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Weighted independent domination is an NP-hard graph problem, which remains compu-
tationally intractable in many restricted graph classes. In particular, the problem is NP-hard 
in the classes of sat-graphs and chordal graphs. We strengthen these results by showing 
that the problem is NP-hard in a proper subclass of the intersection of sat-graphs and 
chordal graphs. On the other hand, we identify two new classes of graphs where the 
problem admits polynomial-time solutions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Independent domination is the problem of finding in a graph an inclusionwise maximal independent set of minimum 
cardinality. This is one of the hardest problems of combinatorial optimisation and it remains difficult under substantial 
restrictions. In particular, it is NP-hard for so-called sat-graphs, where the problem is equivalent to satisfiability [19]. It is 
also NP-hard for planar graphs, triangle-free graphs, graphs of vertex degree at most 3 [3], line graphs [18], chordal bipartite 
graphs [7], etc.

The weighted version of the problem (abbreviated WID) deals with vertex-weighted graphs and asks to find an inclu-
sionwise maximal independent set of minimum total weight. This version is provenly harder, as it remains NP-hard even 
for chordal graphs [5], where independent domination can be solved in polynomial time [8]. In the present paper, we 
strengthen two NP-hardness results by showing that WID is NP-hard in a proper subclass of the intersection of sat-graphs 
and chordal graphs.

On the positive side, it is known that the problem is polynomial-time solvable for interval graphs, permutation graphs 
[4], graphs of bounded clique-width [6], etc.

Let us observe that all classes mention above are hereditary, i.e. closed under taking induced subgraphs. It is well-known 
(and not difficult to see) that a class of graphs is hereditary if and only if it can be characterised in terms of minimal 
forbidden induced subgraphs. Unfortunately, not much is known about efficient solutions for the WID problem on graph 
classes defined by finitely many forbidden induced subgraphs. Among rare examples of this type, let us mention cographs 
and split graphs.

✩ Extended abstract of this paper appeared in the proceedings of WG 2017 – the 43rd International Workshop on Graph-Theoretic Concepts in Computer 
Science [14].
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• A cograph is a graph in which every induced subgraph with at least two vertices is either disconnected or the comple-
ment of a disconnected graph. The cographs are precisely P4-free graphs, i.e. graphs containing no induced P4. In the 
case of cographs, the problem can be solved efficiently by means of modular decomposition.

• A split graph is a graph whose vertices can be partitioned into a clique and an independent set. In terms of forbidden 
induced subgraphs, the split graphs are the graphs which are free of 2K2, C4 and C5. The only available way to solve 
WID efficiently for a split graph is to examine all its inclusionwise maximal independent sets, of which there are 
polynomially many.

The class of sat-graphs, mentioned earlier, consists of graphs whose vertices can be partitioned into a clique and a graph 
of vertex degree at most 1. Therefore, sat-graphs form an extension of split graphs. With this extension the complexity 
status of the problem jumps from polynomial-time solvability to NP-hardness. In the present paper, we study two other 
extensions of split graphs and show polynomial-time solvability in both of them.

The first of them deals with the class of (P5, P 5)-free graphs, which also extends the cographs. From an algorithmic 
point of view, this extension is resistant to any available technique. To crack the puzzle for (P5, P 5)-free graphs, we develop 
a new decomposition scheme combining several algorithmic tools. This enables us to show that the WID problem can be 
solved for (P5, P 5)-free graphs in polynomial time.

The second extension of split graphs studied in this paper deals with the class of (P5, P3 + P2)-free graphs. To solve the 
problem in this case, we develop a tricky reduction allowing us to reduce the problem to the first class.

Let us emphasise that in both cases the presence of P5 among the forbidden graphs is necessary, because each of P 5
and P3 + P2 contains a C4 and by forbidding C4 alone we obtain a class where the problem is NP-hard [3]. Whether the 
presence of P5 among the forbidden graphs is sufficient for polynomial-time solvability of WID is a big open question. 
For the related problem of finding a maximum weight independent set (WIS), this question was answered only recently 
[12] after several decades of attacking the problem on subclasses of P5-free graphs (see e.g. [2,9,11]). In particular, prior 
to solving the problem for P5-free graphs, it was solved for (P5, H)-free graphs for all graphs H with at most 5 vertices, 
except for H = C5.

