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Abstract

In this paper we give a complete topological classification of orientation preserving
Morse-Smale diffeomorphisms on orientable closed surfaces. For MS diffeomorphisms with
relatively simple behaviour it was known that such a classification can be given through
a directed graph, a three-colour directed graph or by a certain topological object, called
a ‘scheme’. Here we will assign to any MS surface diffeomorphism a finite amount of data
which completely determines its topological conjugacy class. Moreover, we show that
associated to any abstract version of this data, there exists a unique conjugacy class of
MS orientation preserving diffeomorphisms (on some orientation preserving surface). As
a corollary we obtain a different proof that nearby MS diffeomorphisms are topologically
conjugate.
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1 Informal statement of the results

One of the main objectives in the field of dynamical systems is to obtain a classification in terms
of their dynamics. Such a classification was achieved successfully in the one-dimensional setting.
For example, two circle diffeomorphisms f, f ′ : S1 → S1 are called topologically conjugate if
there exists an orientation preserving homeomorphism h : S1 → S1 so that hf = fh. In
the 1880’s, Poincare [42] showed that if these two diffeomorphisms are topologically conjugate
then they have the same rotation number. Moreover, for two transitive homeomorphisms f, f ′

the condition that their rotation numbers are the same is both necessary and sufficient for
the topological conjugacy. In 1932, Denjoy [14] improved this result by showing that if the
diffeomorphism f is C2 and have no periodic orbits then it is transitive.

If two circle diffeomorphisms have periodic orbits and each of these periodic orbits is hyper-
bolic (such a diffeomorphism is called Morse-Smale), then a necessary and sufficient condition
for these circle diffeomorphisms to be topologically conjugate is that their rotation numbers
are the same and that they have the same number of periodic attractors. Moreover, if one
chooses a rotation compatible permutation on a finite number of points on the circle, then this
data corresponds to a Morse-Smale diffeomorphism. For non-invertible Morse-Smale maps of
the circle or the interval one has a similar situation: it’s so-called kneading map (describing
itineraries of its turning points) is (essentially) a complete topological invariant and, moreover,
each admissible kneading map corresponds to a map of the circle.
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The aim of this paper is to establish a corresponding classification in the setting of Morse-
Smale diffeomorphisms on closed orientable surfaces, replacing a finite number of points on a
circle by a finite number of annuli on tori. In Section 3 we will state our results precisely, and
define the notion of a ‘scheme’ and ‘decomposed scheme’, but informally speaking (see Figure 1)
we have

Theorem A (Classification by finite amount of data) Let M be a closed orientable
surface and f : M → M be an orientation preserving Morse-Smale diffeomorphism. Then one
can assign to f a scheme Sf or a decomposed scheme consisting of a finite amount data
(given by a finite union of tori, and the homotopy type of certain annuli in these tori), in such a
way that f : M →M and f ′ : M ′ →M ′ are topologically conjugate if and only if Sf is equivalent
to Sf ′.

Theorem B (Realisation) Each abstract scheme S corresponds uniquely to an orientable
closed surface M and an orientation preserving Morse-Smale diffeomorphism f : M →M .

For a formal statement of these results, see Theorems 2 and 2’ in Subsections 3.3,4.1 and
Theorem 3 in Subsection 4.4.

Notice that Theorem A implies immediately that Morse-Smale diffeomorphisms on surfaces
are structurally stable, providing an ‘alternative’ proof to the one given by Palis in [33], see the
corollary below Theorem 2. Of course when two maps are not close to each other, it can be
hard to determine whether they are conjugate in the same way as it is not immediately obvious
whether two knots in R3 are the same.

Theorem A shows that two Morse-Smale diffeomorphisms are topologically conjugate if and
only if their schemes are the same. For this reason we say that the scheme is a complete
invariant. Crucially, we show that the scheme requires only finite data.

Theorem B shows that each “abstract” admissible scheme corresponds to an actual Morse-
Smale diffeomorphism in the same way as each rotation number together with some addi-
tional information (about the number of periodic orbits) corresponds to circle diffeomorphism
(uniquely, up to conjugacy), and the same way as every admissible kneading invariant can be
“realised” within a smooth full family of interval maps, see Section II.4 in [28]. In the same
way Theorem B provides a full catalogue of all Morse-Smale surface diffeomorphisms.

In this way we suggest that the scheme of a MS surface diffeomorphism should be regarded
as the analogue of the rotation number for a MS circle diffeomorphism and of the kneading
invariant of a MS interval map.

Here, as usual, we define a C1 interval or circle map f to be Morse-Smale, and say that
f ∈MS([0, 1]) or f ∈MS(S1), if f has only finitely many critical and periodic points, if each
of its periodic points has multiplier λ /∈ {0, 1,−1} and if no critical point of f is eventually
mapped onto a critical or periodic point or to an iterate of another critical point (these latter
assumptions are the analogue of transversality of invariant manifolds in the two-dimensional
case).

Remark 1. A C1 map in MS([0, 1]) is not necessarily structurally stable since a nearby diffeo-
morphism can have additional critical points. To obtain structural stability, we need to consider
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Figure 1: Theorem A gives a complete topological invariant for a Morse-Smale diffeomorphism f on
the 2-sphere (drawn on the top left) by its scheme Sf (on the top right) and its decomposed scheme
(depicted in the remaining figures), while Theorem B describes all possible Morse-Smale diffeomor-
phisms. This picture and the notions of a scheme and a decomposed scheme will be explained in
Subsection 3.

the space of C2 endomorphisms, and make the additional assumption that each critical point
is non-degenerate.

The analogy between the one-dimensional and two-dimensional case we are referring to is
summarised in the following table:

complete invariant (finite data) realisation

MS circle diffeomorphism rational rotation number + finite data no additional conditions

MS interval map kneading invariant + finite data admissibility condition

MS surface diffeomorphism scheme admissibility condition

The analogy between the classification of MS interval and surface maps.
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Indeed, for a MS circle diffeomorphism, the rotation number and the number ≥ 1 of periodic
attractors is a complete invariant; moreover, given to this abstract data corresponds a Morse-
Smale diffeomorphism (unique up to conjugacy). For piecewise monotone interval maps f , the
analogue of the rotation number is the kneading invariant, defined as follows. Let c1 < c2 <
· · · < cd be the turning points of f , and let I0, . . . , Id be the components of I \ {c1, . . . , cd}
numbered so that ci ∈ ∂Ii ∩ ∂Ii−1, i = 1, . . . , d. Then associate to each ci, the sequence
defined by K(ci) = Ii1Ii2Ii3 · · · ∈ {I1, . . . , Id}N+ where ik is so that fk(ci) ∈ Iik for k ≥ 1.
The kneading invariant of f is by definition K(c1), . . . , K(cd) (there are other more or less
equivalent definitions, see [28]). Since the kneading invariant does not detect the number of
periodic attractors of f additional data is required to obtain a complete invariant. For this
reason we will follow a slightly different approach.

Let N ∈ N ∪ {∞} and define the finite set

PN
f =

⋃
c∈C

N⋃
k=0

fk(c) ∪ PerAf where PerAf = {attracting periodic points of f}.

The next (essentially well-known) theorem shows that there exists N <∞ so that the conjugacy
class of f is fully determined by the finite set PN

f together with how f acts on this set. Much of
this can be expressed by the kneading invariant defined above, but the set PN

f is more helpful
in this context.

Theorem (Classification in the one-dimensional case). For each f ∈ MS([0, 1]) there exists
N so that g ∈ MS([0, 1]) is topological conjugate with f if and only if there exists an order
preserving bijection between PN

f and PN
g so that h ◦ f(x) = g ◦ h(x) for each x ∈ PN−1

f .

Proof. We say an interval K is a renormalisation interval of period n, if K, f(K), . . . , fn−1(K)
have disjoint interiors, fn(K) ⊂ K and fn(∂K) ⊂ ∂K. To prove this theorem, we need to use
the following claim (whose prove can be found in [28][Proposition III.4.2]). Claim: for each
x ∈ [0, 1] there exist n ≥ 0 and a renormalisation interval K of period 2, so that either (a)
fn(x) is a fixed point p, (b) fk(x) → p as k → ∞ where p is an attracting fixed point or (c)
fn(x) ∈ K. The assertion implies in particular that f ∈ MS([0, 1]) can only have (finitely
many) periodic points of periods of the form {1, 2, . . . , 2b}.

For each periodic attractor p, take an interval J = Jp with p ∈ J ∈ W s(p) so that if m is
the period of p then f 2m|J is orientation increasing. Since f ∈ MS([0, 1]) the previous claim
implies that each critical point is in the basin of an attracting periodic point. Hence one can
choose N < ∞ so that if c, c′ ∈ W s(p) ∩ C(f) (where p is a periodic attractor of period m)
then there exists n, n′ ≤ N − 2m so that fn(c), fn

′
(c′) ∈ J . One can arrange is so that if fm|J

is orientation preserving and fn(c), fn
′
(c′) lie on the same side of p then fn

′
(c′) lies between

fn(c) and fn+m(c) whereas if fm|J is orientation reversing then fn(c′) lies between fn(c) and
fn+2m(c).

If g ∈MS([0, 1]) and there exists an an order preserving bijection h between PN
f , P

N
g then

from the choice of N , if c, c′ ∈ W s(p) then there exists n, n′ ≤ N so that fn(c), fn
′
(c) lie in the

same fundamental domain of p. It follows that one can extend h to an order preserving bijection
between P∞f , P

∞
g . Since f, g do not have (i) wandering intervals (this follows from the previous
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claim), (ii) intervals consisting of periodic points of constant period, (iii) periodic turning points
which are not attracting (since f is C1 and f ∈ MS([0, 1])), it follows by [28][Theorem II.3.1]
that f, g are topologically conjugate.

Conversely, one can derive from [28][Theorem II.5.2], that given (abstract) finite sets P ′ ⊂
P ⊂ [0, 1] and π : P ′ → P with some additional other admissibility conditions, there exists a
C∞ MS interval map f so that PN−1

f = P ′ and PN
f = P and so that f |P ′ = π. So this is the

analogue of Theorem B in the interval case.

Before giving formal statements of theorems A and B, we will give a historical background
of this classification problem, see also the survey [8] by Bonatti, Grines, Langevin for further
details and references.

Acknowledgements. This work was supported by the Russian Foundation for Basic Research
(project 16-51-10005-Ko a), Russian Science Foundation (project 17-11-01041), the Basic Re-
search Program at the HSE (project 90) in 2017 and the European Union ERC AdG grant
339523 RGDD.

2 History of the problem of classifying MS diffemor-

phisms

Topological equivalence, roughness and structural stability. The concept of roughness
of a dynamical system was conceived in Nizhny Novgorod (fomely known as Gorky) in 1937.
Andronov and Pontryagin considered a dynamical system

ẋ = v(x), (1)

where x ∈ R2 and v is a C1-vector field defined in closed compact domain D ∈ R2 bounded by
a smooth curve ∂D without selfintersections transversal to v. They suggested to call v rough
if for any sufficiently small C1-perturbation of v there exists a homeomorphism C0 close to
the identity which transforms the orbits of the original dynamical system to the orbits of the
perturbed system (so the perturbed system is topologically equivalent to the original one, and
the topological equivalence is close to the identity).

In [1], they showed that for such a dynamical system roughness is equivalent to the following
two properties:

1) the number of the equilibrium points and periodic trajectories is finite and each of these
is hyperbolic;

2) there are no saddle connections (that is stable and unstable separatrices of any saddle
equilibrium state p and of any pairs of different saddle equilibrium states p and q have
no intersections).

The topological classification (w.r.t. topological equivalence) of structurally stable flows (dy-
namical systems with continuous time) on a bounded part of the plane and on the 2-sphere
follows from the results by Leontovich-Andronova and Mayer obtained in [24] and [25]. In fact,
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in these papers a more general class of dynamical systems was considered. The classification
was based on the ideas of Poincare-Bendixson to pick a set of specially chosen trajectories
so that their relative position (the Leontovich-Mayer scheme) fully determines the qualitative
decomposition of the phase space of the dynamical system into the trajectories.

Figure 2: Irrational winding of the torus

The principal difficulty in generalising this result to flows on arbitrary orientable surfaces
of positive genus is the possibility of new types of trajectories, namely non-closed recurrent
trajectories (see Figure 2, where the natural projection of a straight line with an irrational slope
on R2 to the torus T2 is shown, which can be a recurrent trajectory of some flow on T2). The
absence of such trajectories for structurally stable flows without singularities on the 2-torus
was first proved by Mayer in 1939 [27]. Actually, in this paper he introduced the notion of
roughness for cascades (i.e., discrete dynamical systems corresponding to C1 diffeomorphisms)
on the circle and found necessary and sufficient conditions for the roughness these cascades:
rough diffeomorphisms of the circle are exactly those that have a finite number of hyperbolic
periodic points.

In 1959, Peixoto [36] introduced the concept of structural stability of flows to generalize
the concept of roughness. A flow f t is called structurally stable if for any flow gt which is
C1-sufficiently close to f t, there exists a homeomorphism h sending trajectories of gt to trajec-
tories of f t. The original definition of a rough flow involved the additional requirement that
the homeomorphism h is C0-close to the identity map. Peixoto proved that the concepts of
roughness and structural stability for flows on surfaces are equivalent. In 1962, Peixoto [37, 38]
proved that the conditions 1), 2) above plus condition

3) all ω- and α-limit sets are contained in the union of the equilibrium points and the periodic
trajectories,

are necessary and sufficient for the structural stability of a flow on any arbitrary orientable
closed (i.e., compact and without boundary) surface and showed that such flows are dense in
the space of all C1-flows.

Morse-Smale systems in arbitrary dimensions. In 1960, Smale [45] introduced a class of
diffeomorphisms on manifolds, generalising the above Andronov-Pontryagin-Peixioto conditions
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(1), (2), (3) to the case of diffeomorphism in arbitrary dimensions, requiring that (i) there are
at most a finite number of all periodic points, (ii) each periodic orbit is hyperbolic, and (iii)
that each intersection of stable and unstable manifolds is transversal. This class of systems
was also inspired by Smale’s earlier work on the Poincaré conjecture for manifolds of dimension
≥ 5, [48, 50], in which he made essential use of Morse theory and vector fields generated by
the gradient of Morse functions. Since then flows and diffeomorphisms with these properties
are called Morse-Smale systems. Until Smale discovered horseshoe maps, he even assumed that
this class of systems is generic.

A natural question is the existence of Morse-Smale systems on closed manifolds. Smale [49]
proved that any Morse function on the manifold can be approximated by a Morse function
whose gradient vector field is a Morse-Smale flow without periodic orbits. Therefore the time-
one map of this flow is a Morse-Smale diffeomorphism. Since Morse functions exist on any
closed manifold, it follows that Morse-Smale systems (both flows and diffeomorphisms) exist
on any closed manifold.

In the late 1960’s, Palis [33] and Palis and Smale [35] proved that Morse-Smale systems
are structurally stable. Therefore, these systems form an open set in the space C1-smooth
dynamical systems. From a modern point of view, Morse-Smale systems on closed manifolds,
in the C1 setting, are exactly the structurally stable dynamical systems with zero topological
entropy. (This holds because by Mañé [26] any C1 structurally stable system is Axiom A and
satisfies the strong transversality condition, and since an Axiom A system with zero topological
entropy necessarily has only a finite number of periodic orbits by [13].) From this point of view,
they are the simplest structurally stable systems. Anosov [2, 3] and Smale [51, 52, 53] proved
the existence of wide classes of structurally stable dynamical systems with positive topological
entropy.

