimensional case, the sectional curvature is given by the usual formula

H = � 1

2
p
r'0(r)'00(r)

d

dr

"
'0(r) + r'00(r)p
r'0(r)'00(r)

#
:

Since '0(r)'00(r) = re�'(r), we have

H = �e
'=2

2r
� d
dr

�
e'=2

'0

r
+

r

'0
e�'=2

�
= �('0)2

4r2
e' +

1

4
+

'0

2r3
� 1

r'0
+

r

2('0)3
e�':

Recall that as r !1, the ratio '0(r)=r tends to one. Therefore, for large r,

H = �('0)2

4r2
e' +

1

4
+O

�
1

r2

�
:

On the other hand jr�j2 = ('0)2='00 = e' � ('0)3=r. We thus see that the estimate
from Remark 2.4 is o� by a factor of roughly r2=2.

4.3. Simplex. This is the most important example for us, because this is the ex-
tremal situation, where the maximal value of the Ricci tensor is attained (at least
in dimension 2).
It can be easily checked (see explanations in [8]) that in case of the simplex

K =
� nX
i=1

xi � 1; xi � �1	
the explicit solution is given by the formula

� = (n+ 1) log
�
1 +

nX
i=1

exi
�� nX

i=1

xi + c(n)
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Di�erentiating twice one gets

�i = (n+ 1)
exi

1 +
Pn

i=1 e
xi
� 1

�ij = (�i + 1)�ij � (1 + �i)(1 + �j)

n+ 1
The note that D2� is nothing else but the Fubini-Study metric (after appropriate
complexi�cation) in the complex projective space (see explanations in [8]).

�ij =
1

�i + 1
�ij � 1

(
Pn

i=1�i)� 1
:

Next we proceed with the third derivatives

�ijk = �ik�ij � �ik(�j + 1)

n+ 1
� �jk(�i + 1)

n+ 1
:

�k
ij = �kij �

�ki (�j + 1)

n+ 1
� �kj (�i + 1)

n+ 1
:

�ijk�
k = �i�ij � �i(�j + 1) + �j(�i + 1)

n+ 1
:

Here �kij = 1 if i = j = k and �kij = 0 in any other case. Let us compute tensor the
gij

gij = �l
ik�

k
jl =

�
�lik �

�li(�k + 1)

n+ 1
� �lk(�i + 1)

n+ 1

��
�kjl �

�kj (�l + 1)

n+ 1
� �kl (�j + 1)

n+ 1

�
= �ij

�
1� 2(�i + 1)

n+ 1

�
+

n+ 3

(n+ 1)2
(�i + 1)(�j + 1)� (�i + 1) + (�j + 1)

n+ 1
:

Finally, taking the sum of two tensors one can easily get

Ricij =
1

4

�
gij + �ijk�

k
�
=

n� 1

4(n+ 1)
�ij:

5. Appendix

In the Appendix we establish estimates on the growth of the �rst and third deriva-
tives. Unlike the previous sections, we don't assume that n = 2.

5.1. First-order estimates. In this section we prove a priori estimates for the
squared gradient norm

�i�
i = jr�j2:

Lemma 5.1. Assume that K � BR(0). Then

jr�j2 � 2n�1R2ne�:

Proof.

jr�j2 = �ij�i�j � R2

�min
;

where �min is the minimal Euclidean eigenvalue of D2�. By the result from [9] the
maximal eigenvalue �max is estimated by 2R2. Hence

e�� = detD2� � �min�
n�1
max � �min(2R

2)n�1

and we get the claim. �
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Now we prove yet another estimate which does not depend on the shape of K.
The proof is based on an application of the maximum principle to the function

logF � ��;

where F = �i�
i = jr�j2 and � > 1.

Proposition 5.2. For every � > 1

jr�j2 = �i�
i � �(n+ 4)n

(1� �)2
e�(�(x)�m);

where m = minx2Rn �(x).