WID is a more stubborn problem, as it remains NP-hard in many classes where WIS can be solved in polynomial time, 
such as line graphs, chordal graphs, bipartite graphs, etc. In [13], the problem was solved in polynomial time for many 
subclasses of P5-free graphs, including (P5, H)-free graphs for all graphs H with at most 5 vertices, except for H = P 5, 
H = P3 + P2 and H = C5. In the present paper, we solve the first two of them, leaving the case of (P5, C5)-free graphs 
open. We believe that WID in (P5, C5)-free graphs is polynomially equivalent to WID in P5-free graphs. Determining the 
complexity status of the problem in both classes is a challenging open question. We discuss this and related open questions 
in the concluding section of the paper.

The rest of the paper is organised as follows. In the remainder of the present section, we introduce basic terminology 
and notation. In Section 3 we solve the problem for (P5, P 5)-free graphs, and in Section 4 we solve it for (P5, P3 + P2)-free 
graphs.

All graphs in this paper are finite, undirected, without loops and multiple edges. The vertex set and the edge set of a 
graph G are denoted by V (G) and E(G), respectively. A subset S ⊆ V (G) is

– independent if no two vertices of S are adjacent,
– a clique if every two vertices of S are adjacent,
– dominating if every vertex not in S is adjacent to a vertex in S .

For a vertex-weighted graph G with a weight function w , by idw(G) we denote the minimum weight of an independent 
dominating set in G .

If v is a vertex of G , then N(v) is the neighbourhood of v (i.e. the set of vertices adjacent to v) and V (G) \ N(v)

is the antineighbourhood of v . We say that v is simplicial if its neighbourhood is a clique, and v is antisimplicial if its 
antineighbourhood is an independent set.

Let S be a subset of V (G). We say that a vertex v ∈ V (G) \ S dominates S if S ⊆ N(v). Also, v distinguishes S if v has 
both a neighbour and a non-neighbour in S . By G[S] we denote the subgraph of G induced by S and by G − S the subgraph 
G[V \ S]. If S consists of a single element, say S = {v}, we write G − v , omitting the brackets.

If G is a connected graph but G − S is not, then S is a separator (also known as a cut-set). A clique separator is a separator 
which is also a clique.

As usual, Pn, Cn and Kn denote a chordless path, a chordless cycle and a complete graph on n vertices, respectively. 
Given two graphs G and H , we denote by G + H the disjoint union of G and H , and by mG the disjoint union of m copies 
of G .

We say that a graph G contains a graph H as an induced subgraph if H is isomorphic to an induced subgraph of G . 
Otherwise, G is H-free.

A class Z of graphs is hereditary if it is closed under taking induced subgraphs, i.e. if G ∈ Z implies that every induced 
subgraph of G belongs to Z . It is well-known that Z is hereditary if and only if graphs in G do not contain induced 
subgraphs from a set M , in which case we say that M is the set of forbidden induced subgraphs for Z .

For an initial segment of natural numbers {1, 2, . . . , n} we will often use the notation [n].
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Fig. 1. Graph Sun3.

2. An NP-hardness result

As we mentioned in the introduction, the WID problem is NP-hard in the classes of sat-graphs and chordal graphs. 
A graph is chordal if it is (C4, C5, C6, . . .)-free. A graph G is called a sat-graph if there exists a partition A ∪ B = V (G) such 
that

1. A is a clique (possibly, A = ∅);
2. G[B] is an induced matching, i.e. an induced 1-regular graph (possibly, B = ∅);
3. there are no triangles (a, b, b′), where a ∈ A and b, b′ ∈ B .

We shall refer to the pair (A, B) as a sat-partition of G .
Below we show that WID is NP-hard in the class of (C4, Sun3)-free sat-graphs, where Sun3 is the graph shown in 

Fig. 1. Since cycles Ck with k ≥ 5 are not sat-graphs (which is easy to see), this class also is a subclass of chordal graphs. 
Moreover, Sun3 is both a sat-graph and a chordal graph. Therefore, (C4, Sun3)-free sat-graphs form a proper subclass of the 
intersection of sat-graphs and chordal graphs.

Before we prove the main result of this section, let us make the following useful observation.