Already in the pioneering work [45], Smale established a close relationship between the
dynamic characteristics of the Morse-Smale system and the topology of the ambient manifold.
Later is was found that the periodic orbits of Morse-Smale flows without equilibrium states, form
a rather special set of knots and links, see Franks [15], Sullivan [54], Wada [56]. Nevertheless,
Morse-Smale vector fields on compact manifolds always have an energy function, as was shown
by Meyer [29]. (By definition, an energy function for a system is a Morse-Bott function which
decreases along non-periodic orbits and has critical points only at periodic orbits.) Pixton [40]
showed that this is not true for Morse-Smale diffeomorphisms, namely he proved that for any
Morse-Smale diffeomorphism given on a compact surface there is an energy function and that
there is an example of a Morse-Smale diffeomorphism on S3 which has no an energy function.
Later on, it was shown by Bonatti, Grines, Pixton, Pochinka [7, 40, 41] that there exist Morse-
Smale diffeomorphisms in dimension three for which the invariant manifolds of saddle points
form wild objects, and hence do not have an energy function. Grines, Laudenbach and Pochinka,
see [19], established necessary and sufficient conditions for the existence of an energy function
for Morse-Smale diffeomorphisms on 3-manifolds.

Morse-Smale diffeomorphism which are time-one maps of a flow, obviously induce the iden-
tity map in the homology group, which begs the question whether Morse-Smale diffeomorphisms
can induce non-trivial isomorphisms in the homology group. The answer is yes, as is easy to
see. First, take for example the time-one map of the gradient vector field on the torus T 2 with
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Figure 3: A Dehn twist to a Morse-Smale system on T 2

two saddles and two nodes on the square, see the left side of Figure 3. Adding a Dehn twist
along the closed curve corresponding to x = 1

2
we get a diffeomorphism whose stable manifold

of the first saddle transversely intersects the unstable manifold of the other saddle, see the right
side of Figure 3, and whose action on the homology group is non-trivial. However, the action
has a special form: for arbitrary Morse-Smale diffeomorphism f : Md → Md all eigenvalues of
the induced map f∗ : H∗(M

d,R) → H∗(M
d,R) are roots of unity, see works [46, 47] by Shub

and Sullivan.
A Dehn twist operation not only leads to a non trivial action in the homology group but

also gives rise to heteroclinic points, i.e., points of intersection of stable and unstable manifolds
of different saddle points. A Morse-Smale diffeomorphism on a closed surface is called gradient-
like if it has no heteroclinic points. Heteroclinic points are an obstruction to the embedding
of such a diffeomorphism to a flow. Palis [33] proved that in any neighborhood of the identity
map of the surface there is a Morse-Smale diffeomorphism which cannot be embedded in a flow.
Moreover he listed necessary conditions for a diffeomorphism to be embedded in a flow, proved
that these conditions are sufficient for Morse-Smale diffeomorphisms on surfaces and posed the
problem for higher dimensions. Grines, Gurevich and Pochinka, see [17], solved this problem
for Morse-Smale diffeomorphisms on 3-manifolds.

2.1 Classification of gradient-like diffeomorphisms on surfaces

In this subsection we describe previous approaches to classify special dynamical systems on
surfaces namely for Morse-Smale flows and for gradient-like diffeomorphisms.

A directed graph associated to Morse-Smale flows on surfaces. In 1971, Peixoto
[39] obtained the classification for Morse-Smale flows on arbitrary surfaces. He did this by
generalizing the Leontovich-Mayer scheme for such flows to a directed graph whose vertices are
in one-to-one correspondence with fixed points and closed trajectories of the flow, and whose
edges correspond to the connected components of the invariant manifolds of fixed points and
closed trajectories (see Figure 4). He proved that the isomorphic class of such directed graph
is a complete topological invariant for Morse-Smale flows on surfaces (where the isomorphisms
preserve specially chosen subgraphs).
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However, in 1998, Oshemkov and Sharko [32] pointed out that the Peixoto invariant is un-
fortunately not complete, by giving an example showing that an isomorphism of graphs cannot
always distinguish between types of decompositions into trajectories for a domain bounded by
two periodic orbits of the flow. Thus they show that Peixoto’s directed graph does not nec-
essarily distinguishes non-equivalent systems. They therefore suggested to use a three-colour
graph, see Figure 4, where vertices correspond to triangular domains and the color (s, t, u) of
an edge corresponds to passing through a side of triangles of the same color. They also showed
that this colour graph is a complete invariant. In the next subsection we will explain how such
three-colour graphs are obtained.

The construction of the directed and three-colour graphs for Morse-Smale flows is very
similar to the construction of similar graphs for gradient-like diffeomorphisms below.

Figure 4: The directed and three-colour graphs for a gradient-like diffeomorphism on a 2-sphere, see
Subsection 2.1. The regions marked in roman numbers correpond to vertices in the three color graph,
while the stable and unstable manifolds and the curves marked by t, correspond to its edges. The
singularities αi, σ, ωi correspond to the vertices ai, si, wi in the graph.

Directed, equipped and three colour graphs associated to gradient-like Morse-
Smale diffeomorphisms on surfaces. As before we say that a Morse-Smale diffeomorphism
on a closed surface is called gradient-like if it has no heteroclinic points. In 1985, Bezdenezhnych
and Grines [5, 6] showed that for gradient-like diffeomorphisms on surfaces a directed graph
with an automorphism is again a complete invariant. In 2014, Grines, Kapkaeva and Pochinka
[18], showed that two gradient-like diffeomorphisms on a surface are topologically conjugate
if and only if their three-colour graphs equipped by periodic automorphisms are isomorphic
(Grines, Malyshev, Pochinka and Zinina [20] describe an efficient algorithm for distinguishing
such graphs). Let us describe the above graphs in more detail.

Let f be a gradient-like diffeomorphism of an orientable surface M2. Let σ be a saddle point
of f of period mσ. Denote by νσ the type of orientation of σ, which is 1 if the diffeomorphism
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fmσ |Wu
σ

preserves orientation and −1 otherwise. Let lsσ (luσ) be a stable (unstable) separatrix of
σ, i.e., lsσ (luσ) is a connected component of W s

σ \ σ (W u
σ \ σ). Since lsσ (luσ) does not intersect

the unstable (stable) manifold of any saddle point, there exists a sink ω (respectively, a source
α) such that cl(luσ) = luσ ∪ σ ∪ ω (respectively, cl(lsσ) = lsσ ∪ σ ∪ α); see, for example, Lemma
3.2.1 in the monograph [21] by Grines, Pochinka. For δ ∈ {s, u} we define the direction of the
separatrix lδσ to be towards the saddle point if δ = s and from the saddle point if δ = u.

We say that a directed graph Γf is the graph of a diffeomorphism f , see Figure 4, if

1) the vertices of the graph Γf correspond to the periodic points of the non-wandering set
Ωf ; the vertex corresponding to the saddle periodic point σ we equip with the value νσ;

2) the directed edges of the graph Γf correspond to the directed separatrices of the saddle
points.

The diffeomorphism f naturally induces an automorphism f∗ of the graph Γf . Let Γf , Γf ′ be
the graphs of diffeomorphisms f, f ′. The existence of an isomorphism between the graphs Γf
and Γf ′ conjugating the automorphisms f∗ and f ′∗ is necessary for the topological conjugacy
of the diffeomorphisms f, f ′. Unfortunately, in general the existence of an isomorphism of the
graphs is not sufficient for the maps f, f ′ to be conjugacy even if every periodic points is a
fixed point and each separatrix is f -invariant. Indeed, consider diffeomorphisms f and f ′ with
phase portraits shown in Figure 5. Even though these diffeomorphisms have isomorphic graphs,
they are not topologically conjugate. To see this, notice that any conjugating homeomorphism
necessarily carries the basin of the sink ω of the diffeomorphism f into the basin of the sink ω′

of the diffeomorphism f ′. However, such a homeomorphism cannot be extended to the entire
sphere in such a way that it would carry the invariant manifolds of the saddle points of f into
the invariant manifolds of the saddle points of f ′.

So the directed graph Γf of a diffeomorphism f does not determine the topological conjugacy
class of f , and we are required to add information to Γf . To obtain a complete classification
for gradient-like diffeomorphisms on surfaces, Bezdenezhnych and Grines [5, 6] introduced in
1985 the notion of equipped graphs. Such equipped graphs can be defined as follows. Let ω
be a sink of f and let Lω be the subset of the manifold M2 that consists of the separatrices
which have ω in their closures. Then there is a smooth 2-disk Bω such that ω ∈ Bω and
each separatrix l ⊂ Lω intersects ∂Bω at an unique point; see, for example, [21, Proposition
2.1.3]. For the vertex w corresponding to the periodic sink point ω, let Ew denote the set of
edges of the directed graph Γf incident to w. Let Nw denote the cardinality of the set Ew.
We enumerate the edges of the set Ew in the following way. First we pick in the basin of the
sink ω a 2-disk Bω and set cω = ∂Bω. We define a pair of vectors (~τ , ~n) at some point of the
curve cω in such a way that the vector ~n is directed inside the disk Bω, the vector ~τ is tangent
to the curve cω and induces a counterclockwise orientation on cω with respect to Bω (we call
this orientation positive). Enumerate the edges e1, . . . , eNw from Ew according to the ordering
of the corresponding separatrices as we move along cω starting from some point on cω. This
enumeration of the edges of the set Ew is said to be compatible with the embedding of the
separatrices.

The graph Γf is said to be equipped if each vertex w is numbered with respect to the
numeration of the edges of the set Ew and the numeration is compatible with the embedding
of the separatrices. We denote such a graph by Γ∗f . For an example, see Figure 5.
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Figure 5: The diffeomorphisms f, f ′ : S2 → S2 have isomorphic graphs but they are not topologically
conjugate as their equipped graphs Γ∗f are not isomorphic (see the explanations in the text).

Let Γ∗f and Γ∗f ′ be equipped graphs of diffeomorphisms f and f ′ respectively and let Γ∗f
and Γ∗f ′ be isomorphic by an isomorphism ξ. Let a vertex w of the graph Γ∗f correspond to a
sink and let w′ = ξ(w). Then the isomorphism ξ induces the permutation Θw,w′ on {1, . . . , N}
(where N = Nw = Nw′) defined by Θw,w′(i) = j ⇔ ξ(ei) = e′j.

Two equipped graphs Γ∗f , Γ∗f ′ of diffeomorphisms f , f ′ are said to be isomorphic if there
exists an isomorphism ξ of the graphs Γf , Γf ′ such that

1) ξ sends the vertices into the vertices and preserves the values of the vertices correspond-
ing to the saddle periodic points; it sends the edges into the edges and preserves their
direction;

2) the permutation Θw,w′ induced by ξ is a power of a cyclic permutation1 for each vertex
w corresponding to a sink;

3) f ′∗ = ξf∗ξ
−1.

The equipped graph Γ∗f of a diffeomorphism f is again a topological invariant up to isomorphism.
Let us show that the equipped graphs Γ∗f ,Γ

′∗
f of f, f ′ are not isomorphic. To do this, consider

Figure 5 once again and suppose that the vertex w (w′) of the graph corresponds to the sink
point ω (ω′). One can check directly that any isomorphism ξ induces the permutation Θw,w′

1It is directly checkable that the property of the permutation to be a power of a cyclic permutation is
independent of the choice of the curves cω and cω′ .
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which is not a power of a cyclic permutation and therefore the equipped graphs Γ∗f , Γ∗f ′ are not
isomorphic. Generalising this argument, Bezdenezhnych and Grines [5, 6] were able to show that
the equipped graphs are a complete invariant for gradient-like Morse-Smale diffeomorphisms
on closed surfaces.

Let us now describe an alternative complete invariant for gradient-like diffeomorphisms,
namely the three-colour graph. Let, as before, f be a gradient-like Morse-Smale diffeomorphism
on a closed surface M2. The non-wandering set Ωf can be represented as Ωf = Ω0

f ∪ Ω1
f ∪

Ω2
f , where Ω0

f , Ω1
f , Ω2

f denote the set of sinks, saddles, and sources of the diffeomorphism f ,
respectively. Throughout the remainder of this subsection, we assume that f has at least one
saddle point2.

Figure 6: Types of cells with t-curves

We remove from the surface M2 the closure of the union of the stable manifolds and the
unstable manifolds of all the saddle points of the diffeomorphism f and let the resulting set be
denoted by M̃ , that is, M̃ = M2 \ (Ω0

f ∪W u
Ω1
f
∪W s

Ω1
f
∪ Ω2

f ). The set M̃ is represented in the

form of a union of domains (cells) homeomorphic to the open two-dimensional disc such that
the boundary of each of these cells has one of the forms depicted by boldface lines in Figure
6 and it contains exactly one source, one sink, one or two saddle points, and some of their
separatrices.

Let A be any cell from the set M̃ , and let α and ω be the source and sink contained in its
boundary. A simple curve τ ⊂ A whose boundary points are the source α and the sink ω is
called a t-curve (see Figure 6). Let T denote a set which is invariant under the diffeomorphism
f and which consists of t-curves taken one from each cell.

Any connected component of the set M∆ = M̃ \ T is called a triangular area. Let ∆f

denote the set of all triangular domains of diffeomorphism f . The boundary of every triangular
domain δ ∈ ∆f contains three periodic points: a source α, a saddle σ, a sink ω. It contains
also the stable separatrix lsσ (called the s-curve) with α and σ as boundary points, the unstable
separatrix luσ (called the u-curve) with ω and σ as boundary points and a curve τ (a t-curve)

2If a Morse-Smale diffeomorphism f : Mn →Mn has no saddle points, then its nonwandering set consists of
one source and one sink. All diffeomorphisms “source-sink” are topologically conjugate; the proof of this fact
is given, for example, in [21] (Theorem 2.2.1).

13



curve

curve

curve

Figure 7: Triangular domain

with α and ω as boundary points (see Figure 7). A triangular domain is bounded by s-, u-
and t-curves. We say that two triangular areas have a common side, if this side belongs to
the closures of both domains. The period of the triangular domain δ is defined to be the least
positive integer k ∈ N, such that fk(δ) = δ.

We construct a three-color (s, t, u) graph Tf , corresponding to a Morse-Smale gradient-like
diffeomorphism f as follows (see Figure 8):

1) the vertices of Tf are in a one-to-one correspondence with the triangular domains of the
sets ∆;

2) two vertices of the graph are incident to an edge of color s, t and u, if the corresponding
triangular domains have a common s, t and u-curve.

By construction, three-color graphs obtained from different partitions into triangular domains
(depending on the choice of t -curves) are isomorphic.

Let Bf denote the set of the vertices of the graph Tf . Since the sides of any triangular
domain are assigned different colors, edges of three different colors come together at the vertex
corresponding to the triangular domain. Since any side of a triangular domain is adjacent to
exactly two different triangular domains, the graph Tf has no cycles of length 1. Thus, the
graph Tf satisfies the definition of the three-color graph. Let πf : ∆f → Bf denote a one-to-one
map of the set of the triangular domains of the diffeomorphism f into the set of the vertices
of the graph Tf . The diffeomorphism f induces the automorphism f∗ = πffπ

−1
f on the set of

vertices of the graph Tf . Let (Tf , f∗) be denote the three colour graph Tf together with the
automorphism f∗.

Two three-color graphs with automorphisms (Tf , f∗) and (Tf ′ , f
′
∗) of diffeomorphisms f, f ′

are said to be isomorphic if there exists a one-to-one correspondence ξ between the sets of
their vertices which preserve the relations of incidence and the color, as well as the conjugating
automorphisms f∗ and f ′∗ (that is, f ′∗ = ξf∗ξ

−1).
As mentioned, in [18] it is shown that the three-color graph (Tf , f∗) of a diffeomorphism f

is a complete topological invariant up to isomorphism for gradient-like Morse-Smale diffeomor-
phisms on closed surfaces.

In this paper we shall associate a different complete invariant to a (general) surface Morse-
Smale diffeomorphism, namely a scheme. For the diffeomorphisms from Figures 5 8 the invari-
ants associated to each of the two diffeomorphisms consists of a torus with 10 closed curves, see
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Figure 8: The non-isomorphic three-colour graphs Tf , Tf ′ associated to the non conjugated gradient-
like diffeomorphisms f, f ′.

