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Abstract

We construct a filtration on integrable highest weight module of an
affine Lie algebra whose adjoint graded quotient is a direct sum of global
Weyl modules. We show that the graded multiplicity of each Weyl module
there is given by a corresponding level-restricted Kostka polynomial. This
leads to an interpretation of level-restricted Kostka polynomials as the
graded dimension of the space of conformal coinvariants. In addition, as an
application of the level one case of the main result, we realize global Weyl
modules of current algebras of type ADE in terms of Schubert manifolds
of thick affine Grassmanian, as predicted by Boris Feigin.

Introduction

Let g be a simple Lie algebra over C. Associated to this, we have an untwisted
affine Kac-Moody algebra g̃ and a current algebra g[z] := g ⊗ C[z] ⊂ g̃. The
representation theory of g̃ attracts a lot of attention in 1990s because of its
relation to mathematical physics [9, 41, 19, 21] in addition to its own interest [18,
25]. There, they derive numerous interesting equalities and combinatorics. The
representation theory of g[z] and its variants are studied in detail by many people
from 2000s [24, 6, 3, 12, 4, 33] as a fork project on the study of representation
theory of g̃.

The representation theory of g[z] is essentially the same as g[z, z−1], that
can be also seen as a part of the representation theory of g̃, and it also affords
the natural space of intertwiners of representations of g̃. Moreover, g[z] inherits
many representations directly from g. Therefore, the representation theory of
current algebra can be seen as a bridge between these of g and g̃. The goal
of this paper is to provide several basic results that support this idea, and to
connect them with the combinatorics/equalities from 1990s.

We have an integral weight lattice P of g and the integral weight lattice P̃ of
g̃, so that we have a canonical surjection P̃ ∈ Λ 7→ Λ ∈ P . Let P+ be the set of
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dominant weights, and let P̃ k
+ ⊂ P̃ be the set of level k dominant weights. For

each λ ∈ P+, we have a local Weyl module W (λ, 0) and a global Weyl module
W (λ) defined by Chari-Pressley [6].

Both local Weyl modules and global Weyl modules constitute a basis in K0

of the category of graded g[z]-modules. It was recently shown ([28, 29, 4, 30, 32])
that these bases are orthogonal each to other with respect to Ext∗ scalar prod-
uct (see Theorem 2.2) and their characters are related to a specialization of
Macdonald polynomials at t = 0. It appeared that characters of some natural
representations of g[z] can be expressed via Weyl module characters with pos-
itive coefficients. In particular, the Cauchy identity implies that the projective
g[z]-modules have a filtrations whose adjoint graded space consists of global
Weyl modules ([4]).

Let us choose an inclusion of g[z] into g̃ contains as the nonpositive part of g̃,

so the representations of g̃ can be considered as g[z]-modules. For each Λ ∈ P̃ k
+,

we have a level k integrable highest weight g̃-module Lk(Λ). In [7], it is shown
that the characters of L1(Λ)

⊗n (n ≥ 1) can be expressed via characters of the
global Weyl modules with positive coefficients.

Our main result provides an explanation of this phenomena:

Theorem A. For each Λ ∈ P̃ k
+, the g[z]-module Lk(λ) admits a filtration by

global Weyl modules.

Let M be a finitely generated graded g[z]-module stratified by global Weyl
modules. We denote the graded multiplicity of W (λ) in M by (M : W (λ))q.
Theorem A implies that we have a well-defined notion of the graded multiplicity
(Lk(Γ) :W (λ))q that counts the number of occurrences ofW (λ) in the filtration
of Lk(Γ) (with grading shifts counted).

Since the representation theory of g[z] naturally carries the information of
Macdonald polynomials specialized to t = 0, Theorem A and a version of the
BGG reciprocity implies:

Corollary B. For each λ ∈ P+ and Γ ∈ P̃ k
+, we have

gchHi(g[z], g;W (−w0λ, 0)⊗ Lk(Γ)) =

{
(Lk(Γ) :W (λ))q (i = 0)

0 (i ̸= 0)
,

where w0 denote the longest element in the Weyl group of g. In addition,
(Lk(Γ) : W (λ))q coincides with the restricted Kostka polynomial of level k de-
fined combinatorially in §5.

Corollary B can be seen as a direct extension of Feigin-Feigin [8]. The same
idea as the proof of Theorem B also yield an elementary proof of Teleman’s
Borel-Weil-Bott theorem [41, Theorem 0 a)] that avoids the use of Laplacian
calculations (= Corollary 3.7). From this view point, it is natural to reformulate
our results in terms of conformal coinvariants.

Theorem C. For each λ ∈ P and Γ ∈ P̃ k
+, the vector space

H0(g[z], g;W (λ)⊗ Lk(Γ))

is a free module over C[A(λ)], where A(λ) is a certain configuration space of
⟨ρ∨, λ⟩-points in A1. Its specialization to each point x⃗ ∈ A(λ) gives the space of
the generalized conformal coinvariants (see §3).
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We remark that if we specialize to a generic x⃗, then Theorem C reduces
into Teleman’s result [41]. In general, the above homology group has subtle
cancelations that is observed in [8] when g = sl(2).

Assume that g is of type ADE. Then, the G-invariant Schubert variety of
the thick affine Grassmanian [22] is in bijection with P+ (see e.g. [42]). Our
analysis, together with that of Cherednik-Feigin [7] and a result of [27], implies
the following realization of global Weyl modules predicted by Boris Feigin:

Theorem D. Assume that g is of type ADE. For each Ω ∈ P̃ 1
+ and λ ∈ P+ so

that λ ≥ Ω, we have the following isomorphism of g[z]-modules:

Γc(GrλG,OGrG(1))
∼=−→W (λ)∗.

The organization of the paper is as follows: In section one, we prepare
basic notation and environments. In section two, we exhibit that the Bernstein-
Gelfand-Gelfand-Lepowsky resolution gives a projective resolution of an inte-
grable highest weight module. In section three, we define the level-restricted
Kostka polynomials and provide its main properties (Theorem A and Theorem
B). In addition, we identify our coinvariant space as a natural enhancement of
conformal coinvariants (Theorem C). In section four, we derive Feigin’s realiza-
tion of global Weyl modules in terms of a Schubert subscheme of thick affine
Grassmanian. In section five, we provide an alternating sum formula (Theo-
rem 5.11) for the polynomials that naturally extends the level-restricted Kostka
polynomials (that is implicit in the literature), which plays a crucial role in the
comparison with our level-restricted Kostka polynomials (Corollary 3.11). The
appendix (by Ryosuke Kodera) contains a bypass of Theorem A in the proof of
Theorem D using free field realizations.
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1 Preliminaries

A vector space is always a C-vector space, and a graded vector space refers
to a Z-graded vector space whose grading is either bounded from the below or
bounded from the above and each of its graded piece is finite-dimensional. For a
graded vector space M =

⊕
i∈ZMi or its completion M∧ =

∏
i∈ZMi, we define

its dual as M∗ :=
⊕

i∈Z HomC(Mi,C), where HomC(Mi,C) is understood to
have degree −i. We define the graded dimension of a graded vector space as

gdimM :=
∑
i∈Z

qi dimC Mi ∈ Q[[q, q−1]].

For each n ∈ Z, let us define the grade n-shift of a graded vector space M as:
(M ⟨n⟩)i :=Mn+i for every i ∈ Z. For f(q) ∈ Q(q), we set f(q) := f(q−1).

1.1 Algebraic groups and its Lie algebras

Let G be a connected, adjoint semi-simple algebraic group over C, and let B
and H be a Borel subgroup and a maximal torus of G so that H ⊂ B. Let

3



Gsc be the simply connected cover of G, and Hsc be the preimage of H in
Gsc. We set U (= [B,B]) to be the unipotent radical of B and let U− be the
opposite unipotent subgroup of U with respect to H. We denote the Lie algebra
of an algebraic group by the corresponding German letter. We have a (finite)
Weyl group W := NG(H)/H. For an algebraic group E, we denote its set of
C[z]-valued points by E[z], its set of C[[z]]-valued points by E[[z]], and its set of
C(z)-valued points by E(z).

Let P := Homgr(Hsc,C×) be the weight lattice of Hsc, let ∆ ⊂ P be the
set of roots, let ∆+ ⊂ ∆ be the set of roots belonging to b, and let Π ⊂ ∆+

be the set of simple roots. We denote by Π∨ the set of simple coroots of g.
For λ, µ ∈ P , we define λ ≥ µ if and only if λ − µ ∈ Z≥0∆

+. Let Q∨ be
the dual lattice of P with a natural pairing ⟨•, •⟩ : Q∨ × P → Z. Let r be
the rank of G and we set I := {1, 2, . . . , r}. We fix bijections I ∼= Π ∼= Π∨ so
that i ∈ I corresponds to αi ∈ Π, its coroot α∨

i ∈ Π∨, (non-zero) root vectors
Ei, Fi corresponding to αi,−αi, and a simple reflection si ∈ W corresponding
to αi. We also define a reflection sα ∈ W corresponding to α ∈ ∆+. Let
ℓ : W → Z≥0 be the length function and let w0 ∈ W be the longest element.
Let P+ := {λ ∈ P | ⟨α∨

i , λ⟩ ∈ Z≥0, i ∈ I}. Let {ϖi}i∈I ⊂ P+ denote the dual
basis of Π∨. For each λ ∈ P+, we have a finite-dimensional irreducible g-module
V (λ) with highest weight λ.

Let ∆af := ∆ × Zδ ∪ Z̸=0δ be the untwisted affine root system of ∆ with
its positive part ∆+ ⊂ ∆+

af . We set α0 := −ϑ + δ, Πaf := Π ∪ {α0}, and
Iaf := I∪{0}, where ϑ is the highest root of ∆+. We define a normalized inner
product (•, •) : h∗ × h∗ → C to be the unique W -invariant inner product such
that (ϑ, ϑ) = 2. We set Waf := W ⋉ Q∨ and call it the affine Weyl group. It
is a reflection group generated by {si | i ∈ Iaf}, where s0 is the reflection with
respect to α0. This equips Waf a length function ℓ :Waf → Z≥0 extending that
of W . For a subgroup W ′ ⊂ Waf generated by a subset of {si}i∈I, we identify
Waf/W

′ with the set of minimal length representatives of right W ′-cosets in
Waf .