Observation 1. Let G be a sat-graph with a sat-partition (A, B). If G contains Sun3 as an induced subgraph, then 1, 2, 3 ∈ A and 
4, 5, 6 ∈ B.

Theorem 1. The WID problem is NP-hard in the class of (C4, Sun3)-free sat-graphs.

Proof. We prove the theorem by transforming the decision version of the minimum dominating set problem in 
(C3, C4, C5, C6)-free graphs to the WID problem in (C4, Sun3)-free graphs. Since the former problem in NP-complete (see 
[10]), this will prove that the latter is NP-hard.

For an n-vertex graph G = (V , E) let us define the graph G ′ = (V ′, E ′) with vertex set V ′ = {v1, v2, v3 : v ∈ V } and edge 
set E ′ = {(v1, v2), (v2, v3) : v ∈ V } ∪ {(w2, v3), (w3, v2) : (w, v) ∈ E} ∪ {(w3, v3) : w, v ∈ V , u 	= v}.

Fig. 2 illustrates the transformation of P4 into P ′
4. It is easy to see that for every graph G , the graph G ′ is a sat-graph. 

Moreover, it is C4-free, i.e. G ′ is a chordal graph. Also using the fact that Sun3 has the unique sat-partition (see Observa-
tion 1) it is not hard to check that if G ′ contains Sun3 as an induced subgraph, then G has a cycle of length at most 6. 
Therefore, for any (C3, C4, C5, C6)-free graph G , the graph G ′ is a (C4, Sun3)-free sat-graph.

Further, for every v ∈ V we assign weight 1 to vertex v1, weight 2 to vertex v2, and weight 2n to vertex v3.
Now, we claim that G has a dominating set of size at most k if and only if G ′ has an independent dominating set of total 

weight at most n + k. First, suppose G has a dominating set D of size at most k. Then D ′ = {v2 : v ∈ D} ∪ {v1 : v ∈ V \ D}
is clearly an independent dominating set of G ′ with total weight at most n + k. On the other hand, suppose G ′ has an 
independent dominating set D ′ of total weight at most n + k. If k ≥ n, then V is a dominating set of G of size at most k. If 
k < n, then D ′ cannot contain any of the vertices of weight 2n and hence D ′ is of the form {v2 : v ∈ D} ∪ {v1 : v ∈ V \ D}
for some subset D of V . For any vertex u ∈ V , since u3 is dominated in G ′ by some v2 ∈ D ′ , we have that in G vertex u is 
dominated by v ∈ D . Hence, D is a dominating set of G . Moreover, the total weight of D ′ is n + |D| implying that D is of 
size at most k. �
3. WID in (P5, P 5)-free graphs

To solve the problem for (P5, P 5)-free graphs, we first develop a new decomposition scheme in Section 3.1.3 that com-
bines modular decomposition (Section 3.1.1) and antineighborhood decomposition (Section 3.1.2). Then in Section 3.2 we 
apply it to (P5, P 5)-free graphs.
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Fig. 2. Graphs P4 (top) and P ′
4 (bottom).

3.1. Graph decompositions

3.1.1. Modular decomposition
Let G = (V , E) be a graph. A set M ⊆ V is a module in G if no vertex outside of M distinguishes M . Obviously, V (G), ∅

and any vertex of G are modules and we call them trivial. A non-trivial module is also known as a homogeneous set. A graph 
without homogeneous sets is called prime. The notion of a prime graph plays a crucial role in modular decomposition, which 
allows to reduce various algorithmic and combinatorial problems in a hereditary class Z to prime graphs in Z (see e.g. [16]
for more details on modular decomposition and its applications). In particular, it was shown in [3] that the WID problem 
can be solved in polynomial time in Z whenever it is polynomially solvable for prime graphs in Z .

In our solution, we will use homogeneous sets in order to reduce the problem from a graph G to two proper induced 
subgraphs of G as follows. Let M ⊂ V be a homogeneous set in G . Denote by H the graph obtained from G by contracting 
M into a single vertex m (or equivalently, by removing all but one vertex m from M). We define the weight function w ′ on 
the vertices of H as follows: w ′(v) = w(v) for every v 	= m, and w ′(m) = idw(G[M]). Then it is not difficult to see that

idw(G) = idw ′(H). (1)

In other words, to solve the problem for G we first solve the problem for the subgraph G[M], construct a new weighted 
graph H , and solve the problem for the graph H .