Figure 19. Since these curves are ordered differently on the tori for the two diffeomorphisms,
it follows at once that such systems are not topologically conjugated.

Figure 9: A chain of the length 3
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2.2 Classification of non-gradient-like diffeomorphisms on closed
surfaces

Let us now discuss previous results concerning the classification of general Morse-Smale diffeo-
morphisms on closed surfaces. Let Oi, Oj be periodic orbits of Morse-Smale diffeomorphism
f : M2 →M2. Smale [53] introduced a partial order relation ≺ for the periodic orbits

Oi ≺ Oj ⇐⇒ W s
Oi ∩W

u
Oj 6= ∅.

A sequence of distinct periodic orbits Oi = Oi0 ,Oi1 , . . . ,Oik = Oj (k ≥ 1), such that Oi0 ≺
Oi1 ≺ · · · ≺ Oik is called a chain of length k joining the periodic orbits Oi and Oj. The maximal
length of the chain joining Oi and Oj is denoted by

beh(Oj|Oi)

(beh stands for behaviour). where we define beh(Oj|Oi) = 0 when W u
Oj ∩ W

s
Oi = ∅. For

a subset P of the periodic orbits let us set beh(Oj|P ) = max
Oi⊂P
{beh(Oj|Oi)}. Figure 9 gives

an example where O1 ≺ O2 ≺ O3 for saddle fixed points p1 = O1, p2 = O2, p3 = O3 and
beh(O2|O1) = beh(O3|O2) = 1, beh(O3|O1) = 2. Set

beh(f) = max{beh(Oj|Oi)}.

A Morse-Smale diffeomorphism has beh(f) = 1 iff it is a so-called sink-source diffeomorphism.
When beh(f) = 2 then f has no heteroclinic points, and so is gradient-like. A Morse-Smale
diffeomorphism f : M2 → M2 with beh(f) > 2 has a chain of saddle orbits of the length
beh(f)− 2.

If beh(f) = 3 then f has a finite number of heteroclinic orbits. In 1993, Grines [16] proved
that for such diffeomorphisms an invariant similar to Peixoto’s graph carrying additional infor-
mation on the heteroclinic substitution, describing the intersection pattern of invariant mani-
folds as in Figure 10, is sufficient to describe necessary and sufficient conditions for topological
conjugacy.

Figure 10: Heteroclinic substitution
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Figure 11: Scheme of a Morse-Smale diffeomorphism with beh(f) = 3

In 1993, Langevin [23] proposed to consider the orbit space of the basin of the sink and
project to this closed surface the unstable separatries of the saddle points. This approach was
generalized and successfully applied by Bonatti, Grines, Medvedev, Pecou and Pochinka in
[9], [10] for the topological classification of Morse-Smale diffeomorphisms f with beh(f) ≤ 3
on 3-manifolds. In 2010, Mitryakova and Pochinka [30] applied this method to the topological
classification of Morse-Smale diffeomorphisms f with beh(f) ≤ 3 on orientable surfaces. Indeed,
they constructed a topological invariant (which they called a “scheme”) which consists of a
finite number of two-dimensional tori (corresponding to the orbit space of the basin of sinks
and sources), together with a set of simple closed curves (corresponding to the orbit spaces of
separatrices), see Figure 11. They also proved that this invariant is complete when beh(f) ≤ 3.
In 2013, Mitryakova and Pochinka [31] solved the realization problem for such diffeomorphisms,
establishing that each abstract scheme corresponds to a Morse-Smale diffeomorphism (we will
make this notion more precise below). Vlasenko [55] in 1998 proprosed another approach to the
topological classification for arbitrary structurally stable diffeomorphisms of orientable surfaces
using an equipped oriented graph whose vertices corresponds to a periodic and heteroclinic
point and each directed edge corresponds to a connecting segment of separatrices.

In 1998, a different approach was taken Bonatti and Langevin [11], who considered C1-
structurally stable diffeomorphisms (Smale diffeomorphisms) of compact surfaces. The main
result of that paper consists of a finite combinatorial presentation of the global topological
dynamics in terms of the geometrical types of certain Markov partitions of the hyperbolic sets
and by gluing the domains along their boundary. One important step of the proof of their
theorem consists of a precise analysis of the topological position (the ‘intersection pattern’) of
invariant manifolds of the Smale diffeomorphisms.

Let us describe their construction for a Morse-Smale diffeomorphism f : M2 → M2. Con-
sider a maximum heteroclinic chain O1, . . ., Oh of saddle orbits for f and define K1h =
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(
h⋃
i=1

W u
Oi

)
∩
(

h⋃
i=1

W s
Oi

)
. The set

h⋃
i=1

Oi ∪ K1h is called a saturation of the chain. So the

saturation of the chain is the union of saddle orbits and various intersections of stable and
unstable separatrices of saddle periodic points belonging to the chain. Note that the maximum
saturation of heteroclinic chain is an invariant set Kf . By definition, separatrices of saddle
periodic points intersect transversely for Morse-Smale diffeomorphisms. Using this fact, they
proved that one can put a uniform hyperbolic structure on Kf and that a neighbourhood of
Kf has finite topological type, i.e., is a closed surface with a finite number of holes.

The saturated hyperbolic set can be viewed as a generalization of the notion of a basic
set of saddle type. (By definition, a basic set Λ is a compact invariant set which carries a
hyperbolic structure and so that f : Λ → Λ is transitive) This makes it possible to apply
the Bowen-Sinai technique for constructing Markov partitions for such sets [44, 12]. In other
words, Kf is covered by a special family of curvilinear quadrangles formed by segments of the
stable and unstable separatrices, which they case a good Markov partition. The geometric type
of a good Markov partition includes a description of the mutual arrangement, orientation and
numbering of curvilinear quadrangles, and their images under the action of the diffeomorphism.
Two geometric type are called equivalent if they are geometric types of some good Markov
partitions of the same hyperbolic saturated set. The main result in [11] in the setting of Morse-
Smale systems is the following: let Kf1 , Kf2 be the saturated hyperbolic sets of Morse-Smale
diffeomorphisms f1, f2 on closed oriented surfaces M1, M2 respectively, suppose that Kf1 and
Kf2 have good Markov partitions with equivalent geometric types, then f1, f2 are topologically
conjugate on invariant neighborhoods of the sets Kf1 , Kf2 . See Theorem 1.0.3 in [11] for a
more precise statement.

In a subsequent work, Beguin [4] developed a finite algorithm to decide the equivalence of
two realizable geometrical types. In fact, as is shown in [11], some of the abstract geometrical
types do not correspond to any Smale diffeomorphisms on compact surfaces.

In the next section we will introduce alternative, and in our opinion more natural, combina-
torial objects (called ‘schemes’) which, unlike the previous approaches, not only give a complete
classification (as in Theorem A), but also describe which Morse-Smale diffeomorphisms can be
realised (as in Theorem B).

3 The scheme of a MS surface diffeomorphism is a com-

plete invariant

The aim of this paper is to give a different classification which is inspired by the one for circle
diffeomorphisms. The upshot is that we obtain a finite amount of data about a Morse-Smale
diffeomorphism which is necessary and sufficient to determine whether or not it is topologically
conjugate to another Morse-Smale diffeomorphism. One of the main features of this classifica-
tion is that, given this abstract data, we will always be able construct a diffeomorphism that
realises this data.

More precisely, in the present paper we consider classMS(M2) preserving orientation Morse-
Smale diffeomorphisms of an orientable surface M2 and give a complete topological classification
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within this class, and solve the corresponding realization problem, by means of topological
invariants similar to those used in [9, 10, 30, 31]. To make this precise we need to introduce
some notions.

3.1 Maximal u-compatible system of linearizing neighborhoods:
statement of Theorem 1

Let f ∈ MS(M2). We will assume that beh(f) > 1 because all sink-source diffeomorphisms
are topologically conjugate. For a periodic point p of f let us denote by kp the period of
p and by νp the orientation type of p, i.e νp = + (−) if the map fkp |Wu

p
preserves (reverses)

orientation. Denote by Σ the set of all saddle points of f . In the construction below, linearizing
neighbourhoods of saddles will play a crucial role. It turns out to be convenient to choose
‘canonical’ linearizing neighborhoods. For this aim, for ν ∈ {+,−}, let us introduce a canonical
diffeomorphism aν : R2 → R2 by the formula

aν(x1, x2) = (ν2x1,
νx2

2
).

Notice that the origin O = (0, 0) is a saddle point with the unstable manifold W u
O = Ox1 and

the stable manifold W s
O = Ox2. Define

N = {(x1, x2) ∈ R2 : |x1 · x2| ≤ 1} and N t = {(x1, x2) ∈ R2 : |x1 · x2| ≤ t} for t ∈ (0, 1].

By construction, N is aν-invariant neighborhood of O. We will say that N is a canoni-
cal neighborhood. Denote by F u the one-dimensional foliation which consists of the leaves
{(x1, x2) ∈ N : x2 = c}, c ∈ R and by F s the one-dimensional foliation which consists of the
leaves {(x1, x2) ∈ N : x1 = c}, c ∈ R.

Figure 12: An u-linearizing neighborhood

Definition 1 (The u-linearizing neighborhood). Let σ be a saddle periodic point for f . A
neighborhood Nσ of σ together with a one-dimensional foliation F u

σ containing W u
σ as a leaf, is
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called u-linearizable if there is a homeomorphism µσ : N → Nσ which conjugates the canonical
diffeomorphism aνσ |N to the diffeomorphism fkσ |Nσ and sends leaves of the foliation F u to
leaves of the foliation F u

σ (see Figure 12).

For every point x ∈ Nσ denote by F u
σ,x the unique leave of the foliation F u

σ passing through
the point x.

Definition 2 (A u-compatible system of neighbourhoods). An f -invariant collection Nf of u-
linearizable neighborhoods Nσ of all saddle points σ ∈ Σ is called u-compatible if the following
properties are hold:

1) µσ(∂N) does not contain heteroclinic points for any σ ∈ Σ;
2) if W s

σ1
∩W u

σ2
= ∅ and W u

σ1
∩W s

σ2
= ∅ for σ1, σ2 ∈ Σ then Nσ1 ∩Nσ2 = ∅;

3) if W s
σ1
∩W u

σ2
6= ∅ for σ1, σ2 ∈ Σ then (F u

σ1,x
∩Nσ2) ⊂ F u

σ2,x
for x ∈ (Nσ1 ∩Nσ2) (see Figure

13).

Figure 13: An u-compatible system of neighbourhoods

It will be proved in Proposition 3 that there are u-compatible neighbourhoods for every
diffeomorphism f ∈ MS(M2). Indeed these are slight modifications of the admissible system
of tubular families constructed by Palis and Smale in [33] and [35]. It is easy to see (see, for
example Figures 1 and 21) that in general there is no conjugating homeomorphism which sends
an u-compatible system of neighborhoods for f to the u-compatible system of neighborhoods
for f ′, even when f and f ′ are topologically conjugated. Therefore we need a more meaningful
notion.

For a saddle point σ let us denote by [a, b]uσ ([a, b]sσ) the segment of W u
σ (W s

σ) situated
between the points a, b ∈ W u

σ (a, b ∈ W s
σ).
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Definition 3 (Heteroclinic rectangle). A closed 2-disc Πσ bounded by segments
[σ, a]uσ, [a, b]sσ1

, [b, c]uσ2
, [c, σ]sσ, σ1, σ2 ∈ Σ and such that intΠσ ∩ Ωf = ∅ is called a hete-

roclinic rectangle with respect to σ if every connected component of the set W s
Σ ∩Πσ intersects

every connected component of the set W u
Σ ∩ Πσ at exactly one point (see Figure 14).

Figure 14: A) Πσ is a heteroclinic rectangle. B) Πσ is not a heteroclinic rectangle

Definition 4 (The maximal u-compatible system of neighbourhoods). A u-compatible system
of neighbourhoods Nf is called maximal if every linearizing neighborhood Nσ ∈ Nf contains
each heteroclinic rectangle Πσ.

Theorem 1. For every diffeomorphism f ∈ MS(M2) there is a maximal u-compatible system
of neighbourhoods.

The proof of this theorem will be given in Section 5. Everywhere below we will denote
by Nσ a linearizing neighborhood of a saddle point σ from a maximal u-compatible system of
neighbourhoods.

3.2 Associating a scheme to a Morse-Smale surface diffeomorphism

Let Σ0 be the set of all sinks of f . Let us decompose the set Σ of all saddle periodic points of f
into subsets Σ1, . . . ,Σbeh(f)−1 inductively as follows: define Σi to be the set of all saddle points
of f such that beh(Oσ|Σi−1) = 1 for each orbit Oσ, σ ∈ Σi. Let Σbeh(f) be the set of all sources.

The quotient space Vf of the stable manifold of sinks. Let

Vf = W s
Σ0
\ Σ0, V̂f = Vf/f. (1)

Since f is a diffeomorphism, the natural projection p
f

: Vf → V̂f is a covering map. Every

connected component V̂j of V̂f is homeomorphic to a 2-torus and corresponds to a unique

periodic orbit Oωj of a sink ωj. Indeed, the factor space V̂f = Vf/f is obtained by taking a
fundamental annulus in the basin of each attracting periodic orbit and identifying its boundaries
by fmj where mj is the period of this sink.

21



Figure 15: For a Morse-Smale diffeomorphism on the 2-sphere whose phase portrait is given in Figure
1 we represent: A) A maximal u-compatible system; B) u-compatible system which is non-maximal.

Equators on the connected components V̂j of Vf . It will be helpful to choose a particular

generator of π1(V̂j) by defining an epimorphism

ηV̂j : π1(V̂j)→ mjZ

as follows, where mj is the period of the the sink ωj, as follows. Take the homotopy class

[ĉ] ∈ π1(V̂j) of a closed curve ĉ : R/Z → V̂j. Then ĉ : [0, 1] → V̂j lifts to a curve c : [0, 1] → Vf
connecting a point x with a point fn(x) for some multiple n ∈ Z of mj, where n is independent

of the lift. So define ηV̂j [ĉ] = n. A simple closed curve êj on V̂j is called an equator if ηV̂j [êj] = 0

and [êj] 6= 0 (see Figure 3.2). Note that the equator êj is uniquely determined up to homotopy

by ηj. Therefore ηV̂j is uniquely determined by the integer mj ≥ 1 and the equator êj on V̂j.
In this way we obtain a unique morphism

η
f

: π1(V̂f )→ Z

so that η
f
|π1(V̂j) = ηV̂j for each component V̂j of V̂f . We will say that a closed curve γ̂ winds

n ∈ N times in V̂j if ηV̂j [γ̂] = n ·mj, see Figure 3.2.

The covering space V̂j of V̂j. Given a component V̂j of V̂f , the set p−1(V̂j) ⊂ Vf is equal
to W s

Oωj
\ Oωj and therefore homeomorphic to V ∗j := (R2 \ O) × Zmj where as before mj is

the period of ωj. Let V ∗ be the union of all V ∗j and let p∗ : V ∗ → V̂f be the covering map

corresponding to pf . If êj is an equator on V̂j, then (p∗)−1(êj) is the countable union of simple
closed curves in each of the sets (R2 \ O) × {k} ⊂ V ∗j . The complement of these curves form
annuli in (R2 \O)×{k}, and gluing the two boundaries of such an annulus (according to fmj)
we obtain again the torus V̂j (see Figure 3.2). For convenience, in the figures below, (R2 \ O)
is drawn as a punctured disc (D2 \O).

22



Figure 16: V ∗j is represented when mj = 1, as is the equator êj and some meridian ŷj on V̂j . The

curve ej ⊂ V ∗j is a connected component of (p∗)−1(êj). The curve γ̂ ⊂ V̂j winds three times in V̂j , its

preimage (p∗)−1(γ̂j) consists of three curves passing through the points A,B,C, accordingly.