1.2 Affine Lie algebras

Let g̃ be the untwisted affine Kac-Moody algebra associated to g. I.e. we have

g̃ = g⊗C C[ξ, ξ−1]⊕ CK ⊕ Cd,

where K is central, [d,X ⊗ ξm] = mX ⊗ ξm for each X ∈ g and m ∈ Z, and for
each X,Y ∈ g and f, g ∈ C[ξ±1] it holds:

[X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg + (X,Y )g ·K · Resξ=0f
∂g

∂ξ
,

where (•, •)g denotes the unique g-invariant bilinear form such that (α∨, α∨)g =
2 for a long simple root α. We set E0 := Fϑ⊗ξ and F0 := Eϑ⊗ξ−1 (these are root
vectors of α0,−α0, respectively). Then, {Ei, Fi}i∈Iaf generates a subalgebra ĝ

of g̃. We set ĥ := h ⊕ CK and h̃ := ĥ ⊕ Cd. For each i ∈ Iaf , we denote by
α∨
i ∈ h̃ the coroot of αi whose set enhances Π∨ ⊂ h. Let I ⊂ g̃ (resp. I−) be

the subalgebra of g̃ generated by h̃ and {Ei}i∈Iaf (resp. h and {Fi}i∈Iaf ).
By introducing z = ξ−1 ∈ C[ξ±1], we define a Lie subalgebra g[z] ⊂ g̃. We

have an involution θ on g̃ that is identity on g and swaps zm with ξm for each
m ∈ Z (and hence K is sent to −K and d is sent to to −d).
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We set P̂ to be the lattice spanned by a fixed choice of fundamental weights
Λ0,Λ1, . . . ,Λr ∈ h̃∗ of ĝ. We define P̂+ :=

∑
i∈Iaf

Z≥0Λi and P̂ :=
∑

i∈Iaf
ZΛi.

For k ∈ Z≥0, we also set

P̂ k
+ := {Λ ∈ P̂+ | ⟨K,Λ⟩ = k} ⊂ {Λ ∈ P̂ | ⟨K,Λ⟩ = k} =: P̂ k.

We define P̃ := P̂ ⊕ Zδ. We have projection maps

P̃ → P̃ /Zδ ∼= P̂ → P̂ /ZΛ0
∼= P.

We denote the projection of Λ ∈ P̃ or P̂ to P by Λ. Let us denote the image of
P̂ k
+ under this projection by P k

+. We also identify P with P̂ 0 ⊂ P̃ .
Let k ∈ Z. We fix an element ρk ∈ h̃∗ so that ⟨α∨

i , ρk⟩ = 1 for each i ∈ I,
and ⟨α∨

0 , ρk⟩ = k + 1. For each w ∈Waf and Λ ∈ P̃ , we define

w ◦k Λ := w(Λ + ρk)− ρk.

When k = 0, then we simply write ◦ instead of ◦k. Note that for w ∈ Waf and
λ ∈ P , we have w ◦ (λ+ kΛ0) =W ◦k λ+ kΛ0.

Every element of P is either ◦k-conjugate to P k
+ modulo Zδ or Waf has a

non-trivial stabilizer group with respect to the ◦k-action.
Finally, we set Uk(ĝ) := U(ĝ)/(K−k)U(ĝ) and Uk(g̃) := U(g̃)/(K−k)U(g̃).

We refer Uk(ĝ)-modules and Uk(g̃)-modules by the ĝk-modules and g̃k-modules,
respectively.

1.3 Representations of current algebras

We review some results from current algebra representations (cf. [26] §1.2).

Definition 1.1 (g-integrable module). A g[z]-moduleM is said to be g-integrable
if M is finitely generated and it decomposes into a sum of finite-dimensional g-
modules. Let g[z]-mod be the category of g-integrable g[z]-modules. For each
λ ∈ P+, let g[z]-mod≤λ be the full subcategory of g[z]-mod whose object is iso-
morphic to a direct sum of g-modules in {V (µ)}µ≤λ.
A g[z]-moduleM is said to be graded ifM is a graded vector space and we have
(X ⊗ zn)Mm ⊂ Mn+m for each X ∈ g and n,m ∈ Z. We denote the category
of graded g-integrable g[z]-modules by g[z]-gmod.

Definition 1.2 (projective modules and global Weyl module). For each λ ∈ P+,
we define the non-restricted projective module P (λ) as

P (λ) := U(g[z])⊗U(g) V (λ).

Let P (λ;µ) be the largest g[z]-module quotient of P (λ) so that

Homg(V (γ), P (λ;µ)) = {0} if γ ̸≤ µ. (1.1)

We define the global Weyl module W (λ) of g to be P (λ;λ).

For each λ ∈ P+ and a ∈ C, the g-module V (λ) can be regarded as a g[z]-
module through the evaluation at z = a map g[z] → g for each λ ∈ P+. We
denote it by V (λ, a). We can further regard V (λ, 0) as a module in g[z]-gmod by
putting a grading concentrated in a single degree. For a moduleM ∈ g[z]-gmod,
we have M ⟨n⟩ ∈ g[z]-gmod for every n ∈ Z.
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Lemma 1.3. Let λ, µ ∈ P+. The projective module P (λ), its quotient P (λ;µ),
and global Weyl modules W (λ) can be regarded as graded modules with a simple
head V (λ, 0) sitting at degree 0. 2

Lemma 1.4. The module P (λ) is the projective cover of V (λ, x) as a g-integrable
g[z]-module for every x ∈ C;

In order to establish relation between global and local Weyl modules we set
|λ| :=

∑
i∈I ⟨α∨

i , λ⟩ and

C[A(λ)] :=
⊗
i∈I

C[X(i)
1 , X

(i)
2 , . . . , X(i)

mi
]Smi mi = ⟨α∨

i , λ⟩ ,

where we understand that C[A(λ)] is a graded ring by setting deg X
(i)
j = 1 for

every i ∈ I and j ∈ Z.

Theorem 1.5 (Chari-Fourier-Khandai [2]). The module W (λ) admits a free
action of C[A(λ)] induced by the U(h[z])-action on the h-weight λ-part of W (λ),
that commutes with the g[z]-action and respects the grading of W (λ).

Definition 1.6. For each x ∈ A(λ), we have a specialization W (λ, x) :=
W (λ)⊗C[A(λ)] Cx. These modules are called local Weyl modules.

Lemma 1.7 (see [2]). If x ∈ A(λ) is the orbit of |λ|-distinct points, then we
have

W (λ, x) ∼=
r⊗

i=1

λi⊗
j=1

W (ϖi, xi,j).

Here (xi,1, . . . , xi,λi
) ∈ Aλi corresponds to x (up to Sλi

-action).

Theorem 1.8 (Chari-Loktev [5], Fourier-Littelmann [12], Naoi [37]). The ac-
tion of C[A(λ)] on W (λ) is free, so W (λ, x) ∼= W (λ, y) as g-modules for each
x, y ∈ A(λ), in particular W (λ, x) is finite-dimensional for any x.

1.4 Verma and Parabolic Verma modules

We set g[z]1 := zg[z] = ker(g[z]→ g) ∼= g⊗zC[z] and g[ξ]1 := ξg[ξ] = ker(g[ξ]→
g) ∼= g⊗ ξC[ξ] (recall that ξ = z−1).

Definition 1.9. We say that a g̃-module M belongs to the parabolic category
O if

1) M graded with respect to the action of h̃ with finite-dimensional graded

spaces and bounded from above eigenvalues of d ∈ h̃;
2) The action of g[ξ] is locally finite (each vector generates a finite-dimesional

space under this action).

Remark 1.10. A restriction of such a module to g[z] is g-integrable.

Remark 1.11. One can replace the condition 2 in Definition 1.9 with locally
finiteness of the action of I to obtain the usual category O.

Definition 1.12 (integrable modules). A module from the parabolic category
O is said to be integrable if the actions of E0 and F0 are locally finite.
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Let λ ∈ P+ and k ∈ Z. We have the corresponding one-dimensional module

C(λ+kΛ0) of h̃, that can be inflated to a module of I by the trivial action of
[I, I]. We define the Verma module Mk(λ) as

Mk(λ) := U(g̃)⊗U(I) C(λ+kΛ0),

and its (unique) simple quotient by Lk(λ) (see e.g. [25, §1.2]). In case λ ∈ P+,

we have a finite-dimensional irreducible g+ h̃-module V (λ)⊗CCkΛ0
with b-fixed

vector vλ of h̃-weight λ+ kΛ0. We inflate V (λ) into a (g[ξ] + h̃)-module by the
trivial action of g[ξ]1. We define the Parabolic Verma module Mk(λ) as

Mk(λ) := U(g̃)⊗U(g[ξ]+h̃) (V (λ)⊗C CkΛ0
) .

Twisting C±δ on the RHS gives rise to isomorphic ĝk-modules (up to the shift
of the Cd-action). We understand this twist as the grading shift of ĝk-modules.

By construction, we have g̃-module surjections

Mk(λ) −→Mk(λ) −→ Lk(λ)

for each λ ∈ P+. We understand that their cyclic vectors are degree 0 by
convention. The following fact is crucial in what follows:

Proposition 1.13. Modules Mk(λ) and Lk(λ) belongs to the parabolic category
O. Moreover, Lk(λ) is integrable if and only if λ ∈ P k

+.

Proposition 1.14 (see e.g. Chari-Greenstein [3]). For each λ ∈ P+, we have

Mk(λ) ∼= U(g[z]1)⊗C V (λ)

as graded g-modules. Moreover, Mk(λ) is isomorphic to a projective module
P (λ) in g[z]-mod. 2

Lemma 1.15. For each λ ∈ P+ and a ĝ-module N from the parabolic category
O, we have an isomorphism

Homĝ(Mk(λ), N) ∼= Homĥ(Cλ, N
g[ξ]1).