Proof. Since limx!1�(x) = +1, it follows from lemma 5.1 that the function logF�
�� attains its maxumum at some point x0. The following relations hold at this point:

Fi
F

= ��i; (5.1)

LF

F
� jrF j2

F 2
� �n: (5.2)

Taking into account the �rst equation we get jrF j2

F 2 = �2jr�j2 = �2F . Applying the
formula LF = 2n+ 3F + gij�

i�j, proven as in (L1) above, we get

2n+ 3F + gij�
i�j

F
� �2F + �n: (5.3)

Let us estimate gij�
i�j. For every number � one has the following identity:

gij�
i�j = �iab�

ab
j �

i�j =
�
�iab � �

�ia�b + �ib�a

2

��
�ab
j � �

�a
j�

b + �b
j�

a

2

�
�i�j

+ �(�ia�b + �ib�a)�
ab
j �

i�j � �2
��ia�b + �ib�a

2

���a
j�

b + �b
j�

a

2

�
�i�j

Note that the last term in the right hand side equals ��2F 2. To estimate the �rst
term we use the inequality TrA2 � 1

n
(TrA)2 in the form T b

iaT
a
jb � T a

iaT
n
jb=n in the

sense of symmetric 2-tensors, as well as the relation

�ab
�
�iab � �

�ia�b + �ib�a

2

�
= �(1 + �)�i:

To estimate the second term let us use (5.1): �F�i = 2(�i� 1
2
�iab�

a�b) and hence
�iab�

a�b = (2� �F )�i. Thus

�(�ia�b + �ib�a)�
ab
j �

i�j = 2�(2� �F )F:

Finally, one gets

gij�
i�j � 2�(2� �F )F � �2F 2 +

1

n
(1 + �)2F 2

Together with (5.3) this implies

�n � 2n

F
+ 3 + 4�+ F

� 1
n
(1 + �)2 � (�+ �)2

�
:

Set � = ��. We get

F � �(n+ 4)n

(1� �)2
:
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This implies

logF � �� � log
h�(n+ 4)n

(1� �)2

i
� �min

x
�(x)

and the result follows by the maximum principle. �

Since

�i�
i = sup

2Rn:jvj=1

�2
v = sup

e2Rn

�2
e

�ee
;

where jvj stand for the Riemannian length of the tangent vector v, we get immedi-
ately the following corollary.

Corollary 5.3. For every e 2 Rn and � > 1 one has

�2
e � �ee

�(n+ 4)n

(1� �)2
e�(�(x)�m):

5.2. Third-order estimates.

Lemma 5.4. Asume that f is a non-negative smooth function on Rn satisfying the
inequality

Lf � Af +Bf 2

for some A;B > 0. Then for every � > 1 the following inequality holds:

f � 1

B

�
(�n� A)+ +

�3(n+ 4)n

(1� �)2
)
�
e�(�(x)�m):

Proof. Let us show �rst that there exists a number c > 0 such that

f � ce��: (5.4)

Fix a point x0 where �(x0) > 1 and set R = (1 + ")�(x0). We are looking for a
maximum of the function

f(R� �)2

on the set f� � Rg. Applying the standard maximum principle, we get

rf
f
� 2

r�
R� �

= 0;

Lf

f
�
���rf
f

���2 � 2
jr�j2

(R� �)2
� 2

L�

R� �
:

Applying the relation L� = n, we get

A+Bf � 6
jr�j2

(R� �)2
+

2n

R� �
: (5.5)

Hence by Lemma 5.1

Bf(R� �)2 � c(n;K)eR + 2n(R� �) � ~C(n;K)eR

Using that R = (1 + ")�(x0) we obtain (5.4).
To get the claim let us apply the maximum principle to the function

log f � ��:

Indeed, one has at the maximum point

fi
f
= ��i
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Lf

f
� jrf j2

f 2
� �n:

Then it follows from the assumption of the lemma and Proposition 5.2 that

A+Bf � �n+ �2jr�j2 � �n+
�3(n+ 4)n

(1� �)2
e�(�(x)�m):

and one easily gets the desired inequality. �

Lemma 5.5. Let T : (Rn)3 ! R be a trilinear form which is symmetric with repect
to any permutation of the arguments. There exists a unit vector v such that

T (v; v; v) = sup
e1;e2;e3

T (e1; e2; e3) � 0;

where the supremum is taken over all unit vectors e1; e2; e3.
In addition, for every unit vector a?v

T (a; v; v) = 0;