The maximal linearizing neighborhoods as subsets of Vf . For each i ∈
{0, 1, . . . , beh(f)}, let

W u
i = W u

Σi
, W s

i = W s
Σi
.

For each i ∈ {1, . . . , beh(f)− 1}, let

Ni =
⋃
σ∈Σi

Nσ

be the corresponding linearizing neighbourhoods.

The scheme of a diffeomorphism. For each i ∈ {1, . . . , beh(f)− 1}, σ ∈ Σi, let

Uσ = Nσ \
i−1⋃
j=1

Nj, Ûσ = p
f
(Uσ), U∗σ = (p∗)−1(Ûσ).

Let

Ûi =
⋃
σ∈Σi

Ûσ, Ûf =

beh(f)−1⋃
i=1

Ûi.

Let us define

Sf = (V̂f , ηf ,
beh(f)−1⋃
i=1

{Ûσ}σ∈Σi).

Definition 5 (The scheme of a diffeomorphism). We call the triple Sf the scheme associated
to the diffeomorphism f ∈MS(M2).
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Definition 6 (Equivalence of schemes). The schemes Sf and Sf ′ of the two diffeomorphisms
f, f ′ ∈ MS(M2), respectively, are said to be equivalent if there exist an orientation preserving
homeomorphism ϕ̂ : V̂f → V̂f ′ such that:

(1) ηf ′ϕ̂∗ = ηf ;

(2) ϕ̂(Ûf ) = Ûf ′ , moreover for every i = 1, . . . , beh(f)− 1 and every point σ ∈ Σi there is a
point σ′ ∈ Σ′i such that ϕ∗(U∗σ) = U∗σ′ , where ϕ∗ : V∗f → V∗f ′ is the lift of ϕ̂.

Remark 2. It will be proved in Lemma 4 below that the equivalence class of a scheme Sf does
not depend on a choice of the maximal system of the neighborhoods.

Remark 3. Property (1) in this definition can be restated by requiring that ϕ sends equators of
V̂f to equators of V̂f ′ , and that the integermj associated to a component V̂j is equal to the integer

associated to ϕ̂(V̂j). Property (2) in this definition ensures that the pair of annuli corresponding

to some Ûσ are mapped to a similar pair of annuli for f ′. The need for the requirement that
ϕ∗(U∗σ) = U∗σ′ will be clear when considering the diffeomorphisms corresponding to Figures 36

and 37. For each of those diffeomorphisms, the corresponding set Ûf consists of one annulus
(which wraps 5 times around the torus). The difference between these diffeomorphisms can
only be seen by considering the sets U∗σ in V∗f .

3.3 Schemes are complete invariants: statement of Theorem 2

Theorem 2. Two diffeomorphisms f, f ′ ∈ MS(M2) are topologically conjugate iff their
schemes Sf , Sf ′ are equivalent.

As small perturbations of a diffeomorphism f ∈ MS(M2) do not change its periodic dates
and the topological structure of the maximal u-compatible system of neighborhood, we obtain

Corollary 1. Each diffeomorphisms f ∈MS(M2) is structurally stable (in the C1 topology).

The previous theorem shows that one can also consider two MS diffeomorphisms which are
‘far away from each’, provided their schemes are equivalent.

In the next section we will also introduce the notion of a decomposed scheme, which will
make it clear why a scheme is determined by a finite amount of data. It will also be shown
that an ‘abstract’ decomposed scheme is realizable by a MS diffeomorphisms if and only if some
simple conditions are satisfied.

3.4 Examples of schemes associated to gradient MS-
diffeomorphisms

By the construction a scheme of a Morse-Smale diffeomorphism f is completely described by

a union of tori V̂f , the epimorphism η
f

and
beh(f)−1⋃
i=1

{Ûσ}σ∈Σi where the sets Σ1, . . . ,Σbeh(f)−1

are finite. As mentioned above, the epimorphism η
f

is uniquely determined by an equators on

each component V̂j of V̂f and an integer mj ≥ 1. In the figures in this paper, the equators are
depicted as the ‘outer boundaries’ of the tori.
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Figure 17: The scheme Sf of a diffeomorphism fS ∈MS(S2). See Example 1 for a further discussion.

Example 1 (Figure 17). Consider the diffeomorphism f : S2 → S2 from Figure 17. Here
V̂f = T2, beh(f) = 2, #Σ0 = 1, m = 1, #Σ1 = 2 and Ûσ1 , Ûσ2 consist of four annuli on the

torus V̂f . The set V̂ ∗ is represented as (R2 \O).

Example 2 (Figure 18). Consider the diffeomorphism f : S2 → S2 from Figure 18 where we
take f so that it permutes the two components of W u(σ1)\σ1. We obtain V̂f = T2, beh(f) = 2,

#Σ0 = 1, m = 1, #Σ1 = 2 and Ûσi , i = 1, 2 is an annulus which winds around twice along
the torus V̂f . To see this, notice that f induces an action on V∗f which corresponds to the
composition of a radial contraction and a half revolution around 0. Therefore the inner and
outer circle drawn in V∗f are identified by a half revolution.

Example 3 (Figures 8,19). Consider the diffeomorphisms f, f ′ : S2 → S2 from Figure 8. The
scheme associated to these diffeomorphisms are drawn in Figure 19 where V̂f = T2, beh(f) = 2,

#Σ0 = 1, m = 1, #Σ1 = 5 and Ûσi , i = 1, . . . , 5 consists of 2 annuli. Note that the difference
between the two schemes is the way the pair of components corresponding to each of the five
saddles are jointly embedded in V̂f .

Example 4 (Figure 20). Consider the diffeomorphism f : S2 → S2 from Figure 20 where we
take f so that it permutes the two components of W u(σ) \ σ. We obtain V̂f = T2, beh(f) = 2,

#Σ0 = 1, m = 1, #Σ1 = 1 and Ûσ is an annulus which winds around twice along the torus
V̂f as νσ = −. To see this, notice that f induces an action on V∗f which corresponds to the
composition of a radial contraction and a half revolution around 0. Therefore the inner and
outer circle drawn in V∗f are identified by a half revolution.
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Figure 18: The scheme Sf associated to a diffeomorphism fS ∈ MS(T2) for which the multipliers
at the attractor ω are negative, and the two separatrices of both saddles are permuted by f . See
Example 2 for a further discussion.

3.5 Examples of schemes associated to non-gradient MS-
diffeomorphisms

Up to now we only considered gradient MS-diffeomorphisms. Let us now consider two non-
gradient systems:

Example 5 (Figure 27). The scheme of the MS diffeomorphism f : S2 → S2 from Figure 27.
Here V̂f = T2, beh(f) = 3, #Σ0 = 1, m = 1, #Σi = 1, i = 1, 2. The sets Ûσi , i = 2, 3 are no

longer annuli in V̂f .

Example 6 (Figures 1,15,21). The scheme of the MS diffeomorphism f : S2 → S2 from Fig-
ures 1 and 15 is represented in Figure 21. Here V̂f = T2, beh(f) = 4, #Σ0 = 1, m = 1, #Σi = 1,

i = 1, 2, 3. The sets Ûσi , i = 2, 3 are no longer annuli in V̂f .

As the last example shows, the scheme for non-gradient like MS diffeomorphisms can in
general become quite complicated. Moreover it is much less easy to see how to reconstruct f
from the scheme. For this reason we will introduce the notion of a decomposed scheme of a
MS diffeomorphism in the next section.
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Figure 19: The schemes associated to the diffeomorphisms f, f ′ from Figure 5. For the schemes
to be equivalent in the sense of Definition 6, each pair of thickened curves corresponding to Ûσi
for f has to correspond to a pair associated to f ′. Since there is no homeomorphism between
the two tori preserving the pairs of annuli, by Theorem 2 below, the diffeomorphisms f, f ′ are
not topologically conjugated. See Example 3 for a further discussion.

4 The decomposed scheme and realising abstract ver-

sions of such schemes by MS diffeomorphisms

In this section we will associate a decomposed scheme to a MS surface diffeomorphism. For a
gradient-like MS diffeomorphism this decomposed scheme coincides with the scheme defined in
the previous section, but for non-gradient-like diffeomorphisms it consists of more, but simpler,
pieces.

It turns out that there one can give a few simple rules which determine whether or not an
abstract version of such a decomposed scheme determines again a MS diffeomorphism.
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Figure 20: The scheme Sf associated to a diffeomorphism fS ∈ MS(S2) for which the multipliers
at the attractor ω are negative, and the two separatrices of unique saddle are permuted by f . See
Example 4 for a further discussion.

Figure 21: A) The scheme associated to the diffeomorphism f from Figures 1A) and 15 with beh(f) =
4. Here the torus is obtained by identifying, by f , the dashed curves in Figure 15A) forming the
boundary of the fundamental annulus of the sink ω. B) The projection to the V̂f of non-maximal u-
compatible neighborhoods from Figures 15 B) for the same diffeomorphism. The projections A) and B)
are not homeomorphic, showing why it is important to consider maximal u-compatible neighborhoods.
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4.1 The decomposed scheme of a MS diffeomorphism and the state-
ment of Theorem 2’

For non gradient-like diffeomorphisms, it will be useful to introduce additional factor spaces.
Namely, let A0 = Ω0

f and for each i ∈ {1, . . . , beh(f)− 1} let us define

Ai = A0 ∪
i⋃

j=0

W u
j , Vi = W s

Ωf∩Ai \ Ai.

Observe that Ai is an attractor of f and f acts freely on Vi. Set V̂i = Vi/f and denote the
natural projection by

p
i

: Vi → V̂i.

Notice that V̂0 = V̂f and p0 = p
f
. It will be proved in Section 5 that each connected component

V̂i,j of V̂i is a torus, pi is a covering map and that p−1
i (V̂i,j) is again homeomorphic to V ∗i,j =

(R2 \ 0)× Zmi,j where mi,j is the period of the corresponding components of Ai. As before we

define a morphism ηi : π1(V̂i)→ Z, an equator ei,j on V̂i,j and V∗i =
⋃
j

V ∗i,j.

For each i ∈ {1, . . . , beh(f)− 1} let Gi = W s
Σi
\Σi and Ĝi = pi(Gi). The decomposed scheme

associated to f is
Si = (V̂i, ηi, Ĝi), i = 1, . . . , beh(f)− 1.

Definition 7 (Equivalence of decomposed schemes). Two decomposed schemes Si and S ′i
are equivalent if there exist orientation preserving homeomorphisms ϕ̂i : V̂i → V̂ ′i, i =
1, . . . , beh(f)− 1 such that:
(1) η′iϕ̂i∗ = ηi;
(2) ϕ̂(Ĝi) = Ĝ ′i, moreover for every point σ ∈ Σi there is a point σ′ ∈ Σ′i such that
ϕ∗i (W

s∗
σ ) = W s∗

σ′ , where ϕ∗i : V∗i → V ′∗i is the lift of ϕ̂i.

Let Nf = {Nσ, σ ∈ Σ} be a maximal u-compatible system of neighborhoods for a diffeo-
morphism f ∈MS(M2), Ni =

⋃
σ∈Σi

Nσ for i ∈ {1, . . . , beh(f)− 1}.

Analogously to Theorem 2 we have

Theorem 2’. Two diffeomorphisms f, f ′ ∈ MS(M2) are topologically conjugate iff their de-
composed schemes Sf , Sf ′ are equivalent.

We also will define an abstract version of a decomposed scheme. Theorem 3 states that
an abstract decomposed scheme is equivalent to a decomposed scheme of a diffeomorphism
f ∈MS(M2) if and only if Definitions 8 and 9 are satisfied.
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Figure 22: Cut & paste operations

4.2 Cut & paste operations and examples of decomposed schemes

Cut & paste operations. For every diffeomorphism f ∈ MS(M2) the set V̂i−1 can be
obtained from V̂i by a cut & paste operation. Indeed, notice that the manifolds V̂i \ pi(W s

i )
and V̂i−1 \pi−1(W u

i ) are homeomorphic by the homeomorphism φi = p
i
p−1
i−1

. Also the manifolds

V̂i \ pi(Ni) and V̂i−1 \ pi−1(Ni) are homeomorphic by φi. Each connected component N̂σ of the
set N̂i is homeomorphic to N̂u

νσ by means µ
N̂σ

= p
N̂uνσ

µσp
−1
i−1

and each connected component N̂ s
σ

of the set N̂ s
i is homeomorphic to N̂ s

νσ by means µ
N̂sσ

= p
N̂sνσ

µσp
−1
i

. Thus V̂i−1 formally can be

obtained from V̂i by a regluing of annuli V̂i \ Ĝi or regluing of sectors V∗i \ Gi (see Figure 22).
For example for a gradient-like case we have only two spaces V0 which is a union of basins

of the sink points and V1 which is a union of basins of the source points. The transition from
V1 to V0 consists of a consequent execution of cut & paste operations along every saddle orbits.
How we will see below the transition along one saddle orbit is of three types:

1. The stable separatrices of a saddle periodic orbit with negative multipliers enter the basin
of a periodic attractor, see Figure 23.

2. The stable separatrices of a saddle periodic orbit with positive multipliers enter the basin
of a periodic attractor, see Figure 24.

3. The stable separatrices of a saddle periodic orbit with positive multipliers belong to the
basins of different periodic attractors, see Figure 25.

30



Figure 23: The transition of the type 1 from V1 to V0 for the diffeomorphism fS ∈ MS(S2) from
Figure 20 for which the multipliers at the saddle point σ are negative, and the two separatrices of
unique saddle are permuted by f

Figure 24: The transition of the type 2 from V1 to V0 for the diffeomorphism fS ∈MS(S2) for which
the multipliers at the saddle point σ are positive, and the two separatrices to a basin of the same sink
point ω

If there are several saddles with the separatrices entering the basins of sinks then we have
to cut and paste several things at once, see Figure 26.

31



Figure 25: The transition of the type 3 from V1 to V0 for the diffeomorphism fS ∈MS(S2) for which
the multipliers at the saddle point σ are positive, and the two separatrices to basins of different sink
points ω1, ω2

Figure 26: The transition from V1 to V0 for the diffeomorphism fS ∈ MS(S2) for which there are
several saddles with the separatrices entering the basins of sinks.

For a non gradient-like case there are more than one successive transitions (see Figure 27)
but every transition along one saddle orbit is of one of these three types.

Example 7 (Figure 27). Consider the MS-diffeomorphism f shown in the top-right of Figure 27
with beh(f) = 3.

• The set V0 = W s
ω \ ω is homeomorphic to R2 \ O. We draw two equators e0 in V∗0 which
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bound an annulus. The torus V̂0 is obtained by identifying the boundary curves of this
annulus. We also add two curves e1 both on the left and right side of V∗0 , corresponding
to curves e1 in S2 (and corresponding to equators on the tori V1).

• The attractor A1 = W u
σ1
∪ω is a circle, and its basin V1 consists of two components, each

topologically a punctured disc, and so each contains two equators e1.

• The attractor A2 = W u
σ2
∪W u

σ1
∪ω, whose basin consists of three components surrounding

α1, α2, α3, each topologically a punctured disc, and so each contains three equators e2.

• Now it is easy to reconstruct the original diffeomorphism from the decomposed scheme
as follows: we identify the parts of the boundary in V∗1 ,V∗2 as suggested by the labelling
of saddle separatrices and after that take the connected sum of V∗0 ,V∗1 ,V∗2 as suggested
by the labelling of equators.