Proof. The RHS corresponds to the space ĝ-module morphisms ψ : Mk(λ)→ N .
Consider the ĝ-module maps

Mk(w ◦ λ) −→Mk(λ) w ∈W

induced by the U(g)-module inclusion of their g[ξ]1-fixed parts. By the classifi-
cation of finite-dimensional highest weight g-modules, we deduce that Mk(w ◦
λ)g[ξ]1 has a g-integrable quotient if and only if w = e. Since N belongs to
the parabolic category O and, hence, g-integrable, ψ must factor through the
quotient of Mk(λ) by the images of Mk(w ◦ λ) (w ̸= e), that is Mk(λ). So the
assertion follows.

Theorem 1.16 (see [18], Chapter 7). Let λ ∈ P k
+. Then, we have

Lk(λ) ∼=Mk(λ)/U(ĝ)F
k−⟨ϑ,λ⟩+1
0 vλ.
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This isomorphism can be extended to the resolution of Lk(λ) by parabolic
Verma modules.

Theorem 1.17 (Hackenberger-Kolb [15], Theorem 3.6). For each λ ∈ P k
+, we

have a resolution by parabolic Verma modules

· · · d3−→
⊕

w∈W\Waf ,ℓ(w)=2

Mk(w ◦k λ)
d2−→Mk(s0 ◦k λ)

d1−→Mk(λ)→ Lk(λ)→ 0.

(1.2)

Combaining this statement with Proposition 1.14, we obtain

Proposition 1.18. By restricting to g[z], the resolution (1.2) can be seen as a
graded projective resolution of Lk(λ) whose grading arises from the (−d)-action.

2 The Weyl filtration

We retain the setting of the previous section. In this section, we utilize the
following two rather recent results on current algebra representations to prove
Theorem 2.15.

For M ∈ g[z]-gmod and λ ∈ P+, we set

[M : V (λ, 0)]q :=
∑
n∈Z

qn · dim Homg(V (λ),Mn)

chM :=
∑
n∈Z

eµ · gdimHomh(Cµ,Mn).

In case M is a g̃k-module, then q represents e−δ in the standard convention.

Theorem 2.1 (Chari-Ion [4]).

1. The projective module P (λ) of g[z]-mod≤µ admits a finite graded filtration
by {W (µ)}µ≥λ with suitable grading shifts;

2. If we denote by (P (λ) : W (µ))q the number of W (µ) appearing in the
filtration (in a graded sense), then for each λ, µ ∈ P+ we have

(P (λ) :W (µ))q = [W (µ, 0) : V (λ)]q.

In particular, the both sides belongs to Z≥0[q].

Theorem 2.2 (Kleshchev [30] Theorem 7.21 and Lemma 7.23, cf. §10.3).

1. We have

Extig[z]-mod(W (λ),W (µ, 0)∗ ⟨n⟩) =

{
C (λ = −w0µ, i = 0, n = 0)

{0} (otherwise)
;

2. A finitely generated g-integrable g[z]-moduleM admits a filtration by global
Weyl modules if and only if

Ext1g[z](M,W (λ, 0)∗) = {0} ∀λ ∈ P+;
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3. A finite-dimensional graded g[z]-module M admits a filtration by the dual
of local Weyl modules if and only if

Ext1g[z](W (λ),M) = {0} ∀λ ∈ P+.

Remark 2.3. For each M,N ∈ g[z]-mod, we have

Extig[z]-mod(M,N)
∼=−→ Extig[z](M,N) i ∈ Z

since the category of finite-dimensional g-modules is completely reducible (cf.
[31, §3.1] or [11, Remark 0.2]).

2.1 The Demazure property

Note that we can consider the current algebra representation as the modules of
(g[z] + h̃) with K = 0 and the action of (−d) as the grading operator.

Definition 2.4. Let V be a representation of a subalgebra of g̃ contating h̃ and
E0. We say that V satisfies the Demazure property if for each n > 0 and γ ∈ P
such that ⟨α∨

0 , γ⟩ = −n, the action of (E0)
n−1

on the corresponding weight
space V γ = Cγ ⊗Homh(Cγ , V ) ⊂ V has trivial kernel.

Remark 2.5. 1) This definition is motivated by the fact that for the simply-laced
g, local Weyl modules coincide with the level one Demazure modules, and this
property can be deduced from the structure of its Demazure crystal.

2) The assumption on the Lie algebra of Definition 2.4 is automatic for

(g[z] + h̃), (g[ξ] + h̃), and I.

Let us introduce some notation. For each i ∈ Iaf , we have a minimal para-
holic subalgebra I ⊂ I(i) = CFi ⊕ I. We denote by sl(2, i) the Lie subalgebra
of g̃ generated by Ei and Fi, and b(i) the Lie subalgebra of g̃ generated by

Ei and h̃. A string b(i)-module is a finite-dimensional b(i)-module that is h̃-
semisimple and have unique simple submodule and unique simple quotient (that

is automatically isomorphic to an irreducible sl(2, i)-module up to a h̃-weight
twist).

Theorem 2.6 ([26] Theorem 4.12 (2)). For each λ ∈ P+, there exists a I(0)-
module W (λ)s0 so that

W (λ) ⊂W (λ)s0 .

The I(0)-module W (λ)s0 is completely reducible as a sl(2, 0)-module. For
each m ∈ Z≥0, let W (λ)ms0 denote the sum of irreducible sl(2, 0)-submodules of
dimension m. We have W (λ)s0 =

⊕
m≥0W (λ)ms0 .

We define the canonical filtration of W (λ)s0 as:

FnW (λ)s0 :=
∑
m≥n

W (λ)ms0 .

This defines a decreasing separable filtration of W (λ)s0 so that F0W (λ)s0 =
W (λ)s0 .
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Theorem 2.7. For each λ ∈ P+ and m ≥ 0, the module

(FmW (λ)s0 ∩W (λ))/(Fm+1W (λ)s0 ∩W (λ))

constructed from the inclusion in Theorem 2.6 is b(0)-stable, and it is the direct

sum of irreducible (sl(2, 0) + h̃)-modules of dimension m, and one-dimensional

h̃-modules Cµ so that ⟨α∨
0 , µ⟩ = m− 1.

Proof. The assertion follows by [26, Lemma 4.4 and Corollary 4.8]

Theorem 2.8. Keep the setting of Theorem 2.7 and Theorem 1.8. Then, the
C[A(λ)]-action on W (λ) naturally induces b(0)-endomorphisms of W (λ)s0 . In
addition, this C[A(λ)]-action on W (λ)s0 is free.

Proof. The first part of the assertion follows by Theorem 1.8 since C[A(λ)] is also
isomorphic to the h-weight sϑλ-part of W (λ) (by the g-invariance) and W (λ)s0
is cyclically generated by the h-weight sϑλ-part inside W (λ) by [26, Proof of
Theorem 5.1]. The freeness assertion is [26, Theorem 5.1].

Lemma 2.9. Global and local Weyl modules satisfy the Demazure property.

Proof. We first check the Demazure property for the global Weyl moduleW (λ).

Suppose v ∈ W (λ) is a non-zero vector of (h̃-)weight γ with ⟨α∨
0 , γ⟩ = −n < 0.

Then v ∈ FmW (λ)s0 ∩ W (λ) with some m > n. As ⟨α∨
0 , γ⟩ < 0, the only

possibility provided by Theorem 2.7 is that v belongs to FmW (λ)s0 ∩ W (λ)

alltogether with the irreducible (sl(2, 0) + h̃)-modules of dimension m > n. In
particular, we have even stronger statement (E0)

n
v ̸= 0.

We consider the case of local Weyl modules. Suppose that u ∈ W (λ, 0) is
a non-zero vector of weight γ with ⟨α∨

0 , γ⟩ = −n < 0. Then u is the image of
some v ∈ FmW (λ)s0 ∩W (λ) with m > n (as we discussed in the above) under

the natural projection of W (λ) onto W (λ, 0). As we know that (E0)
n−1

v ̸= 0

in W (λ), it remains to check that the projection of (E0)
n−1

v is not zero in
W (λ, 0).

By Definition 1.6 the moduleW (λ, 0) is isomorphic to a quotient ofW (λ) by

the action of the augmentation ideal I ⊂ C[A(λ)]. As (E0)
n−1

v ∈ FmW (λ)s0 ∩
W (λ), it is enough to show that (E0)

n−1
v ̸∈ I · (FmW (λ)s0 ∩W (λ)) in view of

Theorem 2.8.
We prove this assertion by finding a contradiction. So suppose (E0)

n−1
v =

P ·v′, where P ∈ I and v′ ∈ FmW (λ)s0∩W (λ) is a vector of weight γ−(n−1)α0.
Here we have ⟨α∨

0 , γ − (n− 1)α0⟩ = n−2 < m−1, the above consideration shows

that this weight appears only in the sum of irreducible (sl(2, 0) + h̃)-modules

inside FmW (λ)s0 ∩W (λ). Therefore, v′ belongs to a (sl(2, 0)+ h̃)-module inside
FmW (λ)s0 ∩W (λ).

Since the action of C[A(λ)] on W (λ)s0 preserves the action of sl(2, 0), so is
P ∈ I. As this C[A(λ)]-action is free, we have Pv ∈ FmW (λ)s0 ∩ W (λ) for

v ∈ W (λ)s0 if and only if v ∈ FmW (λ)s0 . This implies that (F0)
n−1

v′ is a

non-zero element of FmW (λ)s0 ∩W (λ) and P · (F0)
n−1

v′ is proportional to v,
hence we conclude u = 0. This is a contradiction, and hence we conclude that
the projection of (E0)

n−1
v is not zero in W (λ, 0) as required.
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2.2 Ext’s in the Parabolic Category O
Proposition 2.10. Let λ ∈ P k

+. For each w, v ∈ Waf so that w ◦k λ, v ◦k λ ∈
P+, we have w ◦k λ ≤ v ◦k λ if w ≤ v.