T (v; v; v) � 2T (v; a; a):

Proof. Let e01; e
0
2; e

0
3 2 Sn�1 be such that

sup
e1;e2;e3

T (e1; e2; e3) = T (e01; e
0
2; e

0
3):

We claim that e02 = �e30. Indeed, by linear algebra, the supremum of the symmetric
quadratic form

(v; w)! T (e01; v; w)

over unit vectors v; w is the largest modulus of an eigenvalue and necessarily v = �w
are corresponding eigenvectors. Hence e20 = �e30. By the same argument e01 = �e02 =
�e03. It is clear that replacing some of e01; e

0
2; e

0
3 by �e01;�e02;�e03 if necessary, we

may chose v satifying T (e01; e
0
2; e

0
3) = T (v; v; v).

Next we note that for every " 2 R and a?v,
T (v; v; v) �T (cos " v + sin " a; cos " v + sin " a; cos " v + sin " a)

= T (v; v; v) + 3"T (a; v; v) + 3"2
�
T (v; a; a)� 1

2
T (v; v; v)

�
+ o("2):

The claim follows by the maximality property of the unit vector v. �

In what follows we apply the following formula for the Laplacian of the 3-linear
form �iab (see Lemma 2.2):

L�iab =
1

2
�iab � 1

2
�l
ik�

m
al�

k
bm +

1

4

�
gki �kab + gka�kib + gkb�kia

�
:

Proposition 5.6. The function

f(x) = max
e:jej=1

�eee(x) (5.6)

satis�es the following inequality

Lf � 1

2
f +

1

4
f 3:
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Proof. Fix a point x0. According to the previous Lemma

f(x0) = max
e:jej=1

�eee(x0) = �vvv(x0)

for some unit vector v 2 TM(x0). Extend v locally to a unit vector �eld v(x) with
the properties

rv = 0; �v = 0 (5.7)

at x0 (see, for instance, Theorem 4.6 of [6]). Clearly, f(x) � �vvv(x) and f(x0) =
�vvv(x0). By the maximum principle

Lf(x0) � L�vvv(x)jx=x0 :
Applying (2.2) and (5.7) one gets at x0 (thus in any other point)

Lf �
h1
2
�iab � 1

2
�l
ik�

m
al�

k
bm +

1

4

�
gki �kab + gka�kib + gkb�kia

�i
vivavb:

By the previous Lemma �avv = 0 for every unit a?v. Hence

Lf � 1

2
f +

3

4
gvvf � 1

2

nX
i=1

�3
vvivi

;

where vi; 1 � i � n is an orthogomal frame chosen in such a way that the quadratic
form (u;w)! �vuw is diagonal in this frame and v1 = v. Note that

gvv =
nX
i=1

�2
vvivi

= f 2 +
nX
i>1

�2
vvivi

:

By the previous Lemma f = �vvv � 2�vvivi for any i > 1, hence,

fgvv � f 3 + 2
nX
i>1

�3
vvivi

:

Substituting this into the inequality for Lf

Lf � 1

2
f +

1

2
gvvf +

1

4
(f 3 + 2

nX
i>1

�3
vvivi

)� 1

2

nX
i=1

�3
vvivi

� 1

2
f +

1

2
gvvf � 1

4
f 3:

Since fgvv=2 � f 3=2 we obtain the claim. �

In particular, it follows from this proposition that f from (5.6) satis�es L(f 2) �
1
2
f 4. We immediately get from Lemma 5.4

Corollary 5.7. For every � > 1,

max
e:jej=1

�2
eee � c

�3n2

(1� �)2
e�(�(x)�m):

where c > 0 is a universal constant. Equivalently, for any triplet of vectors u; v; w
(not necessary unit ones)

�2
uvw � c�uu�vv�ww

�3n2

(1� �)2
e�(�(x)�m):

Similarly, Lemma 2.3 implies the estimate Lkgk � kgk + 1
2
kgk2, where kgk =

supe:jej=1 gee is the operator norm of g in the metric h. From this we get
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Corollary 5.8. For every � > 1,

max
e:jej=1

g2ee � c
�3n2

(1� �)2
e�(�(x)�m);

where c > 0 is a universal constant.
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