Figure 27: On the top left the scheme Sf is represented of the diffeomorphism fS ∈ MS(S2) on

the top right. The corresponding decomposed scheme consists of two objects V̂1, V̂2 with circles on
them. Here V̂1 (V̂0) is obtained by cutting and gluing along the circles in the torus V̂2 (V̂1). The
sets V∗0 ,V∗1 ,V∗2 are explained Example 7, as is the construction how these can be used to get back
the original diffeomorphism f . Namelly we have to identify the parts of the boundary in V∗1 ,V∗2 as
suggested by the labelling of saddle separatrices and after that take the connected sum of V∗0 ,V∗1 ,V∗2
as suggested by the labelling of equators.
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Example 8 (The decomposed scheme associated to the diffeomorphism from Figures 1A) and
15 with beh(f) = 4.). Consider the MS-diffeomorphism f shown in the top-left of Figure 28
with beh(f) = 4.

• The set V0 = W s
ω \ ω is homeomorphic to R2 \ O. We draw two equators e0 in V∗0 which

bound an annulus. The torus V̂0 is obtained by identifying the boundary curves of this
annulus. We also add two curves e1 both on the left and right side of V∗0 , corresponding
to curves e1 in S2 (and corresponding to equators on the tori V1).

• The attractor A1 = W u
σ1
∪ω is a circle, and its basin V1 consists of two components, each

topologically a punctured disc, and so each contains two equators e1.

• The attractor A2 = W u
σ2
∪W u

σ1
∪ω, whose basin consists of three components surrounding

α1, α2, α3, each topologically a punctured disc, and so each contains three equators e2.

• The attractor A3 = W u
σ3
∪ W u

σ2
∪ W u

σ1
∪ ω, whose basin consists of four components

surrounding α1, α2, α3, α4, each topologically a punctured disc, and so each contains three
equators e3.

• Now it is easy to reconstruct the original diffeomorphism from the decomposed scheme as
follows: we identify the parts of the boundary in V∗1 ,V∗2 ,V∗3 as suggested by the labelling
of saddle separatrices and after that take the connected sum of V∗0 ,V∗1 ,V∗2 ,V∗3 as suggested
by the labelling of equators.

In the next subsection we will discuss this cut & paste operation in the setting of some model
objects, and show that the decomposed scheme associated to a MS surface diffeomorphism
satisfies the compatibility and realizability properties from Definitions 8 and 9 (see Lemma 1
below).

4.3 Abstract decomposed schemes defined through model objects

Let m ≥ 1 be an integer and Vm = S1×R+×Zm. Thus Vm is a model for the basin of a periodic
attractor (equivalently the basin of dual repeller) of period m. Let k ∈ N, an integer n ≥ 0
so that n = 0 if k = 1 and otherwise n ∈ {1, . . . , k − 1} so that n and mk are coprime. Here
k models the number of saddle stable separatrices in each connected component of Vm and n

k

represents their ‘rotation number’, i.e., how the diffeomorphism permutes these separatrices.
As a local modal for the diffeomorphism on the basin we take the contraction φm,k,n : Vm → Vm
given by the formula:

φm,k,n(z, r, l) = (e
2πn
mk

iz,
r

2m
, l + 1(mod m)).

Let t ∈ [0, 1
k
), j ∈ {0, . . . ,mk − 1}, γj = φjm,k,n(ei2πt × R+ × {0}) and

γ =
mk−1⋃
j=0

γj.
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Figure 28: On the top right the scheme Sf is represented of the diffeomorphism fS ∈ MS(S2) on

the top left. The corresponding decomposed scheme consists of two objects V̂1, V̂2, V̂3 with circles on
them. Here V̂2 (V̂1, V̂0) is obtained by cutting and gluing along the circles in the torus V̂3 (V̂2, V̂1).
The sets V∗0 ,V∗1 ,V∗2 ,V∗3 are explained Example 8, as is the construction how these can be used to
get back the original diffeomorphism f . Namelly we have to identify the parts of the boundary in
V∗1 ,V∗2 ,V∗3 as suggested by the labelling of saddle separatrices and after that take the connected sum
of V∗0 ,V∗1 ,V∗2 ,V∗3 as suggested by the labelling of equators.

Thus t defines the angle of a ray γ0 in Vm and γ is φm,k,n-invariant union of rays, containing
γ0, which we will refer to as a ‘frame’. So γ models a saddle stable separatrix of period mk.
Notice that V̂m = Vm/φm,k,n is a torus. Denote by pm,k,n : Vm → V̂m the natural projection.

The set γ̂ = pm,k,n(γ) is a knot on V̂m. Let e = S1 × {1} × {0} and ê = pm,k,n(e). Denote by

η
V̂m

: π1(V̂m)→ mZ an epimorphism given by conditions: η
V̂m

([ê]) = 0 and η
V̂m

([γ̂]) = km.

Three types of collections of model objects. Let V ,Γ, τ, hτ be a collection of one of the
following three types:

1. V is Vm for some m, Γ is φm,k,n-invariant frame γ for some k, n with km is even, τ = mk
2

,
hτ identifies the rays γj and γτ+j for every j ∈ {0, . . . , km

2
− 1}, so that hτ is equal to
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Figure 29: The first type of V, Γ, hτ for m = 2, k = 3, n = 1, τ = 3. Here V̂Γ,τ is a unique torus with
mΓ,τ = 1 and a knot with 6 rotations as a projection of frame. On the left we can see realization of this
part of dynamics on torus. Here blue points are a new attractor, which consists of two components of
the period two and blue point with the union of green arcs is an old attractor of the period one.

identity with respect to the coordinate in R+, i.e., h(z, r, l) = (?, r, ?) for all (z, r, l) ∈ Vm.
This case models the situation where the stable separatrices of a saddle periodic orbit
with negative multipliers enter the basin of a periodic attractor of period m so that γj

and γτ+j correspond to the stable separatrices of one saddle point, see Figure 29.

2. V is Vm for some m, Γ is a pair of φm,k,n-invariant pairwise disjoint frames γ1, γ2 for some
k, n, τ ∈ {0, . . . , km − 1}, hτ identifies the rays γj1 and γτ+j

2 for every j ∈ {0, . . . , km −
1}, where hτ identity with respect to the coordinate in R+. This case models stable
separatrices of a saddle periodic orbit with positive multipliers enter the basin of a periodic
attractor of period m so that γj1 and γτ+j

2 correspond to the separatrices of one saddle
point, see Figure 30.

3. V is a disjoint union of Vm1 and Vm2 for some m1,m2, Γ is a pair of φm1,k1,n1- and
φm2,k2,n2-invariant pairwise disjoint frames γ1 ⊂ Vm1 , γ2 ⊂ Vm2 for some k1, n1, k2, n2

with m1k1 = m2k2, τ ∈ {0, . . . , k1m1 − 1}, hτ identifies the rays γj1 and γτ+j
2 for every

j ∈ {0, . . . , k1m1 − 1} identity with respect to the coordinate in R+. This case models
stable separatrices of a saddle periodic orbit with positive multipliers so that γj1 and γτ+j

2

correspond to two separatrices of one saddle belonging to the basins of different periodic
attractors, see Figure 31.

For every type denote by V̂ the corresponding space orbit, by p
V̂

: V → V̂ the natural projec-

tion, by Γ̂ the projection of Γ and by η
V̂

a map composed by the corresponding epimorphisms.

Cut & paste operations to obtain VΓ,τ . Denote by VΓ,τ the space obtained by regluing
the closures of sectors in V \Γ along the boundary with respect to hτ (see Figures 29-31 in the
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Figure 30: The second type of V, Γ, hτ for m = 1, k = 3, n = 1, τ = 0. Here V̂Γ,τ consists of two tori
with mΓ,τ,1 = 3, mΓ,τ,2 = 1 and two knots with 1 and 3 rotations as a projection of frame. On the
left we can see realization of this part of dynamics on 2-sphere. Here blue points are a new attractor,
which consists of one fixed component and other component of the period three and blue point with
the union of three green arcs is an old attractor of the period one.

bottom). It follows from the definition of hτ that every connected component of the set VΓ,τ is
homeomorphic to S1 × R+. As the homeomorphism hτ commutes with φm,k,n (conjugates
φm1,k1,n1 with φm2,k2,n2) there is a diffeomorphism φΓ,τ : VΓ,τ → VΓ,τ which permutes the
connected components.

Let V̂Γ̂,τ = VΓ,τ/φΓ,τ and p
V̂Γ,τ

: VΓ,τ → V̂Γ̂,τ be the natural projection. By construction

V̂Γ,τ is obtained by regluing the closures of annuli in V̂ \ Γ̂ along the boundary with respect to

the projection of hτ . The set V̂Γ,τ consists of one torus (resp. is a union of two tori) for the
first and third types (resp. the second type). It means that φΓ,τ forms the unique orbit (resp.
two orbits) from the connected components of the set VΓ,τ . Denote by mΓ,τ its period (resp.

mΓ,τ,1,mΓ,τ,2 their periods) and by η
V̂

Γ̂,τ

the corresponding epimorphisms. Thus V̂Γ,τ models the

basin of a new attractor which is the initial attractor with the stable separatrices of the saddle
orbit and which has one periodic component of the period mΓ,τ (two periodic components of
the periods mΓ,τ,1, mΓ,τ,2).

We will say that V̂Γ̂,τ is a result of regluing V̂ along Γ̂ with the parameter τ . Thus V̂Γ̂,τ is a
torus for the first and third types and consists of two tori for the second type.
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Figure 31: The third type of V, Γ, hτ for m1 = 1, k1 = 6,m2 = 2, k2 = 3, n1 = n2 = 1, τ = 5. Here
V̂Γ,τ is a unique torus with mΓ,τ = 1 and a knot with 12 rotations as a projection of frame. The
dynamics can represented on the surfase of the genus 2.

Cut & paste operations to obtain VĜ,T . Let V̂ be pairwise disjoint tori V̂1, . . . , V̂l with

a collection η
V̂

of epimorphisms η1 : π(V̂1) → m1Z, . . . , ηl : π(V̂l) → mlZ, Γ̂1, . . . , Γ̂l ⊂ V̂ be
pairwise disjoint sets of the described above types with parameters τ1, . . . , τl and

Ĝ =
l⋃

i=1

Γ̂i, T = {τ1, . . . , τl}.

We say that the manifold V̂Ĝ,T is a result of the regluing of V̂ along Ĝ with the parameters T
if we execute the regluing along Γ̂i with parameter τi for every i. Denote by p

V̂Ĝ,T
: V̂ → V̂Ĝ,T

the natural projection. Then V̂Ĝ,T again consists of a finite number tori on which the regluing
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induces a collection of epimorphisms η
V̂Ĝ

. Notice that the result does not depend on the order

in which one does the gluing.

Figure 32: The collection (V̂1, ηV̂1
, Ĝ0, T0), (V̂2, ηV̂2

, Ĝ1, T1) is not decomposed because Ĝ1 has empty

intersection with p
Ĝ2,T2

(Ĝ2).

The notion of an abstract decomposed scheme.

Definition 8. We say that a sequence of collections (V̂1, ηV̂1
, Ĝ1, T1), . . . , (V̂n, ηV̂n , Ĝn, Tn) is an

abstract decomposed scheme if for every i ∈ {2, . . . , n} we have:

1) (V̂i, ηV̂i )Ĝi,Ti = (V̂i−1, ηV̂i−1
);

2) Ĝi−1 is transversal to
n−i⋃
j=0

p
Ĝi,Ti
◦ · · ·◦p

Ĝi+j ,Ti+j
(Ĝi+j) and every component Γ̂i−1,` of Ĝi−1 has

nonempty intersection with p
Ĝi,Ti

(Ĝi) (see Figure 32 where this condition is not satisfied);

3) the set V̂i−1 \ int

(
Ĝi ∪

n−i⋃
j=0

p
Ĝi−1,Ti

◦ · · · ◦ p
Ĝi+j ,Ti+j

(Ĝi+j)

)
does not contain curvilinear tri-

angles as the connected components (see Figure 33 where this condition is failed).

Notice that that for arbitrary diffeomorphism f ∈ MS(M2) the property 1) (V̂i, ηV̂i )Ĝi,Ti =

(V̂i−1, ηV̂i−1
) is clear from the discussion about cutting and pasting operation above. Property 2)

corresponds to the fact that f is MS and 3) to the maximality of the linearising neighborhoods.
Thus we get the following fact.

Lemma 1. Each diffeomorphism f ∈MS(M2) induces an abstract decomposed scheme.
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Figure 33: Here there is a curvelinear triangle and so this situation does not represent a abstract
decomposed scheme according to Definition 8.

4.4 Realisability of any abstract decomposed scheme: statement of
Theorem 3

For an abstract decomposed collection (V̂1, ηV̂1
, Ĝ1, T1), . . . , (V̂n, ηV̂n , N̂n, Tn) let

V̂0 = (V̂1)Ĝ1,T1 ,

λ0 =
∑
V̂j⊂V̂0

mj,

λ1 =
n−1∑
i=1

li where li =
1

2

∑
γ̂j⊂Ĝi

mjkj,

λ2 =
∑
V̂j⊂V̂n

mj.

Definition 9. The collection

S = (V̂ , η
V̂
,
n⋃
i=1

{Ûi,`, ` = 1, . . . , ri})

is called a realizable scheme if there is an abstract decomposed scheme
(V̂1, ηV̂1

, Ĝ1, T1), . . . , (V̂n, ηV̂n , Ĝn, Tn) such that λ0 − λ1 + λ2 is even, λ0 − λ1 + λ2 ≤ 2

and:
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1) V̂ = V̂0 and η
V̂

= η
V̂0

;

2) Ĝi consists of ri components Γ̂i,`, ` = 1, . . . , ri such that Ûi,` is a tubular neighborhood of

p
Ĝ1,T1
◦ · · · ◦ p

Ĝi,Ti
(Γ̂i,`) for i ∈ {1, . . . , n}.

Notice that for the decomposed scheme of a diffeomorphism f ∈MS(M2) we have that λ0

is a number of the sink points, λ1 is a number of the saddle points, λ2 is a number of the source
points. Thus λ0 − λ1 + λ2 is the euler characteristic of M2 equals 2− 2g, where g is the genus
of the surface M2. Moreover, for each i ∈ {1, . . . , beh(f)} the set Ûi is a tubular neighborhood
of the set p

Ĝ1,T1
◦ · · · ◦ p

Ĝi,Ti
(Ĝi). Thus we have the following fact.

Lemma 2. The decomposed scheme associated to a diffeomorphism f ∈MS(M2) is an realiz-
able in the sense above.

Theorem 3. For any realizable decomposed scheme S there is a diffeomorphism fS ∈MS(M2)
whose scheme is equivalent to S and so that the euler characteristic of the orientable surface is
equal to λ0 − λ1 + λ2.

So MS orientation preserving surface diffeomorphisms can be fully classified by decom-
posed schemes (which automatically satisfy the properties of a realizable abstract decomposed
scheme), and vice versa each such abstract decomposed scheme corresponds to a unique conju-
gacy class of a diffeomorphisms.

4.5 Examples of realizable abstract decomposed schemes and their
realisations

Example 9 (Figure 34). Consider the scheme S from Figure 34. Here V̂ = T2, n = 1, mV̂ = 1

and Ûi = N̂i, i = 1, 2 consist of two annuli on the torus V̂ such that η
V̂
(i
N̂i
∗(π1(N̂i))) = Z.

The set (V̂)N̂ consists of one torus. Thus λ0 = 1, λ1 = 2 and λ2 = 1, MS = T2, Σ0 = {ω},
Σ1 = {σ1, σ2}, νσ1 = νσ2 = + and Σ2 = {α}. The interior of the square corresponds to the set
V∗, where fS is the contraction to ω. The torus is obtained by identifying the boundary of the
circle as suggested by the labelling of σi and taking of the connected sum as suggested by the
labelling of ei.