Proof. We replace λ with λ′ := 1
k+1λ ∈ h. The weight λ′ belongs to the fun-

damental alcove (denoted by A+
v for v = 0 in [34]). We have w ◦k λ ∈ A =

wA+
0 ,

1
k+1v ◦k λ ∈ A

′ = vA+
0 . By [34, Lemma 3.6], we have d(A,A+

0 ) = ℓ(w),

and d(A′, A+
0 ) = ℓ(v). By the above identification of d(•, A+

0 ) and ℓ(•), we de-
duce ℓ(wtγ) = ℓ(w) + ℓ(tγ) and ℓ(vtγ) = ℓ(v) + ℓ(tγ) for some large dominant
coroot γ. Now the subward property of the Bruhat order yields wtγ < vtγ , that
is equivalent to A ⪯ A′ (inside the dominant chamber with respect to W ) by
the equivalence of assertions after [40, Claim 4.14]. Since w ◦k λ − v ◦k λ ∈ Q,
we conclude the result.

Theorem 2.11 (Kac-Kazhdan [17] Theorem 2, cf. Fiebig [10] §3.2). Let λ, µ ∈
P+. Then, we have ⊕

i∈Z

Extiĝk
(Lk(λ), Lk(µ)) ̸= {0}

only if λ and µ belongs to the same ◦k-orbit of Waf . 2

For a ĝk-module M , let us denote M# the module obtained from M by
taking the action of the opposition of g on the dual space to M (with ξ being
fixed). Then, the ĝk-module Lk(λ) viewed as a g[z]-module is sent to the ĝk-
module Lk(λ), with its g[z]-module structure given through X ⊗ zm 7→ X ⊗ ξm
for each X ∈ g and m ∈ Z≥0. The same procedure makes Mk(µ)

# into an
injective envelope of V (µ) (as Mk(µ) is a projective cover of V (µ)).

Proposition 2.12 (Shapiro’s Lemma). Let V be a graded g[ξ]-module (or a
graded I-module) and let M be a ĝk-module. Then, we have

Extiĝk
(Uk(ĝ)⊗U(g[ξ]+Cd) V,M) ∼= Extig[ξ]+Cd(V,M) i ∈ Z,

(or the isomorphism obtained by replacing (g[ξ] + Cd) with I).

Proof. It is straight-forward to see that U(ĝ)k is a free U(g[ξ])-algebra and also
a free U(I)/(K − k)-algebra (by the PBW theorem). Hence, Shapiro’s lemma
imply the results.

Corollary 2.13. Let λ, µ ∈ P+ so that λ ̸> µ. Then, we have

Ext1ĝk
(Mk(λ), Lk(µ)) = {0}.

In particular, Mk(λ) is projective in the parabolic category O when λ ∈ P k
+.

Proof. By Proposition 2.12, the assertion is equivalent to

Ext1g[ξ](V (λ), Lk(µ)) = {0}.

Since # exchanges an injective resolution of Lk(µ) (viewed as g[ξ]-module) and
a projective resolution of Lk(µ) viewed as g[z]-modules, we deduce that

Ext1g[ξ](V (λ), Lk(µ)) ∼= Ext1g[z](Lk(µ), V (λ)). (2.1)

11



Since Mk(µ) is the projective cover of Lk(µ) as g[z]-modules, the non-trivial
extension in the RHS of (2.1) occurs in the highest weights in Mk(µ). Thanks
to Proposition 2.10, we need µ < λ to obtain a non-trivial extension. This
proves the first assertion. In view of Theorem 2.11 and the fact that P k

+ is
contained in the fundamental domain of the ◦k-action on (the real part of) h∗,
we deduce the latter assertion again by Proposition 2.10.

Lemma 2.14. Suppose that λ ∈ P k
+. Let V be a finite-dimensional string b(0)

module containg weights (λ+ kΛ0) and (s0 ◦k λ+ kΛ0). We inflate to regard it
as a I-module, where other graded elements act by zero. Then, the maximal g-
integrable quotient of Uk(g̃)⊗U(I)V contains the non-trivial extension of Mk(λ)
by Mk(s0 ◦k λ) as its subquotient.

Proof. Note that as λ ∈ P+
k we have λ− s0 ◦k λ = mα0 for some m > 0.

By v denote a highest weight vector of V , that is, a non-zero vector of the
head of V (it is unique up to a scalar). We denote by µ the h̃-weight of v.

We introduce an increasing filtration on V defined by

Fm = ⟨v, E0v, . . . , E
m
0 v⟩ for m ∈ Z≥0.

Then each adjoint graded factor is spanned by a single vector with trivial action
of E0.

Thanks to the exactness of the induction, this filtration produce a filtration
on the maximal g-integrable quotient of Uk(g̃)⊗U(I) V with its adjoint graded
quotients isomorphic to Mk(µ−mα0) for m = 0, 1, . . . .

We denote by Ω the Casimir element of g̃ (see [18, Chapter 2]). It belongs
to the center of a suitable completion of Uk(g̃) and acts on each highest weight
module, particularly on finite successive extensions of {Mk(λ−mα0)}m∈Z≥0

.

For each µ ∈ P̃ , the action of Ω on each Mk(µ − mα0) is by a scalar,
depending on m as a degree two polynomial on m (see [18, Chapters 2,7]). Also
action of Ω onMk(µ) is invariant with respect to the ◦k-action of the affine Weyl
group on P that arises from highest weights (see [18], Chapter 7). In particular,
the scaling factor of Ω is the same for Mk(λ) and Mk(s0 ◦k λ) and differs for
other factors. We denote the scaling factor of Ω on Mk(λ) by c.

As Ω belongs to the center and our module is a finite successive extension
of the modules in which Ω acts by scalars, the generalized c-eigenspace M of
Ω in Uk(g̃) ⊗U(I) V is a direct summand. Moreover, by the above eigenvalue
analysis, it admits a filtration whose adjoint graded quotients are Mk(λ) and
Mk(s0 ◦k λ) . Therefore, M is a trivial or non-trivial extension between Mk(λ)
and Mk(s0 ◦k λ).

Note that the h̃-weight (s0 ◦k λ + kΛ0)-parts of the both of Mk(λ) and
Mk(s0 ◦k λ) consists of highest weights (see Theorem 1.16). Hence, in case M is

a trivial extension, the h̃-weight (s0◦kλ+kΛ0)-part of both modules can not get
to a non-trivial vector of weight λ. But in our case it can be done by the action
of E0 in V itself, and hence M cannot be a trivial extension as required.

2.3 The Main Theorem

Theorem 2.15. For each λ ∈ P k
+, the g[z]-module Lk(λ) admits a filtration by

global Weyl modules.
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Remark 2.16. In fact, our proof of Theorem 2.15 carries over to the case of the
twisted affinization of g by a straight-forward modification.

Proof of Theorem 2.15. We check the condition in Theorem 2.2. Applying #
to the BGGL-resolution of Lk(λ), we deduce:

0→ Lk(λ)
# →Mk(λ)

# d#
1−→Mk(s0 ◦k λ)#

d#
2−→

⊕
µ∈Waf◦λ

(Mk(µ)
#)⊕m2(µ) → · · · .

(2.2)
Note that the opposition of g sends W (λ) (the projective cover of V (λ) in
g[z]-mod≤λ) to the projective cover of V (−w0λ) in g[z]-mod≤−w0λ, that is
W (−w0λ). Hence, it sends W (µ, 0) to W (−w0µ, 0). By chasing the image
of the maps obtained by applying Homg[z](W (µ, 0), •) to (2.2), we deduce

Ext1g[z](Lk(λ),W (−w0µ, 0)
∗) ∼= Ext1g[z](W (µ, 0), Lk(λ)

#). (2.3)

Here we want to show the vanishing of the LHS of (2.3) for every µ ∈ P+.
By Proposition 2.12, we have

Ext1g[z](W (µ, 0), Lk(λ)
#) ∼= Ext1ĝk

(Uk(ĝ)⊗U(g[ξ]) W (µ, 0), Lk(λ)). (2.4)

By using the g[ξ]-module filtration on W (µ, 0) and the exactness of the induc-
tion, we deduce that U(ĝk) ⊗U(g[ξ]) W (µ, 0) is a finite successive extensions of
parabolic Verma modules of level k. In view of Proposition 2.12, we have

Ext1g[ξ]⊕Cd(V (γ, 0), Lk(λ)) ∼= Ext1ĝk
(Mk(γ), Lk(λ))

Ext1I(Cγ , Lk(λ)) ∼= Ext1ĝk
(Mk(γ), Lk(λ)).

By Theorem 1.17, and the genuine BGG-resolution, we deduce

Ext1ĝk
(Mk(γ), Lk(λ)) ̸= {0} ⇒ γ = s0 ◦k λ,

Ext1ĝk
(Mk(γ), Lk(λ)) ̸= {0} ⇒ γ ∈ {si ◦k λ}i∈Iaf , (2.5)

and these extensions are at most one-dimensional. It follows that

Ext1g[ξ]⊕Cd(V (γ, 0), Lk(λ))� _

��

Ext1ĝk
(Mk(γ), Lk(λ))

Ext1I(Cγ , Lk(λ)) Ext1ĝk
(Mk(γ), Lk(λ))

and the extension is at most one-dimensional.
As λ ∈ P k

+, the classical weights λ and s0 ◦k λ are both dominant.
We have the following map

W (µ, 0)
Em

0 // W (µ, 0)

W (µ, 0)λ
?�

OO

Em
0

// W (µ, 0)s0◦kλ
?�

OO
m := −⟨ϑ∨, λ⟩+ k ≥ 0,

where W (µ, 0)γ for γ ∈ P denotes the h-weight γ-part of W (µ, 0).
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By Lemma 2.9, the map Em
0 in the bottom line is injective. Therefore,

Lemma 2.14 implies that the extension of Mk(s0 ◦k λ) by Mk(λ) is already
attained in the subquotient of Uk(g̃)⊗U(I) W (µ, 0) .

This forces the RHS of (2.4) to be zero for γ = s0 ◦k λ. In view of (2.5), we
deduce

Ext1ĝk
(Uk(g̃)⊗U(g[ξ]+h̃) W (µ, 0), Lk(λ)) = {0} ∀µ ∈ P+,

that implies the result.

Corollary 2.17. Let λ ∈ P k
+. The projective resolution of Lk(λ) borrowed from

Theorem 1.17 respects the filtration by global Weyl modules.