3.1.2. Antineighborhood decomposition
One of the simplest branching algorithms for the maximum weight independent set problem is based on the following 

obvious fact. For any graph G = (V , E) and any vertex v ∈ V ,

isw(G) = max{isw(G − N(v)), isw(G − v)},
where w is a weight function on the vertices of G , and isw (G) stands for the maximum weight of an independent set in G . 
We want to use a similar branching rule for the WID problem, i.e.

idw(G) = min{idw(G − N(v)), idw(G − v)}. (2)

However, formula (2) is not necessarily true, because an independent dominating set in the graph G − v is not necessarily 
dominating in the whole graph G . To overcome this difficulty, we introduce the following notion.

Definition 1. A vertex v is permissible if formula (2) is valid for v .

An obvious sufficient condition for a vertex to be permissible can be stated as follows: if every independent dominating 
set in G − v contains at least one neighbour of v , then v is permissible.

Applying (2) to a permissible vertex v of G , we reduce the problem from G to two subgraphs G − v and G − N(v). Such 
a branching procedure results in a decision tree. In general, this approach does not provide a polynomial-time solution, 
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since the decision tree may have exponentially many nodes (subproblems). However, under some conditions this procedure 
may lead to a polynomial-time algorithm. In particular, this is true for graphs in hereditary classes possessing the following 
property.

Definition 2. A graph class G has the antineighborhood property if there is a subclass F ⊆ G , and polynomial algorithms 
P , Q and R , such that

(i) Given a graph G the algorithm P decides whether G belongs to F or not;
(ii) Q finds a permissible vertex v in any input graph G ∈ G \F such that the graph G − N(v) induced by the antineigh-

borhood of v belongs to F ; we call v a good vertex;
(iii) R solves the WID problem for (every induced subgraph of) any input graph from F .

Directly from the definition we derive the following conclusion.

Theorem 2. Let G be a hereditary class possessing the antineighborhood property. Then WID can be solved in polynomial time for 
graphs in G .

3.1.3. Decomposition scheme
Let G be a hereditary class such that the class Gp of prime graphs in G has the antineighborhood property. We define 

the decomposition procedure by describing the corresponding decomposition tree T (G) for a graph G = (V , E) ∈ G . In the 
description, we use notions and notations introduced in Definition 2.

1. If G belongs to F , then the node of T (G) corresponding to G is a leaf.
2. If G /∈F and G has a homogeneous set M , then G is decomposed into subgraphs G1 = G[M] and G2 = G[(V \ M) ∪{m}]

for some vertex m in M . The node of T (G) corresponding to G is called a homogeneous node, and it has two children 
corresponding to G1 and G2. These children are in turn the roots of subtrees representing possible decompositions of 
G1 and G2.

3. If G /∈ F and G has no homogeneous set, then G is prime and by the antineighborhood property of Gp there exists a 
good vertex v ∈ V . Then G is decomposed into subgraphs G1 = G − N(v) and G2 = G − v . The node of T (G) correspond-
ing to G is called an antineighborhood node, and it has two children corresponding to G1 and G2. The graph G1 belongs 
to F and the node corresponding to G1 is a leaf. The node corresponding to G2 is the root of a subtree representing a 
possible decomposition of G2.

Lemma 3. Let G be an n-vertex graph in G . Then the tree T (G) contains O (n2) nodes.

Proof. Since T (G) is a binary tree, it is sufficient to show that the number of internal nodes is O (n2). To this end, we prove 
that the internal nodes of T (G) can be labelled by pairwise different pairs (a, b), where a, b ∈ V (G).

Let G ′ = (V ′, E ′) be an induced subgraph of G that corresponds to an internal node X of T (G). If X is a homogeneous 
node, then G ′ is decomposed into subgraphs G1 = G ′[M] and G2 = G ′[(V ′ \ M) ∪ {m}], where M ⊂ V ′ is a homogeneous 
set of G ′ and m is a vertex in M . In this case, we label X with (a, b), where a ∈ M \ {m} and b ∈ V ′ \ M . If X is an 
antineighborhood node, then G ′ is decomposed into subgraphs G1 = G ′ − N(v) and G2 = G ′ − v , where v is a good vertex 
of G ′ . In this case, X is labelled with (v, b), where b ∈ N(v).