Example 10 (Figure 35). Consider the scheme S from Figure 35. Here V̂ = T2, n = 1, mV̂ = 1

and Û = N̂ consist of two annuli on the torus V̂ such that η
V̂
(i
N̂∗(π1(N̂))) = 2Z. The set (V̂)N̂

consists of two tori V̂1,1 and V̂1,2 such that mV̂1,1
= 1 and mV̂1,2

= 2. Thus λ0 = 1, λ1 = 2 and

λ2 = 3, MS = S2, Σ0 = {ω}, Σ1 = {σ, fS(σ)}, νσ = + and Σ2 = {α1, fS(α1), α2}. The interior
of the square corresponds to the set V∗, where fS is the contraction to ω. The ambient sphere
S2 is obtained by identifying the boundary of the circle as suggested by the labelling of σi and
taking of the connected sum as suggested by the labelling of ei.
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Figure 34: Schemes S and a phase portrait of the diffeomorphism fS ∈MS(M2).

Figure 35: Schemes S and a phase portrates of the diffeomorphisms fS ∈MS(M2).

Example 11 (Figure 36). Consider the scheme S from Figure 36. Here V̂ = V̂1 ∪ V̂2, n = 1,
mV̂i

= 1 and Û = N̂ consist of two annuli Âi, i = 1, 2 on the tori V̂i such that η
V̂i

(i
Âi
∗(π1(Âi))) =
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Figure 36: Schemes S and a phase portrait of the diffeomorphism fS ∈MS(M2).

5Z. The set (V̂)N̂ consists of one torus V̂1,1 such that mV̂1,1
= 5. Thus λ0 = 2, λ1 = 5 and

λ2 = 5, MS = S2, Σ0 = {ω1, ω2}, Σ1 = {σ, fS(σ), f 2
S(σ), f 3

S(σ), f 4
S(σ)}, νσi = +1, i = 1, 2, 3, 4, 5

and Σ2 = {α, fS(α), f 2
S(α), f 3

S(α), f 4
S(α)}. The interior of the punctured discs in the middle of

the picture corresponds to the set V∗, where fS is the contractions to ω1, ω2 in the composition
with the 1/5 part of the revolution around ω1, ω2, accordingly. The ambient sphere S2 is
obtained by identifying the boundary of the circle as suggested by the labelling of σi and
taking of the connected sum as suggested by the labelling of ei.

Example 12 (Figure 37). Consider the scheme S from Figure 37. Here V̂ = V̂1 ∪ V̂2, n = 1,
mV̂i

= 1 and Û = N̂ consist of two annuli Âi, i = 1, 2 on the tori V̂i such that η
V̂i

(i
Âi
∗(π1(Âi))) =

5Z. The set (V̂)N̂ consists of one torus V̂1,1 such that mV̂1,1
= 5. Thus λ0 = 2, λ1 = 5 and

λ2 = 1, MS is the surface of the genus 2, Σ0 = {ω1, ω2}, Σ1 = {σ, fS(σ), f 2
S(σ), f 3

S(σ), f 4
S(σ)},
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Figure 37: Schemes S and a phase portrait of the diffeomorphisms fS ∈MS(M2).

νσi = +1, i = 1, 2, 3, 4, 5 and Σ2 = {α}. The interior of two punctured discs in the middle of
picture corresponds to the set V∗, where fS is the contractions to ω1, ω2 in the composition
with the 1/5, 2/5 part of the revolution around ω1, ω2, accordingly. The ambient surface of the
genus 2 is obtained by identifying the boundary of the circle as suggested by the labelling of σi
and taking of the connected sum as suggested by the labelling of ei.

Example 13 (Figure 38). Consider the scheme S from Figure 38. Here V̂ = V̂ , mV̂ = 1 and
n = 3. Let us describe the decomposed sequence.

• The set V̂3 consists of two tori, one of which contains two knots Ĝ3 such that
η
V̂3

(i
Ĝ3
∗(π1(Ĝ3))) = Z.

• The set V̂2 = (V̂3)Ĝ3
consists of three tori V̂1,1, V̂1,2 such that mV̂1,j

= 1. The set N̂1

consists of two annuli Â0,i, i = 1, 2 on the torus V̂1,2 such that η
V̂1,2

(i
Â1,i
∗(π1(Â1,i))) = Z.

• The set V̂2 = (V̂1)N̂1
consists of three tori V̂2,1, V̂2,2, V̂2,3 such that mV̂2,j

= 1. The set N̂2

consists of two annuli Â2,1, Â2,2 on the tori V̂2,2, V̂2,3 such that η
V̂2,j

(i
Â2,i
∗(π1(Â2,i))) = Z.
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Figure 38: Schemes S, the decomposed sequence and a phase portrates of the diffeomorphisms
fS ∈MS(M2).

• The set V̂3 = (V̂2)N̂2
consists of two tori V̂3,1, V̂3,2 such that mV̂3,j

= 1.

Thus λ0 = 1, λ1 = 5 and λ2 = 2, MS = T2, Σ0 = {ω}, Σ1 = {σ1}, Σ2 = {σ2}, Σ3 = {σ3},νσi =
+, i = 1, 2, 3 and Σ4 = {α1, α2}. The ambient torus T2 is obtained as a connected sum three
copies of 2-sphere as suggested by the labelling of saddle points σi and the equators ei.

5 Proof of Theorem 1: maximal systems of neighbour-

hoods

In this section we will proof Theorem 1. Let us give some notation before. Recall that we divide
the set Σ of the saddle points by parts Σ = Σ1∪· · ·∪Σbeh(f)−1. For each i ∈ {0, . . . , beh(f)−1}
let us set

Ai =
i⋃

j=0

W u
j , Ri =

beh(f)⋃
j=i+1

W s
j , Vi = M2 \ (Ai ∪Ri).
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Observe that Ai is an attractor, Ri is a repeller of f and f acts freely on Vi. Set V̂i = Vi/f and
denote the natural projection by

p
i

: Vi → V̂i.

Notice that V̂0 = V̂f and p0 = p
f
. It is proved, for example, in book [21] that each connected

component of V̂i is a closed orientable surface and pi is a cover. We introduce the following
notations:

- for j ∈ {1, . . . , beh(f) − 1}, k ∈ {0, . . . , beh(f) − 1} let Ŵ s
j,k = pk(W

s
j ∩ Vk), Ŵ u

j,k =
pk(W

u
j ∩ Vk);

- Lu =
beh(f)−1⋃
i=1

W u
i , L

s =
beh(f)−1⋃
i=1

W s
i , L̂ui = pi(L

u), L̂si = pi(L
s).

Before a proof of Theorem 1 we introduce a more strong than u-compatibility property for
a neighborhood of a saddle point.

Figure 39: Linearizing neighborhood

Definition 10 (The linearizing neighborhood). Let σ be a saddle periodic point for f . A
neighborhood Nσ of the point σ with a one-dimensional foliation Fuσ containing W u

σ as a leaf
and a one-dimensional foliation Fsσ containing W s

σ as a leaf, is called linearizable if there is a
homeomorphism µσ : Nσ → N which conjugates the diffeomorphism fkσ |Nσ to the canonical
diffeomorphism aνσ |N and sends leaves of the foliation Fuσ to leaves the foliation F u, also sends
leaves of the foliation Fsσ to leaves the foliation F s (see Figure 39).

For every point x ∈ Nσ denote by Fuσ,x, F
s
σ,x the unique leave of the foliation Fuσ, F

s
σ, accord-

ingly, passing through the point x.

Definition 11 (The compatible system of neighbourhoods). An f -invariant collection Nf of
linearizable neighborhoods Nσ of all saddle points σ ∈ Σ is called compatible if the following
properties are hold:

1) µ−1
σ (∂N) does not contain heteroclinic points for any σ ∈ Σ;
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2) if W s
σ1
∩W u

σ2
= ∅ and W u

σ1
∩W s

σ2
= ∅ for σ1, σ2 ∈ Σ then Nσ1 ∩ Nσ2 = ∅;

3) if W s
σ1
∩W u

σ2
6= ∅ for σ1, σ2 ∈ Σ then (Fuσ1,x

∩ Nσ2) ⊂ Fuσ2,x
and (Fsσ2,x

∩ Nσ1) ⊂ Fsσ1,x
for

x ∈ (Nσ1 ∩ Nσ2) (see Figure 40).

Figure 40: A compatible system of neighbourhoods

Lemma 3. For every diffeomorphism f ∈MS(M2) there is a compatible system of neighbour-
hoods.

Proof: The proof consists of three steps.
Step 1. Here, we prove the existence of f -invariant neighbourhoods Qs

1, . . . , Q
s
beh(f)−1 of

the sets Σ1, . . . ,Σbeh(f)−1 respectively, equipped with one-dimensional f -invariant foliations
Fu1 , . . . , F

u
beh(f)−1 whose leaves are smooth such that the following properties hold for each

i ∈ {1, . . . , beh(f)− 1}:
(i) the unstable manifolds W u

i are leaves of the foliation Fui and each leaf of the foliation Fui
is transverse to Ls;

(ii) for any 1 ≤ i < k ≤ beh(f)− 1 and x ∈ Qs
i ∩Qs

k, we have the inclusion Fuk,x ∩Qs
i ⊂ Fui,x.

Let us prove this by a decreasing induction on i from i = beh(f)− 1 to i = 1.
For i = beh(f)− 1, it follows from the definition of Vbeh(f)−1 that (W s

beh(f)−1 r Σbeh(f)−1) ⊂
Vbeh(f)−1. Since f acts freely and properly on W s

beh(f)−1, the quotient Ŵ s
beh(f)−1,beh(f)−1 is

a smooth submanifold of V̂beh(f)−1; it consists of finite number circles. The lamination

L̂sbeh(f)−1 accumulates on Ŵ s
beh(f)−1,beh(f)−1. Choose a closed tubular neighbourhood N̂ s

beh(f)−1 of

Ŵ s
beh(f)−1,beh(f)−1 in V̂beh(f)−1; denote its projection by πubeh(f)−1 : N̂ s

beh(f)−1 → Ŵ s
beh(f)−1,beh(f)−1.

Its fibres form a segment foliation {dubeh(f)−1,x | x ∈ Ŵ s
beh(f)−1,beh(f)−1}. Since L̂sbeh(f)−1 is a
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C1-lamination containing Ŵ s
beh(f)−1,beh(f)−1 as a leaf, if the tube N̂ s

beh(f)−1 is small enough, the

fibres are transverse to L̂sbeh(f)−1.

Set Qs
beh(f)−1 := p−1

beh(f)−1(N̂ s
beh(f)−1) ∪ W u

beh(f)−1. This is a subset of M2 which carries a
foliation Fubeh(f)−1 defined by pullpacking the fibres of πubeh(f)−1 and by adding W u

beh(f)−1 as extra

leaves. This is the wanted foliation satisfying (i) and (ii) for i = beh(f)− 1. Notice that the
leaves of Fubeh(f)−1 are smooth.

For the induction we assume the construction is done for every j > i and we have to
construct an f -invariant neighborhood Qs

i of the saddle points from Σi carrying an f -invariant
foliation Fui satisfying (i) and (ii). Moreover, by genericity the boundary ∂Qs

j , j > i, is assumed
to avoid all heteroclinic points.

For j > i, let Q̂s
j,i := pi(Q

s
j ∩ Vi) and F̂uj,i := p

i
(Fuj ∩ Vi). For the same reason as in the

case i = beh(f)− 1, the set Ŵ s
i,i is a smooth submanifold of V̂i consisting of circles. Choose a

tubular neighbourhood N̂ s
i of Ŵ s

i,i with a projection π̂ui : N̂ s
i → Ŵ s

i,i whose fibres are segments.

Similarly, Ŵ u
i+1,i is a compact submanifold, consisting of a finite number circles.

The set L̂ui is a compact lamination and its intersection with Ŵ s
i,i consists of a countable set

of points which are the projections of the heteroclinic points belonging to the stable manifolds
W s
i . Actually, there is a hierarchy in L̂ui ∩ Ŵ s

i,i which we are going to describe in more details.

Set Hk := Ŵ u
i+k,i ∩ Ŵ s

i,i for k > 0. Since Ŵ u
i+1,i is compact, H1 is a finite set: H1 =

{h1
1, ..., h

1
t(1)}. We are given neighbourhoods, called boxes, B1

` , ` = 1, ..., t(1), about these

points, namely, the connected components of Q̂s
i+1,i∩ N̂ s

i . Due to the fact that ∂Q̂s
i+1,i contains

no heteroclinic points, ∂Q̂s
i+1,i ∩W s

i,i is isolated from L̂ui . Therefore, if the tube N̂ s
i is small

enough, L̂ui does not intersect ∂Q̂s
i+1,i ∩ N̂ s

i . Then, by shrinking Qs
j , j > i + 1 if necessary, we

may guarantee that Q̂s
j,i ∩ N̂ s

i is disjoint from ∂Q̂s
i+1,i ∩ N̂ s

i .

Since Ŵ u
i+2,i accumulates on W u

i+1,i, there are only finitely many points of H2 outside of all

boxes B1
` , ` = 1, ..., t(1). Let H̄2 := {h2

1, ..., h
2
t(2)} be this finite set. The open set Q̂s

i+2,i is a

neighbourhood of H̄2. The connected components of Q̂s
i+2,i∩N̂ s

i which contain points of H̄2 will

be the box B2
` for ` = 1, ..., t(2). We argue with B2

` with respect to L̂ui and the neighbourhoods
Q̂s
j,i, j > i+ 1, in a similar manner as we do with B1

` . And so on, until H̄n.
Due to the induction hypothesis, each above-mentioned box is foliated. Namely, B1

` is
foliated by F̂ui+1,i; the box B2

` is foliated by F̂ui+2,i, and so on. But the leaves are not contained

in fibres of N̂i; even more, not every leaf intersects W s
i,i. We have to correct this situation in

order to construct the foliation Fui satisfying the wanted conditions (i) and (ii).
For every j > i, the foliation Fuj may be extended to the boundary ∂Qs

j and a bit beyond.

Once this is done, if N̂ s
i is enough shrunk, each leaf of F̂ui+k,i though x ∈ Bk

` intersects Ŵ s
i,i (it is

understood that the boxes are intersected with the shrunk tube without changing their names).
So, we have a projection along the leaves πk,` : Bk

` → Ŵ s
i,i; but, the image of πk,` is larger than

Bk
` ∩ Ŵ s

i,i. Then, we choose a small enlargement B′k` of Bk
` such that B′k` r Bk

` is foliated by

F̂ui+k,i and avoids the lamination L̂ui .

On B′k` rBk
` we have two projections: one is π̂ui and the other one is πk,`. We are going to
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interpolate between both using a partition of unity (we do it for Bk
` but it is understood that

it is done for all boxes). Let φ : N̂ s
i → [0, 1] be a smooth function which equals 1 near Bk

` and
whose support is contained in B′k` . Define a global C1 retraction q̂ : N̂ s

i → Ŵ s
i,i by the formula

q̂(x) =
(
1− φ(x)

)
π̂ui (x) + φ(x)

(
πk,`(x)

)
.

Here, we use an affine manifold structure on each component of Ŵ s
i,i by identifying it with the

circle S1 := R/Z. So, any positively weighted barycentric combination makes sense for a pair
of points sufficiently close. When x ∈ Ŵ s

i,i, we have q̂(x) = x. Then, by shrinking the tube N̂ s
i

once more if necessary we make q̂ be a fibration whose fibres are transverse to the lamination
L̂si and we make each leaf of F̂uj,i, j > i, in every box B`

k be contained in a fibre of q. Henceforth,
pullbacking that strip (and its fibration) by pi and adding the unstable manifold W u

i provide the
wanted Qs

i and its foliation Fui satisfying the required properties. So, the induction is proved.
We also have the existence of f -invariant neighborhoods Qu

1 , . . . , Q
u
beh(f)−1 of the saddle

points from Σ1, . . . ,Σbeh(f)−1 respectively, equipped with one-dimensional f -invariant folia-
tions Fs1, . . . , F

s
beh(f)−1 with smooth leaves such that the following properties hold for each

i ∈ {1, . . . , beh(f)− 1}:
(iii) the stable manifolds W s

i are leaves of the foliation Fsi and each leaf of the foliation Fsi
is transverse to Lu;

(iv) for any 1 ≤ j < i and x ∈ Qu
i ∩Qu

j , we have the inclusion (Fsj,x ∩Qu
i ) ⊂ Fsi,x.