Proof. Applying Theorem 2.2 to the long exact sequence obtained by applying
Ext•g[z](•,W (µ, 0)∗) to the short exact sequence

0→ ker0 →Mk(λ)→ Lk(λ)→ 0,

we deduce ker0 admits a filtration by global Weyl modules.
We have ker di ∼= Im di+1 for each i ≥ 0, and it is finitely generated by

examing the next term. Hence, we apply the same argument by replacingMk(λ)
with

⊕
w∈W\Waf ,ℓ(w)=iMk(w◦kλ) and Lk(λ) with ker di to deduce the assertion

inductively.

3 The level-restricted Kostka polynomials

We work in the setting of the previous section. Fix a positive integer k in the
sequel. Let M be a g-integrable graded g[z]-module. Then, we define its i-th
relative homology group as:

Hi(g[z], g;M) := Homg(C,R−iHomg[z]1(M,C)).

This is a graded vector space.

Remark 3.1. Thanks to Proposition 1.14, the projective resolution of M is g-
semisimple. In particular, R−iHomg[z]1(M,C) is semi-simple as g-modules and
hence our definition of the relative homology group coincides with these in [1,
Chapter I] (see also Remark 2.3).

Lemma 3.2. Let k ∈ Z>0 and let λ, µ ∈ P+. We have

gdimH0(g[z], g;W (µ, 0)⊗C Mk(λ)) = [W (µ, 0)∗ : V (λ)]q.

Proof. By unwinding the definition and applying Proposition 1.14, we have

H0(g[z], g;W (µ, 0)⊗C Mk(λ)) = Homg(C,Homg[z]1(W (µ, 0)⊗C Mk(λ),C))
∼= Homg[z](Mk(λ),W (µ, 0)∗) = Homg[z](P (λ),W (µ, 0)∗).

Therefore, the assertion holds.

Definition 3.3 (Feigin and Feigin [8]). Let λ ∈ P k
+ and µ ∈ P+. We define the

level-restricted Kostka polynomial P
(k)
µ,λ(q) ∈ Z[q, q−1] by

P
(k)
µ,λ(q

−1) := gdimH0(g[z], g;W (−w0µ, 0)⊗C Lk(λ)).
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Remark 3.4. 1) The original definition of the level-restricted Kostka polynomial
is due to Schilling-Warnaar [39]. We provide a comparison with a straight-
forward generalization of their definition with ours in Corollary 3.11. 2) Since
P (λ) ∼= lim←−k→∞ Lk(λ) as graded g[z]-modules, it holds that

lim
k→∞

P
(k)
µ,λ(q) = Pµ,λ(q).

3) If g is of type A, then Pµ,λ(q) coincides with the Kostka polynomial if we
take “transpose” of µ.

Theorem 3.5. Let λ ∈ P k
+ and µ ∈ P+. We have

Hi(g[z], g;W (µ, 0)⊗C Lk(λ)) = {0} i ̸= 0.

Proof. Taking account into Remark 3.1, we have

Hi(g[z], g;W (µ, 0)⊗C Lk(λ)) = Homg(C,R−iHomg[z]1(W (µ, 0)⊗C Lk(λ),C))
∼= Homg(C,R−iHomg[z]1(Lk(λ),W (µ, 0)∗))

∼= R−iHomg[z]-mod(Lk(λ),W (µ, 0)∗)

∼= Ext−i
g[z]-mod(Lk(λ),W (µ, 0)∗).

By Theorem 2.15 and Theorem 2.2 2), we deduce that

Ext−i
g[z]-mod(Lk(λ),W (µ, 0)∗) = {0} for each − i ̸= 0

as required.

Corollary 3.6. For each λ ∈ P k
+ and µ ∈ P+, we have

P
(k)
µ,λ(q) = (Lk(λ) :W (µ))q.

Proof. By Theorem 2.15, we can repeatedly apply (the Ext1-part of) Theorem
2.2 to short exact sequences that respects the filtration by the global Weyl
modules Lk(λ). This yields the additivity of the Hom-part, namely

gdimHomg[z](Lk(λ),W (µ, 0)∗) =
∑
γ∈P+

(Lk(λ) :W (γ))q·gdimHomg[z](W (γ),W (µ, 0)∗).

Applying the Hom-part of Theorem 2.2, we conclude the result.

The following result is the Teleman’s Borel-Weil-Bott theorem [41], that we
supply an elementary proof that essentially depends only on Proposition 1.14
and Theorem 1.17 (and does not depend on any results in §1.3).

Corollary 3.7 (Teleman [41]). For each λ, µ ∈ P k
+ and w ∈W\Waf , we have

gdimHi(g[z], g;V (w ◦k µ, 0)∗ ⊗C Lk(λ)) =

{
q⟨d,w◦kλ⟩ (λ = µ, i = −ℓ(w))
0 (otherwise)

.
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Proof. Note that we have w ◦k µ ∈ P+. By unwinding the definition as in the
proof of Theorem 3.5, we have

Hi(g[z], g;V (w ◦k µ, 0)∗ ⊗C Lk(λ)) ∼= Ext−i
g[z](Lk(λ), V (w ◦k µ)).

As the BGGL resolution is minimal as a projective resolution, we conclude the
result.

For each µ ∈ P+, let us regard W (µ, 0) as a g[ξ]-module through the involu-
tion X ⊗ zn 7→ X ⊗ ξn (X ∈ g, n ≥ 0). We define

Wk(µ) := Uk(ĝ)⊗U(g[ξ]) W (µ, 0)

and call it the generalized Weyl module of g with highest weight µ and level
k. We fix a sequence of distinct points a⃗ = (a1, . . . , am) ∈ Cm and weights
µ⃗ = (µ1, µ2, . . . , µm) ∈ (P+)

m so that µ = µ1 + µ2 + · · ·+ µm. Then, we define
the space of generalized conformal coinvariants as:

CC (⃗a, µ⃗, λ) :=
Lk(λ)⊗

⊗m
i=1 Wk(µi)

U(g⊗C Ox⃗) (Lk(λ)⊗
⊗m

i=1 Wk(µi))
,

where Ox⃗ = C[x, 1
x−a1

, . . . , 1
x−am

] and an element X ⊗ f ∈ g ⊗ Ox⃗ acts on
Wk(µi) (1 ≤ i ≤ m) through its Laurent expansion along z = x− ai, and acts
on Lk(λ) through its Laurent expansion along z =∞ (cf. Teleman [41, §3.6]).

Theorem 3.8. Let λ ∈ P k
+ and let µ ∈ P+. The space

H0(g[z], g;W (µ)⊗C Lk(λ))

is a free C[A(µ)]-module, and the specialization to a⃗ ∈ A(µ) corresponding to a
distinct points a1, a2, . . . , am with their multiplicities µ1, µ2, . . . , µm ∈ P+ (i.e.
when the multiplicity of ak with respect to the i-th set of unordered points is
⟨α∨

i , µk⟩) yields an isomorphism of vector spaces

Ca⃗ ⊗C[A(µ)] H0(g[z], g;W (µ)⊗C Lk(λ)) ∼= CC (⃗a, µ⃗, λ).

Proof. By Theorem 1.8, the module H0(g[z], g;W (µ) ⊗C Lk(λ)) admits a de-
creasing separable filtration whose adjoint graded quotient is the direct sum
of quotients of H0(g[z], g;W (µ, 0) ⊗C Lk(λ)) with grading shifts. By Theorem
3.5, we deduce that the adjoint graded quotient of H0(g[z], g;W (µ) ⊗C Lk(λ))
is the direct sum of H0(g[z], g;W (µ, 0) ⊗C Lk(λ)) (instead of its proper quo-
tient) with grading shifts. Our homology group commutes with inverse limit by
the degree-wise Mittag-Leffler condition thanks to [41, Theorem 0] and Theo-
rem 3.5. Therefore, we conclude that the free C[A(µ)]-action on W (µ) lifts to
H0(g[z], g;W (µ)⊗C Lk(λ)). In addition, we have

Hi(g[z], g;W (µ)⊗C Lk(λ)) = {0} i ̸= 0.

By the semi-continuity theorem applied to 0 ∈ A(µ) by regarding W (µ) ⊗C
Lk(λ) as a finitely generated U(g[z])⊗C[A(µ)]-module (through the above con-
struction), we deduce that the natural map

Ca⃗⊗C[A(µ)]H0(g[z], g;W (µ)⊗CLk(λ))→ H0(g[z], g;Ca⃗⊗C[A(µ)]W (µ)⊗CLk(λ))
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is an isomorphism. The RHS is further isomorphic to

H0(g[z], g;

m⊗
i=1

W (µi, ai)⊗C Lk(λ)),

where {a1, . . . , am} ⊂ C denotes the set of distinct points in the configuration
a⃗, and µi is the sum of fundamental weights that is supported on ai. This last
vector space is precisely CC (⃗a, µ⃗, λ) in view of [41, Corollary 3.6.6].

Theorem 3.9 (Weyl-Kac character formula [18], see also [31] Theorem 2.2.1).
For each λ ∈ P k

+, we have the following equality of characters:

chLk(λ) =
∑

w∈W\Waf

(−1)ℓ(w)chMk(w ◦k λ)⊗C C⟨d,w◦kλ⟩δ.

Corollary 3.10. For each λ ∈ P k
+ and µ ∈ P+, we have

P
(k)
µ,λ(q) =

∑
w∈W\Waf

(−1)ℓ(w)q−⟨d,w◦kλ⟩Pµ,w◦kλ
(q).

Proof. Combine Theorem 3.9, Corollary 3.6, and Lemma 3.2, taking into ac-
count into the fact that {chW (λ)}λ∈P+ forms a basis in the space of charac-
ters.

Corollary 3.11. For each λ ∈ P k
+ and µ ∈ P+, we have P

(k)
µ,λ(q) = X

(k)
µ,λ(q),

where X
(k)
µ,λ(q) is defined in section 5.

Proof. Compare them using Corollary 3.10 and Theorem 5.11 since we have
Pλ,µ(q) = Xλ,µ(q) by Lemma 3.2 and Theorem 5.10.

4 The Feigin realization of global Weyl modules

We retain the setting of the previous section. We assume that g is of type ADE
in addition.

Theorem 4.1. Let ϖ ∈ P 1
+ and let µ ∈ P+. Then, we have

(L1(ϖ) :W (µ))q =

{
q−⟨d,w(ϖ+Λ0)⟩ (µ = w(ϖ + Λ0), w ∈Waf)

0 (otherwise)
.

Proof. By Cherednik-Feigin [7, (1.25)], the character of L1(ϖ) is the multiplicity-
free sum of these ofW (µ) up to grading shifts (note that we used Q = Q∨ ⊂Waf

here). Since the graded characters of {W (µ)}µ∈P+
are linearly independent, we

deduce the q = 1 case of the assertion.
Let us normalize L1(ϖ) so that its highest weight vector has d-degree 0. For

w ∈Waf we set aw := ⟨d,w(ϖ + Λ0)⟩. Then, we have

Claim A. Assume that w ∈ Waf . Let µ be the h-weight of L1(ϖ) that appears
in the (−d)-degree > aw-part. Then, we have µ < w(ϖ + Λ0).

Proof. Easy consequence of [18, Proposition 11.3]
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We return to the proof of Theorem 4.1. In view of the q = 1 case, Claim A
forces the degree shift of W (w(ϖ + Λ0)) appearing in L1(ϖ) to be exactly aw
as required.

Let us define the thick affine Grassmanian as

GrG := G((ξ))/G[z],

that can be presented as an infinite type scheme [20, 27]. The scheme GrG
carries a canonical Gsc((ξ))-equivariant line bundle O(1) that we call the deter-
minant line bundle (see e.g. Kashiwara [22]).

By our adjointness assumption on G, the set of connected components of
the scheme GrG is in bijection with the set of level one fundamental weights P 1

+

(see Zhu [42, §0.2.5] but beware that our affine Grassmanian is “thick”). For
each ϖ ∈ P 1

+, we denote by ϖGrG the corresponding component.
Each λ ∈ P+ defines a cocharacter of H by our assumptions of G. Hence, it

defines a point of H((ξ)), and hence a point [ξλ] ∈ GrG. From this, we define

the Schubert variety GrλG as the G[[ξ]]-orbit through [ξλ]. We have GrλG ⊂ GrµG
if and only if λ ≥ µ (see e.g. Kashiwara-Tanisaki [25, §1.2]).

Theorem 4.2 ([27] Theorem 2.13 and Theorem 2.14). Let ϖ ∈ P 1
+ and let

λ ∈ P+ so that ϖ ≤ λ, we have

Γ(GrλG,O(1))∗ ∼= U(g[z])vλ ⊂ L1(ϖ),

where vλ is an extremal weight vector of L1(ϖ) of h-weight λ. Moreover, the
natural restriction map

Γ(ϖGrG,O(1))→ Γ(GrλG,O(1))

is surjective. 2

Theorem 4.3. Let ϖ ∈ P 1
+ and let λ ∈ P+ so that ϖ ≤ λ. We have an

isomorphism

W (λ)∗ ∼= ker

Γ(GrλG,O(1)) −→
⊕
µ>λ

Γ(GrµG,O(1))


as g[z]-modules. (Here the maps in the RHS is the restriction maps.)

Proof. We borrow the setting in the proof of Theorem 4.1. By Claim A, the
extremal weight vector of Lk(ϖ) with its h̃-weight w(ϖ + Λ0) is contained in
the head of W (λ) in the g[z]-module stratification of L1(ϖ) by global Weyl
modules. Hence, Theorem 4.2 implies that the graded g[z]-module

Γc(GrλG,O(1))∗ := ker

Γ(GrλG,O(1)) −→
⊕
µ>λ

Γ(GrµG,O(1))

∗

admits a surjection to W (λ), that we denote by κλ. Thus, we have∑
λ∈ϖ+Q+∩P+

q−⟨d,tλ(ϖ+Λ0)⟩chW (λ) ≤
∑

λ∈ϖ+Q+∩P+

chΓc(GrλG,O(1))∗ = chL1(ϖ),

(4.1)
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where ≤ means we have the inequality for every coefficients of the monomial in
P × Zδ. By construction, the inequality in (4.1) is a genuine inequality if and
only if κλ fails to be surjective for some λ ∈ (ϖ +Q+ ∩ P+). By Theorem 4.1,
the most RHS of (4.1) is equal to the most LHS of (4.1). Therefore, we deduce
that every κλ induces an isomorphism

Γc(GrλG,O(1))∗ = ker

Γ(GrλG,O(1)) −→
⊕
µ>λ

Γ(GrµG,O(1))

∗
∼=−→W (λ)

as required.

5 A combinatorial definition of level restricted
Kostka polynomials

This section exhibits a collection of folklore statements that are (most likely)
originally due to Okado [35]. Thus, we do not claim the novelty of the materials
here. However, we provide their proofs that maybe of independent interest.

We employ the setting of §1.2. We have quantum algebras Uq(g̃) and Uq(ĝ)
associated to g̃ and ĝ so that Uq(ĝ) ⊂ Uq(g̃) (cf. [16, §3.1]).

Definition 5.1 (Crystals, cf. [16] §4.2). An affine crystal

B = (B,wt, {εi, ψi, ẽi, f̃i}i∈Iaf )

consists of the following data:

1. B is a set, wt : B → P̃ , εi : B → Z≥0 (i ∈ Iaf), and ψi : B → Z≥0

(i ∈ Iaf) are maps;

2. For b ∈ B and i ∈ Iaf , we have ⟨α∨
i ,wt b⟩ = −εi(b) + ψi(b);

3. For b ∈ B and i ∈ Iaf , we have maps ẽi : B → B⊔{∅} and f̃i : B → B⊔{∅}
with the following properties:

• We have ẽi(b) ̸= ∅ if and only if εi(b) > 0. We have f̃i(b) ̸= ∅ if and
only if ψi(b) > 0;

• If εi(b) > 0, then wt ẽi(b) = wt b + αi. If ψi(b) > 0, then wt f̃i(b) =
wt b− αi;

• If εi(b) > 0, then f̃i(ẽi(b)) = b. If ψi(b) > 0, then ẽi(f̃i(b)) = b.

A classical crystal B = (B,wt, {εi, ψi, ẽi, f̃i}i∈Iaf ) is the data obtained from the

definition of an affine crystal by replacing P̃ with P̂ . We refer crystal as either
affine, classical, or finite crystal, and refer B as its underlying set. By abuse of
notation, we may abbreviate b ∈ B by b ∈ B. A morphism of a crystal is a map
of underlying set that intertwines wt, {εi, ψi, ẽi, f̃i}i∈Iaf (that is usually referred
to as a strict morphism in the literature).
A highest weight element (resp. finite highest weight element) in a crystal B
is an element b so that εi(b) = 0 for every i ∈ Iaf (resp. every i ∈ I). A
crystal is connected if and only if each two elements are connected by finitely
many sequences of f̃i and ẽi. For an affine crystal B and i ∈ Iaf , an i-string

19



is a connected subgraph B′ ⊂ B that is closed under the action of {ẽi, f̃i} and
satisfies ⟨α∨

i ,wt b⟩ = εi(b)−ψi(b). For b ∈ B and i ∈ Iaf , we denote the i-string
that contains b as Si(b).

Definition 5.2 (Tensor product of crystals, cf. [16] §4.4). Let B1 and B2

be crystals with underlying sets B1, B2. We define the tensor product crystal
B1 ⊗ B2 with its underlying set B1 × B2 (to which we refer its element (b1, b2)
as b1 ⊗ b2) by defining:

• For each b1 ∈ B1 and b2 ∈ B2, we have wt (b1 ⊗ b2) := wt b1 +wt b2;

• For each b1 ∈ B1, b2 ∈ B2, and i ∈ Iaf , we define

ẽi(b1⊗b2) :=

{
ẽib1 ⊗ b2 (ψi(b1) ≥ εi(b2))
b1 ⊗ ẽib2 (ψi(b1) < εi(b2))

, and f̃i(b1⊗b2) :=

{
f̃ib1 ⊗ b2 (ψi(b1) > εi(b2))

b1 ⊗ f̃ib2 (ψi(b1) ≤ εi(b2))
,

where we understand that ∅ ⊗ b2 = b1 ⊗ ∅ = ∅.

The functions εi and ψi (i ∈ Iaf) are uniquely determined by the above.

For a crystal B, we define its character as:

chB :=
∑
b∈B

ewt (b).

Theorem 5.3 (Kashiwara [20], cf. [16] §5.1). For each Λ ∈ P̃+ so that ⟨K,Λ⟩ =
k ∈ Z>0, we have an affine crystal B(Λ) that parametrizes a basis of Lk(Λ) so
that chB(Λ) = chLk(Λ) up to emδ-twist for some m ∈ Z. Each B(Λ) contains
a unique element bΛ so that wt bΛ = Λ and ẽibΛ = ∅ for every i ∈ Iaf .

Theorem 5.4 (Kashiwara [23] §3). For each Λ ∈ P̃+ and w ∈ Waf , we have a
subset B(Λ)w ⊂ B(Λ) that is stable under the action of ẽi for every i ∈ Iaf . For
each i ∈ Iaf so that siw > w, we have

B(Λ)siw =
∪
m≥0

f̃mi B(Λ)w.

For each b ∈ B(Λ)w, the set

{ẽni f̃mi b}n,m≥0 ∩ B(Λ)w

is either singleton or isomorphic to an i-string.