The proof is done by an increasing induction from i = 1; it is skipped due to similarity to
the previous one.

Step 2. We prove that for each i = 1, . . . , beh(f) − 1 there exists an f -invariant neigh-
borhood Ñi of the set Σi which is contained in Qs

i ∩ Qu
i and such that the restrictions of the

foliations Fui and Fsi to Ñi are transverse.
For this aim, let us choose a fundamental domain Ks

i of the restriction of f to W s
i \Σi and

take a tubular neighborhood N(Ks
i ) of Ks

i whose segment fibres are contained in leaves of Fui .
Due to property (i), Fui is transverse to W s

i . Since Fsi is a C1-foliation, if N(Ks
i ) is small enough,

the foliations Fsi and Fui have transverse intersection in N(Ks
i ). Set

Ñi := W u
i

⋃
k∈Z

fk (N(Ks
i )) .

This is a neighborhood of Σi; it satisfies condition (v) and the previous properties (i)–(iv) still
hold.

Step 3. Let us show the existence of linearizable neighborhoods Ni ⊂ Ñi, i = 1, . . . , beh(f)−
1, for which the required foliation are the restriction to Ni of the foliation Fui .

Let σ ∈ Σi and Ñσ be a connected component of Ñi containing σ. There is a homeomorphism
ϕuσ : W u

σ → W u
O (resp. ϕsσ : W s

σ → W s
O) conjugating the diffeomorphisms fper σ|Wu

σ
and aνσ |Wu

O

(resp. fper σ|W s
σ

and aνσ |W s
O

). In addition, for any point z ∈ Ñσ there is unique pair of points

zs ∈ W s
σ , zu ∈ W u

σ such that z = Fsi,zu ∩ F
u
i,zs . We define a topological embedding µ̃σ : Ñσ → R2

by the formula µ̃σ(z) = (x1, x2) where x1 = ϕuσ(zu) and x2 = ϕsσ(zs). Choose t0 ∈ (0, 1] such
that N t0 ⊂ µ̃σ(Ñσ) and ∂N t0 does not contain images with respect µ̃σ of heteroclinic points.
Observe that aνσ |N t0 is conjugate to aνσ |N by the suitable homothety h. Set Nσ = µ̃−1

σ (N t0) and
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µσ = hµ̃σ : Nσ → N . Then, Nσ is the wanted neighbourhood with its linearizing homeomorphism
µσ. �

Let us prove that for every diffeomorphism f ∈ MS(M2) there is a maximal u-compatible
system of neighbourhoods.

Proof: To prove the theorem it remains to show how to do the constructed in Lemma 3
compatible system of neighborhoods Nf by maximal.

Firstly define N1 = N1 and Nbeh(f)−1 = Nbeh(f)−1 because there is no heteroclinic rectangle
connected with saddle points from Σ1 and Σbeh(f)−1. Let us describe a modification of Ni, i ∈
{2, . . . , beh(f)− 2} up to Ni which is a maximal.

For each i ∈ {1, . . . , beh(f)− 1}, σ ∈ Σi let

N̂σ = p
f
(Nσ), N̂i =

⋃
σ∈Σi

N̂σ, N̂f =
⋃
σ∈Σi

N̂i, .

If the set V̂f \ N̂f does not contain a connected component whose boundary is a curvilinear
triangle with sides l1 ⊂ N̂i1 , l ⊂ N̂i, l2 ⊂ N̂i2 for some 1 ≤ i1 < i < i2 ≤ beh(f) − 1 then
Ni = Ni for every i ∈ {2, . . . , beh(f) − 2}. In the opposite case, for every such component ∆̂
there are saddle points σ1 ∈ Σi1 , σ ∈ Σi, σ2 ∈ Σi2 such that W s

σ1
∩W u

σ 6= ∅, W s
σ ∩W u

σ2
6= ∅ and

W s
σ1
, W u

σ , W
s
σ , W

u
σ2

form a heteroclinic rectangle Πσ for which the set ∆ = Πσ \(Nσ∪Nσ1∪Nσ2)

is a connected component of the preimage p−1
f (∆̂). Let N(Πσ) be a neighborhood of Πσ bonded

by µσ1(∂N1+ε), µσ2(∂N1+ε), W s
σ ,W

u
σ for some small enough ε > 0. Let N∗σ = Nσ∪

⋃
k∈Z

fk(N(Πσ)).

Due to compatibility of neighborhood Nf we can construct on N∗σ a new unstable foliation Fu∗σ
which is compatible with the unstable foliations in all saddle neighborhoods. Let us show that
this neighborhood is a linearizable.

For this aim it is enough to construct a homeomorphism g : N∗σ → Nσ sending the foliation
Fu∗σ to Fuσ and such that gfper(σ) = fper(σ)g. Notice that each connected component of the sets
pi(N

∗
σ) and pi(Nσ) is an annulus and pi(N

∗
σ) ⊃ pi(Nσ). Let us choose a neighborhood N(pi(W

s
σ))

of pi(W
s
σ) such that N(pi(W

s
σ)) ⊂ pi(Nσ). Let us define a homeomorphism ĝ : pi(N

∗
σ) → pi(Nσ)

such that ĝ|N(pi(W s
σ)) = id, ĝ(pi(N

∗
σ) \ N(pi(W

s
σ))) = pi(Nσ) \ N(Ŵ s

σ)) and ĝ preserves leaves
of the foliation pi(F

u∗
σ ). The required homeomorphism g is a lift of ĝ which is identity in a

neighborhood of W s
σ ∪W u

σ .
Thus we get a new u-compatible system of neighbourhoods for which the set V̂f \(

⋃
p∈Ωf\σ

N̂p∪

N̂∗σ) contains less by 1 connected components. When we do the same operation for all such
components ∆̂ we get the desired maximal u-compatible system of neighborhoods. �

6 Proof of Theorem 2: classifying diffeomorphisms

In this section we prove Theorem 2, i.e., we prove that two diffeomorphisms f, f ′ ∈ MS(M2)
are topologically conjugate if and only if their schemes are equivalent.

Proof:
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Necessity. Let f, f ′ ∈MS(M2) be two diffeomorphisms which are topologically conjugated
by means of a homeomorphism h : M2 → M2. The conjugating homeomorphism sends the
invariant manifolds of the periodic points of f to corresponding objects of f ′, preserving stability
and periodicity, and therefore beh(f) = beh(f ′), kf = kf ′ . Thus h induces a maximal system
of compatible neighborhoods {h(Nσ), σ ∈ Σ} for f ′ which is different from Nf ′ in the general
case. Then it remains to prove the following lemma.

Lemma 4. The class of the equivalence of a scheme Sf , f ∈ MS(M2) does not depend on a
choice of a maximal system of compatible neighborhoods.

Proof: Let Nf = {N1, . . . , Nbeh(f)−1} and Nf = {N1, . . . ,Nbeh(f)−1} be different maximal
systems of compatible neighborhoods with the foliations F u, Fu, accordingly. Without loss of
generality we can assume that Ni ⊂ intNi for each i ∈ {1, . . . , beh(f) − 1} (in the opposite
case we can choose a maximal system Nf = {N1, . . . ,Nbeh(f)−1} such that Ni ⊂ intNi and
Ni ⊂ intNi).

Let Gi =
i⋃

j=1

Ni, Gi =
i⋃

j=1

Nj, Ĝi = p
f
(Gi), Ĝi = p

f
(Gi) and Ĝi,j = pj(Gi), Ĝi,j = pj(Gi) for

j ∈ {1, . . . , beh(f)− 1}. By the increasing induction on i from 1 to beh(f)− 1 let us show that
Ĝi \ Ĝi is a direct product.

For i = 1, Ĝ1 and Ĝ1 are tubular neighborhoods of a finite number circles pf (W
u
1 ). As

Ĝ1 ⊂ int Ĝ1 then, by the Annulus conjecture, Ĝ1 \ Ĝ1 is a direct product.
Supposing that the statement is true for i let us prove it for i+ 1.
By assumption Ĝi \ Ĝi is a direct product. As Ĝi,i \ int Ĝi,i = pi(p

−1
f (Ĝi \ int Ĝi)) then

Ĝi,i \ int Ĝi,i is a direct product. Let us show that the intersections of the circles Ŵ u
i+1,i with the

sets Ĝi,i and Ĝi,i consists of a finite number segments I1,i, . . . , Ini,i and I1,i, . . . , Ini,i, accordingly,

such that Ij,i ⊂ int Ij,i for each j ∈ {1, . . . , ni}. It will imply that Ĝi+1\ Ĝi+1 is a direct product.
Let F u

i be the corresponding foliation on Ni associated to the foliations F u
σ , σ ∈ Σi. In-

deed, the circles Ŵ s
i,i and Ŵ u

i+1,i have a transversal intersection along a finite number nii points

zi1,i, . . . , z
i
nii,i

; N̂i,i, N̂i,i are tubular neighborhoods of the circles Ŵ s
i,i and every connected com-

ponent of the intersections Ŵ u
i+1,i ∩ N̂i,i, Ŵ

u
i+1,i ∩ N̂i,i is a leaf of the foliations pi(F

u
i ), pi(F

u
i ),

accordingly. Hence, the each intersection Ŵ u
i+1,i ∩ N̂i,i and Ŵ u

i+1,i ∩ N̂i,i consist of nii segments
I i1,i, . . . , I

i
nii,i

and Ii1,i, . . . , I
i
nii,i

, passing through the points zi1,i, . . . , z
i
nii,i

, accordingly, such that

Iij,i ⊂ int I ij,i for each j ∈ {1, . . . , nii}.
As the sets Ŵ s

i−1,i \ N̂i,i) and Ŵ s
i−1,i \ N̂i,i are compact then the intersections (Ŵ s

i−1,i \ N̂i,i)∩
Ŵ u
i+1,i and (Ŵ s

i−1,i \ N̂i,i) ∩ Ŵ u
i+1,i consist of a finite number points, which are the same due to

properties of the maximal neighborhood, denote by zi−1
1,i , . . . , z

i−1

ni−1
i ,i

these points. Similar to the

arguments above, the each intersection Ŵ u
i+1,i ∩ (N̂ s

i−1,i \ N̂i,i) and Ŵ u
i+1,i ∩ (N̂si−1,i \ N̂i,i) consist

of ni−1
i segments I i−1

1,i , . . . , I
i−1

ni−1
i ,i

and Ii−1
1,i , . . . , I

i−1

ni−1
i ,i

, passing through the points zi−1
1,i , . . . , z

i−1

ni−1
i ,i

,

accordingly, such that Ii−1
j,i ⊂ int I i−1

j,i for each j ∈ {1, . . . , ni−1
i }.

Similarly for every k ∈ {1, . . . , i−2} we have that each intersection Ŵ u
i+1,i∩(N̂ s

k,i\
i⋃

j=k+1

N̂j,i)
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and Ŵ u
i+1,i ∩ (N̂sk,i \

i⋃
j=k+1

N̂j,i) consist of nki segments Ik1,i, . . . , I
k
nki ,i

and Ik1,i, . . . , I
k
nki ,i

, passing

through the points zk1,i, . . . , z
k
nki ,i

, accordingly, such that Ikj,i ⊂ int Ikj,i for each j ∈ {1, . . . , nki }.
Thus we get the required statement.

To finish the proof let us choose a tubular neighborhood Û− of ∂Ĝbeh(f)−1 and tubular

neighborhood Û+ of ∂Ĝbeh(f)−1 avoiding all p
f
(W u

Σ). As Ĝbeh(f)−1 \ Ĝbeh(f)−1 is a direct product

there is a homeomorphism ϕ̂ : V̂f → V̂f which is identity on Ĝbeh(f)−1 \U− and out of Ĝbeh(f)−1∪
U+ and such that ϕ̂(Gbeh(f)−1) = Gbeh(f)−1. It is easy to modify ϕ such that ϕ̂(Ûσ) = Ûσ. �

Sufficiency. Let us prove the sufficiency of the condition in Theorem 2. Assume that
the two diffeomorphisms f, f ′ ∈ MS(M2) have equivalent schemes.The schemes Sf and Sf ′
of diffeomorphisms f, f ′ ∈ MS(M2), respectively, are said to be equivalent if there exist an
orientation-preserving homeomorphism ϕ̂ : V̂f → V̂f ′ such that:

1) ηf ′ϕ̂∗ = ηf ;

2) ϕ̂(Ûf ) = Ûf ′ , moreover for every point σ ∈ Σi there is a point σ′ ∈ Σ′i such that

ϕ̂(Ûσ) = Ûσ′ and ϕ(Uσ) = Uσ′ .
In a sequence of lemmas we will construct a maximal system of compatible neighborhoods

{N1, . . . ,Nbeh(f)−1} for f such that Ni ⊂ int(Ni) for every i ∈ {1, . . . , beh(f)− 1} and a conju-
gating f with f ′ embedding ψ on the union of these neighborhoods such that ψ(D) ⊂ int(D′),
where

D =

beh(f)−1⋃
i=1

Ni, D =

beh(f)−1⋃
i=1

Ni, D′ =
beh(f)−1⋃
i=1

N ′i .

Using Lemma 4 we can interpolate ψ on
beh(f)−1⋃
i=1

Ni with ϕ on
beh(f)−1⋃
i=1

Ni and get a homeo-

morphism h : M2 \ (Σ0 ∪ Σbeh(f)) → M ′2 \ (Σ′0 ∪ Σ′beh(f ′) conjugating f |M2\(Σ0∪Σbeh(f)) with

f ′|M\(Σ′0∪Σ′
beh(f ′))

. Notice that M2 \ (W s
Σ∪Σbeh(f)) = W s

Σ0
and M2 \ (W s

Σ∪Σ′beh(f ′)) = W s
Σ′0

. Since

h(W s
Σ) = W s

Σ′ then h(W s
Σ0
\Σ0) = W s

Σ′0
\Σ′0. Thus for each connected component A of W s

Σ0
\Σ0,

there is a sink Ω ∈ Σ0 such that A = W s
ω \ ω. Similarly, h(A) is a connected component of

W s
Σ′0
\ Σ′0 such that h(A) = W s

ω′ \ ω′ for a sink ω′ ∈ Σ′0. Then we can continuously extend h

to Σ0 by defining h(ω) = ω′ for every ω ∈ Σ0. A similar extension of h to Σbeh(f) finishes the
proof of Theorem 2.

To construct the embedding ψ, firstly, similar to proof of Lemma 3, we can prove the
existence in the neighborhoods N1, . . . ,Nbeh(f)−1 of f -invariant one-dimensional foliations
F s

1 , . . . , F
s
beh(f)−1 whose leaves are smooth and such that the following properties hold for each

i ∈ {1, . . . , beh(f)− 1}:
- the stable manifolds W s

i are leaves of the foliation F s
i and the foliation F s

i is transverse to
the foliation F u

i ;
- for any 1 ≤ i < k ≤ beh(f)− 1 and x ∈ Ni ∩Nk, we have the inclusion F s

i,x ∩Nk ⊂ F s
k,x.

By property 2) of the equivalence of the schemes, we have that there is a one-to-one cor-
respondence between the sets Σi and Σ′i through the equality ϕ(Uσ) = Uσ′ . For j > i, let us
denote by J u

i,j the union of all connected components of W u
j ∩Ni which do not lie in intNk with
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i < k < j. Let J u
i =

beh(f)−1⋃
j=i+1

J u
i,j. Also for j < i, let us denote by J s

i,j the union of all connected

components of W s
j ∩Ni which do not lie in intNk with j < k < i. Let J s

i =
i−1⋃
j=1

Ji,j. Also we

introduce the same sets J ′ui and J ′si for f ′. The embedding ϕ gives a one-to-one correspondence
between the connected components Ju of J u

i,j and the connected components J ′u of J ′ui,j by the
rule: there are exactly two connected components BJu of ∂Ui ∩ Uj such that ∂Ju ⊂ BJu and
the same for prime, then BJ ′u = ϕ(BJu).