For each Λ ∈ P̃ and i ∈ Iaf , we define

χ(eΛ) :=

∑
w∈Waf

(−1)ℓ(w)ew◦Λ∏
α∈∆−

af
(1− eα)multα

and, Di(e
Λ) :=

eΛ − esi◦Λ

(1− e−αi)

where multα denote the dimension of the α-root space of g̃. We define

Z[P̃ ]∧ := lim←−
n

Z[P̃ ]/(eβ | β ∈ P̃ , ⟨d, β⟩ < −n)

The original form of the Weyl-Kac character formula asserts (see Theorem 3.9)
that

χ(eΛ) = chLk(Λ) Λ ∈ P̃+. (5.1)
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In addition, χ naturally extend to a linear operator

Z[P̃ ]→ Z[P̃ ]∧,

while Di (i ∈ Iaf) define linear operators on Z[P̃ ]. By Kumar [31, Theorem
8.2.9 and §8.3], there exists an infinite sequence

i = (i1, i2, . . .) ∈ I∞af

so that
χ = lim

k→∞
Dik ◦ · · ·Di2 ◦Di1 on Z[P̃ ]. (5.2)

Definition 5.5 (Restricted paths). Let B be a classical crystal. For each Γ ∈
P̂+, we define the set of restricted paths as:

P(B,Γ) := {b ∈ B | εi(b) ≤ ⟨α∨
i ,Γ⟩ for each i ∈ Iaf}.

Similarly, for each γ ∈ P+, we define the set of finitely restricted paths as:

P0(B, γ) := {b ∈ B | εi(b) ≤ ⟨α∨
i , γ⟩ for each i ∈ I}.

Theorem 5.6 (Kashiwara, Naito-Sagaki). We have a classical crystal B(ϖi)
corresponding to a (finite-dimensional) level zero fundamental representation
W(ϖi) so that chB(ϖi) = chW(ϖi) for each i ∈ I.
For each λ =

∑r
i=1miϖi ∈ P+, we define the tensor product (classical) crystal

Bloc(λ) as
Bloc(λ) := B(ϖ1)

⊗m1 ⊗ · · · ⊗ B(ϖr)
⊗mr .

Then, Bloc(λ) is a connected crystal and is equipped with a function D : Bloc(λ)→
Z with the following conditions:

1. D is preserved by the action of ẽi and f̃i for each i ∈ I;

2. D(b0) = 0, where b0 ∈ Bloc(λ) is the unique element so that wt b0 = λ;

3. we have D(ẽ0b) = D(b)− 1 for each b ∈ Bloc(λ) so that ε0(b) ≥ 2.

Proof. The definition of B(ϖi) is due to Kashiwara [24, Theorem 5.17]. The
character comparison follows from the works of Naito-Sagaki [36] and Chari-Ion
[4] (cf. [26, Theorem 1.6]). The function D is studied in [36, §3] under the name
of degree function and its relation to the energy statistic is in [33, Theorem 4.5].
The first two properties of D is in [36, Lemma 3.2.1], while the third property
of D also follow from [36, (3.2.1)] in view of [36, Lemma 2.2.11].

Theorem 5.7 (Kashiwara [19, 21], see Hong-Kang [16] §10). Let µ ∈ P+. We
have an isomorphism

B(kΛ0)⊗ Bloc(µ) ∼=
⊕

b∈P(Bloc(µ),kΛ0)

B(wt b+ kΛ0 −D(b)δ)

of affine crystals.
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Proof. Let W be the tensor product representation of Uq(ĝ) corresponding to
Bloc(µ) borrowed from Theorem 5.6. Being a finite-dimensional integrable rep-
resentation of the quantum group of ĝ, we can apply the argument in [16, §10.4].
By calculating using the lower global basis, we have∑

b∈P(Bloc(µ),kΛ0)

ewt b = ch {v ∈W | Ek+1
0 v = 0,Eiv = 0, i ∈ I},

where Ei ∈ Uq(ĝ) (i ∈ Iaf) is ei in [16, Definition 3.1.1]. Applying [16, Theorem
10.4.3, Theorem 10.4.4], we deduce a classical crystal morphism

Ψ :
⊕

b∈P(Bloc(µ),kΛ0)

B(wt b+ kΛ0) −→ B(kΛ0)⊗ Bloc(µ).

Since each direct summand of the LHS is a connected crystal (Theorem 5.3) and
the maps are distinct, it follows that Ψ is an embedding of crystals. Therefore,
the set B(kΛ0) ⊗ Bloc(µ)\ImΨ is a classical crystal. As all the highest weight
elements of B(kΛ0)⊗Bloc(µ) are contained in ImΨ, it does not contain a highest
weight element. A successive application of {ẽi}i∈Iaf sends an arbitrary element
of B(kΛ0) ⊗ Bloc(µ) to bkΛ0

⊗ Bloc(µ). The set bkΛ0
⊗ Bloc(µ) is stable under

the action of {ẽi}i∈Iaf . Therefore, it suffices to prove that applying sufficiently
many {ẽi}i∈Iaf annihilates every element of bkΛ0 ⊗ Bloc(µ) in order to prove
B(kΛ0)⊗ Bloc(µ) = ImΨ.

By the definition of the tensor product action and Theorem 5.6, we deduce
that the value of D decreases (by one) when we apply ẽ0 to bkΛ0

⊗ Bloc(µ).
Since bkΛ0

⊗Bloc(µ) is a finite set, it follows that applying ẽ0 (and other {ẽi}i∈I)
sufficiently many times annihilates the whole of bkΛ0 ⊗ Bloc(µ). Therefore, we
deduce that Ψ is a bijection.

By the same argument, we conclude that −D(•)δ equips bkΛ0
⊗ Bloc(µ)

with P̃ -valued weights. This makes Ψ into an isomorphism of affine crystals as
required.

Remark 5.8. Theorem 5.6 only states that we can equip B(kΛ0) ⊗ Bloc(µ) a
structure of affine highest weight crystals so that bkΛ ⊗ Bloc(µ) contains all the
highest weight vectors and the D-function gives the affine weights of the tensor
product. In particular, we have∑
b∈P(Bloc(µ),kΛ0)

chB(wt b+ kΛ0 −D(b)δ) ̸=
∑

b′⊗b∈B(kΛ0)⊗Bloc(µ)

qD(b)δewt (b′)+wt (b)

in general. Note that wt (b) ∈ P (as Bloc(µ) is a classical crystal), while wt (b′)−
kΛ0 ∈ P × Zδ (as B(wt b+ kΛ0 −D(b)δ) is an affine crystal).

Using Theorem 5.6, we define

gchBloc(λ) :=
∑

b∈Bloc(λ)

qD(b)ewt (b) ∈ Z[P̃ 0]

for each λ ∈ P+.

Definition 5.9 (Restricted Kostka polynomials). For each µ, λ ∈ P+, we define

Xµ,λ(q) :=
∑

b∈P0(Bloc(µ),λ)

q−D(b).
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For each µ ∈ P+ and λ ∈ P k
+, we define

X
(k)
µ,λ(q) :=

∑
b∈P(Bloc(µ),kΛ0),wt (b)=λ

q−D(b).

Theorem 5.10 (Lenart-Naito-Sagaki-Schilling-Shimozono [33]). For each µ, λ ∈
P+, we have an equality

Pµ(q, 0) =
∑

b∈Bloc(µ)

q−D(b)ewt (b) =
∑
λ∈P+

Xµ,λ(q) · chV (λ) = gchBloc(µ),

where Pµ(q, t) is the Macdonald polynomial. 2

The following result is a straight-forward extension of a result due to Okado
[35] (which in turn uses [14]) for type A (see also Schilling-Shimozono [38, §3.6]).

Theorem 5.11. Let µ ∈ P+ and λ ∈ P k
+. We have

X
(k)
µ,λ(q) =

∑
w∈Waf ,w◦λ∈P+

(−1)ℓ(w)q⟨d,λ−w◦kλ⟩Xµ,w◦kλ
(q).

Proof. We set Bloc(µ;λ) := {b ∈ Bloc(µ) | wt (b) = λ} for each λ ∈ P . In view
of (5.1) and the Z-linearity of χ, we deduce

χ(ekΛ0 · gchBloc(µ)) =
∑

b∈Bloc(µ)

χ(ewt (b)−D(b)δ+kΛ0)

=
∑

w∈Waf ,w◦kλ∈Pk
+

∑
b∈Bloc(µ;λ)

χ(eλ+kΛ0−D(b)δ)

=
∑

w∈Waf ,λ+=w◦kλ∈Pk
+

∑
b∈Bloc(µ;λ)

(−1)ℓ(w)q⟨d,λ−λ+⟩χ(eλ++kΛ0−D(b)δ)

(5.3)

=
∑
λ∈P+

∑
w∈W\Waf ,λ+=w◦kλ∈Pk

+

(−1)ℓ(w)q⟨d,λ−λ+⟩Xµ,λ(q
−1)χ(eλ++kΛ0).

(5.4)

Here we used the fact that the reflection by ◦k is compatible with the function
D by Theorem 5.6 1) and 3) in order to derive the third equality.

The tensor product crystal B(kΛ0)⊗ Bloc(µ) is a classical crystal generated
by its highest weight elements.

The set bkΛ0 ⊗ Bloc(µ) decomposes into the disjoint union

bkΛ0
⊗ Bloc(µ) =

⊔
t≥1

bkΛ0
⊗ Bloc(µ)

t ⊂
⊔
t≥1

B(Λt) Λt ∈ P̃ k
+ (5.5)

that respects the tensor product decomposition in Theorem 5.7. Here we warn
that we equip B(Λt) a structure of affine crystals. Since bkΛ0

⊗Bloc(µ)
t is stable

under the action of {ẽi}i∈Iaf , the embedding bkΛ0
⊗ Bloc(µ)

t ⊂ B(Λt) is stable
under the action of {ẽi}i∈I.

For each w ∈W and i ∈ Iaf , Theorem 5.4 implies that B(kΛ0)w is a disjoint
union of i-strings or a highest weight elements in i-strings. Here Bloc(µ) is stable

under the action of {ẽi, f̃i}.
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By a rank one calculation, we deduce that B(kΛ0)w ⊗ Bloc(µ) is a disjoint
union of i-strings or a highest weight elements in i-strings. Therefore, the set

B(Λt)w := B(kΛ0)w ⊗ Bloc(µ) ∩ B(Λt) ⊂ B(Λt)

is a disjoint union of i-strings or a highest weight elements in i-strings. In
addition, we have

B(Λt)siw =
∪
m≥0

f̃mi B(Λt)w

by Theorem 5.4 and rank one calculation.
In particular, we have∑

b∈B(Λt)siw

ewt b =
∑

b∈B(Λt)w

Di(e
wt b)

for each i ∈ Iaf so that siw > w (here we again warn that the weight here is
affine weight).

Applying (5.2), we deduce that

χ(ekΛ0 · gchBloc(µ)) =
∑

b′∈Bloc(µ)

qD(b′)χ(ekΛ0+wt b′)

=
∑
t≥1

∑
b′∈Bloc(µ)t

qD(b′)χ(ekΛ0+wt b′)

= lim
w→∞

∑
t≥1

∑
b∈B(Λt)w

χ(ekΛ0+wt b)

=
∑
t≥1

χ(Λt) =
∑

b∈P(Bloc(µ),kΛ0)

qD(b)χ(ekΛ0+wt b), (5.6)

where w → ∞ means that we take a limit limk→∞ sik · · · si2si1 . Therefore,
equating (5.4) and (5.6) implies the result as required (with q 7→ q−1).
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Appendix A A free field realization proof of The-
orem 4.1 by Ryosuke Kodera1

For general notation, we refer to §1 and the beginning of §2 in the main body. Let g
be a simple Lie algebra of type ADE. The goal of this appendix is to provide a proof of
the following result (without using Theorem 2.15) based on the free field realizations.

Theorem A.1 (= Theorem 4.1). Let ϖ ∈ P 1
+. The g̃-module L1(ϖ), viewed as a

g[z]-module, admits a filtration by {W (µ)}µ∈P+ . Moreover, we have

(L1(ϖ) : W (µ))q =

{
q−⟨d,w(ϖ+Λ0)⟩ (µ = w(ϖ + Λ0), w ∈ Waf)

0 (otherwise)

for each µ ∈ P+.

Thanks to [7, (1.25)], it suffices to show:

Proposition A.2. There exists a filtration of L1(ϖ) whose adjoint graded yields the
inequality

ch L1(ϖ) ≤
∑

λ∈P+∩Waf (ϖ+Λ0)

q
1
2
((λ,λ)−(ϖ,ϖ))ch W (λ).

The rest of this appendix is devoted to the proof of Proposition A.2.
We recall the Frenkel-Kac construction of level one integrable representations of

ĝ. Let ϖ be an element of P 1
+ and L1(ϖ) be the integrable highest weight ĝ-module

with highest weight ϖ + Λ0.

1rkodera@math.kyoto-u.ac.jp, Department of Mathematics, Kyoto University, Oiwake,
Kita-Shirakawa, Sakyo Kyoto 606-8502 JAPAN
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Lemma A.3. We have Waf(ϖ+Λ0) = {tγ(ϖ+Λ0) | γ ∈ Q}. In particular, extremal
weights in L1(ϖ) are parametrized by Q.

Proof. The equality follows by [18, Lemma 12.6].

Remark A.4. In this case we also have max(ϖ+Λ0) = Waf(ϖ+Λ0). Here max(ϖ+Λ0)
denotes the set of the maximal weights of L1(ϖ).

Lemma A.5. We have P+ ∩Waf(ϖ + Λ0) = P+ ∩ (ϖ +Q+).

Proof. We have Waf(ϖ + Λ0) = ϖ + Q by Lemma A.3. It is well known that for
any λ ∈ P+ there exists unique ϖ′ ∈ P 1

+ ≃ P/Q such that λ ≥ ϖ′. Thus we have
P+ ∩ (ϖ +Q) = P+ ∩ (ϖ +Q+).

We use the symbol X(k) = X ⊗ ξk = X ⊗ z−k ∈ ĝ for an element X ∈ g. Define
a Lie subalgebra s̃ of ĝ to be s̃ = h[ξ, ξ−1] ⊕ CK. Then s̃ is a direct sum of the
Heisenberg Lie algebra ŝ =

⊕
k ̸=0(h⊗ ξk)⊕CK and an abelian Lie algebra h⊗ 1. Put

ŝ≥0 =
⊕

k>0(h⊗ξk)⊕CK and let C1 be the one-dimensional representation of ŝ≥0 via

h⊗ ξk 7→ 0 (k > 0) and K 7→ id. Let F be the Fock representation of the Heisenberg
Lie algebra ŝ defined by the induction

F = U (̂s)⊗U(ŝ≥0)
C1.

We denote by |0⟩ the element 1 ⊗ 1 ∈ F . Consider C[Q] the group algebra of Q. It
has a C-basis eγ (γ ∈ Q) and the multiplication is given by eβeγ = eβ+γ . We denote
by eϖC[Q] a C-vector space which has a C-basis eϖ+γ (γ ∈ Q). An action of h ⊗ 1
on eϖC[Q] is given by h(0)eϖ+γ = ⟨h,ϖ + γ⟩eϖ+γ for h ∈ h. Then F ⊗ eϖC[Q] is
naturally a module of s̃ = ŝ⊕ (h⊗ 1). We define a Z-grading on F ⊗ eϖC[Q] by

deg(h⊗ ξ−k) = k (k ≥ 1) and deg eϖ+γ = (ϖ, γ) +
1

2
(γ, γ).

Thus F ⊗ eϖC[Q] is extended to a module of s̃⊕ Cd so that (−d) counts the degree.

Remark A.6. The degree of eϖ+γ is determined so that the h̃-weight of |0⟩ ⊗ eϖ+γ is
tγ(ϖ + Λ0).

We take a certain 2-cocycle ε : Q × Q → {±1} as in [13, 2.3]. For an element

γ ∈ Q, we define an operator T̃γ on eϖC[Q] by T̃γe
ϖ+β = ε(γ, β)eϖ+β+γ (β ∈ Q). By

[13, Proposition 2.2], we can choose root vectors Eα ∈ gα for α ∈ ∆ satisfying certain
relations, e.g., [Eα, Eβ ] = ε(β, α)Eα+β if α+ β ∈ ∆.

Theorem A.7 (Frenkel-Kac [13]). 1. The restriction of the level one representa-
tion L1(ϖ) of ĝ to s̃⊕ Cd is isomorphic to F ⊗ eϖC[Q].

2. The (̃s⊕ Cd)-module F ⊗ eϖC[Q] is extended to ĝ by

∑
k∈Z

Eα(k)u
−k 7→ exp

(∑
k>0

α∨(−k)

k
uk

)
(T̃αu

1+α∨
) exp

(
−
∑
k>0

α∨(k)

k
u−k

)

and it is isomorphic to L1(ϖ) as a ĝ-module.

Proof. The assertion is proved by [13] for the case ϖ = 0.
A proof of (i) for a general ϖ is similar. We give a sketch. Let v′ϖ+γ be an extremal

weight vector in L1(ϖ) of weight tγ(ϖ + Λ0). Then U (̃s ⊕ Cd)v′ϖ+γ is isomorphic to
F ⊗ eϖ+γ as a module of s̃⊕ Cd. Hence we have an injection F ⊗ eϖC[Q] → L1(ϖ).
By comparing their characters, we see that they are isomorphic.

A proof of (ii) is same as [13].
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For each γ ∈ Q, we put vϖ+γ = T̃γ(|0⟩ ⊗ eϖ) = |0⟩ ⊗ eϖ+γ ∈ F ⊗ eϖC[Q]. (We
note that ε(γ, 0) = 1.) We regard vϖ+γ as an extremal weight vector in L1(ϖ) via the

Frenkel-Kac construction. The h̃-weight of vϖ+γ is

ϖ + γ −
(
(ϖ, γ) +

1

2
(γ, γ)

)
δ + Λ0

by construction. Hence the following lemma follows.

Lemma A.8. The vector vϖ+γ is an extremal weight vector of weight tγ(ϖ + Λ0).
Moreover, n+vϖ+γ = 0 if and only if ϖ + γ is dominant.

The following lemma follows from Lemma A.3.

Lemma A.9. Any extremal weight vector in L1(ϖ) is of the form vϖ+γ (γ ∈ Q) up
to scalar.

We use the Frenkel-Kac construction to prove that L1(ϖ) has a filtration whose
successive quotients are quotients of global Weyl modules. We set

grλ L1(ϖ) := U(g[z])vλ/
∑

µ∈P+∩(ϖ+Q+),

µ>λ

U(g[z])vµ λ ∈ P+ ∩ (ϖ +Q+).

Proposition A.10. Let λ be an element of P+ ∩ (ϖ + Q+). The image v̄λ of vλ in
grλ L1(ϖ) satisfies

h(0)v̄λ = ⟨h, λ⟩v̄λ (h ∈ h) and n+[z]v̄λ = 0.

Hence we have a surjective morphism of degree 1
2
((λ, λ)− (ϖ,ϖ)) from the global

Weyl module W (λ) to grλ L1(ϖ).

Proof. The relation h(0)v̄λ = ⟨h, λ⟩v̄λ follows since the h-weight of vλ is λ by con-
struction.

Let α ∈ ∆+. Then for k ≥ 0, we have

Eα(−k)vλ ∈ F ⊗ eλ+α = U(ξ−1h[ξ−1])(|0⟩ ⊗ eλ+α)

by Theorem A.7. Here |0⟩ ⊗ eλ+α = vλ+α is an extremal weight vector in L1(ϖ). The
g-submodule U(g)vλ+α is finite-dimensional and simple. Let µ ∈ P+ be the highest
weight of this module. Then U(g)vλ+α contains vµ as its highest weight vector by
Lemma A.8 and A.9. Hence we see that vλ+α ∈ U(n−)vµ and λ < λ + α ≤ µ. This
implies that

Eα(−k)vλ ∈ U(ξ−1h[ξ−1])U(n−)vµ.

and completes the proof.

Proof of Proposition A.2. The filtration is constructed as above. The inequality

ch L1(ϖ) ≤
∑

λ∈P+∩(ϖ+Q+)

q
1
2
((λ,λ)−(ϖ,ϖ))ch W (λ)

follows from Proposition A.10. The summation in the right-hand side is over P+ ∩
Waf(ϖ + Λ0) by Lemma A.5.

Acknowledgments: R.K. thanks Sergey Loktev for the explaining his idea to use
the free field realization in the proof of Theorem 4.1.

28