Lemma 5. There is a homeomorphism ψu : W u
Σ → W ′u

Σ′ consisting of conjugating homeomor-
phisms ψu1 : W u

1 → W ′u
1 , . . . , ψ

u
beh(f)−1 : W u

beh(f)−1 → W ′u
beh(f)−1 such that:

1) ψui (Ju) ⊂ J ′u for every segment Ju ⊂ J u
j,i, j < i and

ψui (F s
i,y ∩W u

i ) = F ′si,ψui (y) ∩W ′u
i , for every y ∈ Ju;

2) ψui (W u
i ∩ Ls ∩Nj) = W ′u

i ∩ L′s ∩N ′j, j < i.

Proof: This statement is proved step by step from i = 1 to i = beh(f)− 1.
First, take i = 1. Let σ ∈ Σ1 and γuσ is the unstable separatrix of σ. Let us choose a point

x ∈ γuσ . Let a ∈ (F s
σ,x ∩ ∂Uσ), a′ = ϕ(a). Then the point F ′sσ′,a′ ∩W u

σ′ belongs to the unstable
separatrix of σ′ which we denote by γσ′ . Let us choose a point x′ ∈ γσ′ such that:

(*) if F s
σ,x ∩ Ju 6= ∅ for Ju ⊂ J u

1 then F ′sσ′,x′ ∩ J ′u 6= ∅ also.

Denote by I the segment [x, fper(γσ)(x)] ⊂ γσ, by I ′ the segment [x′, fper(γσ′ )(x′)] ⊂ γσ′ and
by ψuI : I → I ′ a homeomorphism such that ψuI (x) = x′. After that we extend it up to a
homeomorphism ψuγσ : γσ → γσ′ by the formula

ψuγσ(y) = f ′−n·per(γσ′ )(ψuI (fn·per(γσ)(y))),

where fn·per(γσ)(y) ∈ I. Let us do the similar construction for each unstable separatrices of Σ1,
satisfying the condition ψuf(γσ) = f ′ψuγσf

−1. Then we get a homomorphism on W u
1 \ Σ1 which

can be continuously extended up to the homeomorphism ψu1 : W u
1 → W ′u

1 . Due to (∗) we can
define an embedding ψuJu on every J ⊂ J u

1,j, j > 1 by the rule y′ = ψuJu(y), y ∈ Ju, where

ψu1 (F s
1,y ∩W u

1 ) = F ′s1,y′ ∩W ′u
1 .

For i = 2 we do the similar construction for ψu2 assuming additionally that ψu2 |Ju = ψuJu|Ju
for Ju ∈ J u

1,2. Also we can define an embedding ψuJu on every Ju ⊂ J u
2,j, j > 2 by the rule

y′ = ψuJu(y), y ∈ J , where
ψu2 (F s

2,y ∩W u
2 ) = F ′s2,y′ ∩W ′u

2 .

Continue this process we get the desired embeddings ψu3 , . . . , ψ
u
beh(f)−1. �

By the construction the homeomorphism ψu send the heteroclinic points of f to the het-
eroclinic points of f ′. Then for every connected component Js of J s

i,j passing through the
point x ∈ W u

i we will denote by J ′s a connected component of J ′si,j passing through the point
ψui (x) ∈ W ′u

i . Absolutely similar to proof of Lemma 5, but starting from i = beh(f) − 1 to
i = 1, we can prove the following result.
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Lemma 6. There is a homeomorphism ψs : W s
Σ → W ′s

Σ consisting of conjugating homeomor-
phisms ψs1 : W s

1 → W ′s
1 , . . . , ψ

s
beh(f)−1 : W s

beh(f)−1 → W ′s
beh(f)−1 such that:

1) ψsi (J
s) ⊂ J ′s for every segment Js ⊂ J s

j,i, j > i and

ψsi (F
u
i,y ∩W s

i ) = F ′ui,ψsi (y) ∩W ′s
i , for every y ∈ Ju;

2) ψs|Ls∩Lu = ψu|Ls∩Lu.

Finitely for each i ∈ {1, . . . , beh(f) − 1} we construct an embedding ψi : Ni → N ′i by the
formula: for a point x = F s

i,xu ∩ F u
i,xs , x

u ∈ W u
i , x

s ∈ W s
i we have ψi(x) = F ′si,ψui (xu) ∩ F ′ui,ψsi (xs). It

follows from Lemmas 5 and 6 that ψi(Ni) ⊂ int(N ′i ) and a map ψ composed by ψ1, . . . , ψbeh(f)−1

is a homeomorphism. A choice of a maximal system of u-compatible neighborhoods with
property Ni ⊂ Ni finishes the proof. �

7 Proof of Theorem 3: realizing diffeomorphisms

In this section we prove that for any abstract scheme S ∈ S there is a diffeomorphism f ∈
MS(M2) whose scheme is equivalent to the scheme S.

Proof: Let S = (V̂ , η, Û) be an abstract scheme. Let us construct step by step a diffeo-
morphism f ∈MS(M2) such that the schemes Sf and S are equivalent.

Step 1. It follows from the definition of an abstract scheme that V̂ is a disjoint union of
the finite number 2-tori V̂1, . . . , V̂k with the map η

V̂
composed from the non-trivial homo-

morphisms η
V̂1
, . . . , η

V̂k
. Then for each i ∈ {1, . . . , k} there is a number m

V̂i
∈ N such that

V̂i = ((R2 \O)× Zm
V̂i

)/bi, where bi : R2 × Zm
V̂i

→ R2 × Zm
V̂i

given by the formula

bi(x1, x2, λ) =

{
(x1

2
, x2

2
, λ+ 1), λ ∈ {1, . . . ,m

V̂i
− 1};

(x1

2
, x2

2
, 1), λ = m

V̂i

and the natural projection pi : (R2 \ O) × Zm
V̂i

→ V̂i induces the homomorphism η
V̂i

. Denote

by W the disjoint union of R2 × Zm
V̂1

, . . . ,R2 × Zm
V̂k

and by fW a diffeomorphism composed

by a1, . . . , ar. Also denote by V the disjoint union of (R2 \O)×Zm
V̂1

, . . . , (R2 \O)×Zm
V̂k

and

by pV : V → V̂ the natural projection.

Step 2. Let Û1 =
n1⋃
j=1

Û1,j. For each j ∈ {1, . . . , n1} let U1,j = p−1
V (Û1,j). It follows from the

definition of the abstract scheme that there are numbers m1,j ∈ N, ν1,j ∈ {−1,+1}, a canonical
neighborhood N and a diffeomorphism µ1,j : U1,j → N × Zm1,j

which conjugate fW |U1,j
with a

diffeomorphism a1,j|N×Zm1,j
given on N × Zm1,j

by the formula

a1,j(x1, x2, λ) =

{
(2x1,

x2

2
, λ+ 1), λ ∈ {1, . . . ,m1,j − 1};

(ν1,j · 2x1, ν1,j · x2

2
, 1), λ = m1,j.
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Set A1,1 = W \ int U1,1, B1,1 = N × Zm1,1 and Q1,1 = A1,1 ∪µ−1
1,1
B1,1, Q̄1,1 = A1,1 ∪

B1,1. Denote by p
Q1,1

: Q̄1,1 → Q1,1 the natural projection then projections p
A1,1

= p
Q1,1
|A1,1 ,

p
B1,1

= p
Q1,1
|B1,1 induce structure of smooth connected orientable separable 3-manifold without

boundary (possible non Hausdorff). Let us show that the space Q1,1 is Hausdorff.
For this aim it is enough to prove that a set EQ1,1 = {(x, y) ∈ Q̄1,1 × Q̄1,1 : p

Q1,1
(x) =

p
Q1,1

(y)} is closed in Q̄1,1 × Q̄1,1 (see, for example, a book [22] by Kosnevski). It is equivalent

that (x, y) ∈ EQ1,1 for any sequence (xm, ym) ∈ EQ1,1 converging in the space Q̄1,1 × Q̄1,1 to a
point (x, y). Without loss of generality we can suppose that all points of the sequence xm (ym)
belong to the same connected component of Q̄1,1 as x (y) (in the opposite case it is possible to
consider a subsequence with such property). Let us consider four possibilities: 1) xm, ym ∈ A1,1;
2) xm, ym ∈ B1,1; 3) xm ∈ A1,1, ym ∈ B1,1; 4) xm ∈ B1,1, ym ∈ A1,1.

In cases 1) and 2), xm = ym. Then x = y and, hence, (x, y) ∈ EQ1,1 . In case 3) xm ∈ A1,1,
ym ∈ B1,1, hence ym ∈ ∂N1,1 and xm = µ1,1(ym). As ∂N1,1 is closed in Q̄1,1 then, using
continuation of the map µ1,1, we get next series of equalities: x = lim

m→∞
xm = lim

m→∞
µ1,1(ym) =

µ1,1( lim
m→∞

(ym)) = µ1,1(y). Thus, (x, y) ∈ EQ1,1 . In case 4) similar to above it is possible to

prove that (x, y) ∈ EQ1,1 .
Thus Q1,1 is smooth connected orientable 2-manifold without boundary. Set fA1,1 =

p
A1,1

fWp
−1
A1,1

: p
A1,1

(A1,1) → p
A1,1

(A1,1) and fB1,1 = p
B1,1

a1,1p
−1
B1,1

: p
B1,1

(B1,1) → p
B1,1

(B1,1).

By the construction the maps fA1,1 and fB1,1 are diffeomorphisms coinciding on set
p
A1,1

(A1,1) ∩ p
B1,1

(B1,1). Then a map fQ1,1 : Q1,1 → Q1,1 given by formula

fQ1,1(x) =

{
f
A1,1

(x), x ∈ p
A1,1

(A1,1);

f
B1,1

(x), x ∈ p
B1,1

(B1,1)

is a diffeomorphism of the manifold Q1,1. By the construction non-wandering set of fQ1,1 consists
of unique saddle periodic orbit and r sink periodic orbits.

We will do the same operation with the all connected components of U1,j ⊂ U1 to get a
smooth connected orientable 2-manifold without boundary QU1 and a diffeomorphism fQU1

:
QU1 → QU1 with a finite set Σ1 of the saddle periodic points and a finite set Σ0 of the sink
periodic points.

Set V̌ = (QU1 \W u
Σ1∪Σ0

)/fQU1
and denote by p

V̌
: QU1 \W u

Σ1∪Σ0
→ V̌ the natural projection.

Then the manifold V̌ is equivalent to the manifold V̂Û1
= V̂2.

Continuing this process we get a smooth connected orientable noncompact 2-manifold Q
without boundary and a diffeomorphism fQ : Q→ Q whose non-wandering set consists of finite
set Σ of the saddle periodic hyperbolic orbits.

Step 3. Set C = Q \W u
ΩfQ

. Denote by Ĉ the space of orbit of action fQ on C and by

p
Ĉ

: Ĉ → Ĉ the natural projection. By the construction C is obtained by surgery of V̂n along

N̂n and, hence, due to Proposition ??, it is homeomorhic to finite number (denote it ku) of
copies of the torus. Similar to Step 1 for each connected component ĉ of Ĉ there is a number
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mĉ ∈ N and a diffeomorphism bĉ : R2 × Zmĉ → R2 × Zmĉ given by the formula

bĉ(x1, x2, λ) =

{
(2x1, 2x2, λ+ 1), λ ∈ {1, . . . ,mc − 1};
(2x1, 2x2, 1), λ = mĉ

such that fQ|p
Ĉ

(ĉ) topologically conjugated with bĉ|(R2\O)×Zmĉ by means a diffeomorphism µĉ.

Denote by Du a set composed by R2 × Zmĉ , ĉ ⊂ Ĉ, by D′u a set composed by (R2 \ O) ×
Zmĉ , ĉ ⊂ Ĉ , by µC : C → D′u the map composed by the homeomorphisms µĉ, ĉ ⊂ Ĉ and by

bC : Du → Du a map composed by bĉ, ĉ ⊂ Ĉ. Set M2 = Q ∪µC Du, M̄
2 = Q ∪Du and denote

by p
M2 : M̄2 → M2 the natural projection. Like above a proof that the topological space

M2 is smooth connected orientable 2-manifold without boundary reduces to checking that set
EM2 = {(x, y) ∈ M̄2 × M̄2 : p

M2 (x) = p
M2 (y)} is closed in M̄2 × M̄2, that is if a sequence

(xm, ym) ∈ EM2 converges in M̄2 × M̄2 to a point (x, y) then the point (x, y) belongs to EM2 .
Consider four cases: 1) xm, ym ∈ Q; 2) xm, ym ∈ Du; 3) xm ∈ Q, ym ∈ Du; 4) xm ∈ Du, ym ∈

Q.
In cases 1) and 2), xm = ym. Then x = y and, hence, (x, y) ∈ EM2 . In case 3) xm ∈ Q,

ym ∈ D′u, ym = µ
C

(xm) and there are two subcases: 3a) y ∈ D′u; 3b) y = O. In subcase 3a),
like to above, x = µ−1

C (y) and, hence, (x, y) ∈ EM2 . Show that case 3b) is impossible.
As ym ∈ D′u and y = O then the sequence xm = µ−1

C (ym) converges to x ∈ W u
Σ1
∪ Σ0. Then

there is a sequence km → +∞ such that f−kmQ (xm) → z ∈ C. Thus b−kmC (ym) → µ−1
C (z). It is

contradiction because b−kmC (ym)→ O.
The case 4) can be proved similarly to case 3).
Set p

Q
= p

M2 |Q, p
Du

= p
M2 |Du and fDu = p

Du
dsp
−1
Du

: p
Du

(Du)→ p
Du

(Du). Similar to above

we can prove that a map f : M2 →M2 given by formula

f(x) =

{
fQ(x), x ∈ p

Q
(Q);

fDu(x), x ∈ p
Du

(Du)
is a diffeomorphism of the manifold M2 whose non-wandering

set consists of k saddle periodic hyperbolic orbits and of ks sink periodic hyperbolic orbits and
of ku source periodic hyperbolic orbits.

Step 4. In this step we show that the manifold M2 is compact and, hence, the diffeomor-
phism f belongs to the class MS(M2) and its scheme by the construction is equivalent to the
abstract scheme S.

For proof of compactness of M2 it is enough to show that any sequence {xn} ∈ M2 has
converging subsequence. If infinitely many members of {xn} belong to Ωf the fact is obvious.
Consider opposite case. By the construction M2 =

⋃
p∈Ωf

W s
p =

⋃
p∈Ωf

W u
p . Up to consider a

subsequence there is a point p1 ∈ Ωf such that {xn} ⊂ (W s
p1
\ p1). Denote by K fundamental

domain of the restriction of f to W s
p1
\ p1. Then for each member xn of the sequence {xn}

there is an integer kn such that yn = fkn(xn) ∈ K. Without loss of generality we can suppose
that sequence {yn} = {fkn(xn)} converges to a point y ∈ K (in opposite case we can consider
subsequence with such property). For the sequence {kn} there are two possibilities:

1) {kn} is bounded;
2) {kn} is not bounded.
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In case 1), up to consider a subsequence, the sequence {kn} converges to an integer k. Then
lim
n→∞

xn = lim
n→∞

f−kn(yn) = f−k(y). Thus a subsequence of {xn} converges to f−k(y) ∈ W s
p1

.

In case 2), up to consider a subsequence, {kn} converges to +∞ or −∞. In case kn → −∞
a subsequence of {xn = f−kn(yn)} converges to p1. In case kn → +∞, up to consider a
subsequence, there is a point p2 ∈ Ωf such that {xn} ⊂ (W u

p2
\ p2) and, hence, a subsequence

of {xn = f−kn(yn)} converges to p2. �
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