Suppose, to the contrary, that there are two internal nodes A and B in T (G) with the same label (a, b). By construction, 
this means that a, b are vertices of both G A and G B , the subgraphs of G corresponding to the nodes A and B , respectively. 
Assume first that B is a descendant of A. The choice of the labels implies that regardless of the type of node A (homoge-
neous or antineighborhood), the label of A has at least one vertex that is not a vertex of G B , a contradiction. Now, assume 
that neither A is a descendant of B nor B is a descendant of A. Let X be the lowest common ancestor of A and B in T (G). 
If X is a homogeneous node, then G A and G B can have at most one vertex in common, and thus A and B cannot have the 
same label. If X is an antineighborhood node, then one of its children is a leaf, contradicting to the assumption that both A
and B are internal nodes. �
Lemma 4. Let G be an n-vertex graph in G . If time complexities of the algorithms P and Q are O (np) and O (nq), respectively, then 
T (G) can be constructed in time O (n2+max{2,p,q})).

Proof. The time needed to construct T (G) is the sum of times required to identify types of nodes of T (G) and to decompose 
graphs corresponding to internal nodes of T (G). To determine the type of a given node X of T (G), we first use the algorithm 
P to establish whether the graph G X corresponding to X belongs to F or not. In the former case X is a leaf node, in the 
latter case we further try to find in G X a homogeneous set, which can be performed in O (n + m) time [15]. If G X has a 
homogeneous set, then X is a homogeneous node and we decompose G X into the graphs induced by the vertices in and 
outside the homogeneous set, respectively. If G X does not have a homogeneous set, then X is an antineighborhood node, 
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and the decomposition of G X is equivalent to finding a good vertex, which can be done by means of the algorithm Q . Since 
there are O (n2) nodes in T (G), the total time complexity for constructing T (G) is O (n2+max{2,p,q}). �

Now we are ready to prove the main result of this section.

Theorem 5. If G is a hereditary class such that the class Gp of prime graphs in G has the antineighborhood property, then the WID 
problem can be solved in polynomial time for graphs in G .

Proof. Let G be an n-vertex graph in G . To solve the WID problem for G , we construct T (G) and then traverse it bottom-up, 
deriving a solution for each node of T (G) from the solutions corresponding to the children of that node.

The construction of T (G) requires a polynomial time by Lemma 4. For the instances corresponding to leaf-nodes of 
T (G), the problem can be solved in polynomial time by the antineighborhood property. According to the discussion in 
Sections 3.1.1 and 3.1.2, the solution for an instance corresponding to an internal node can be derived from the solutions of 
its children in polynomial time. Finally, as there are O (n2) nodes in T (G) (Lemma 3), the total running time to solve the 
problem for G is polynomial. �
3.2. Application to (P5, P5)-free graphs

In this section, we show that the WID problem can be solved efficiently for (P5, P5)-free graphs by means of the 
decomposition scheme described in Section 3.1.3. To this end, we will prove that the class of prime (P5, P5)-free graphs has 
the antineighborhood property. We start with several auxiliary results. The first of them is simple and we omit its proof.

Observation 2. Let G = (V , E) be a graph, and let W ⊂ V induce a connected subgraph in G. If a vertex v ∈ V \ W distinguishes W , 
then v distinguishes two adjacent vertices of W .

Proposition 1. Let G = (V , E) be a prime graph. If a subset W ⊂ V has at least two vertices and is not a clique, then there exists a 
vertex v ∈ V \ W which distinguishes two non-adjacent vertices of W .

Proof. Suppose, to the contrary, that none of the vertices in V \ W distinguishes a pair of non-adjacent vertices in W . If 
G[W ] has more than one connected component, then it is easy to see that no vertex outside of W distinguishes W . Hence, 
W is a homogeneous set in G , which contradicts the primality of G .

If G[W ] is connected, then G[W ] has a connected component C with at least two vertices, since W is not a clique. 
Then, by our assumption and Observation 2, no vertex outside of W distinguishes C . Also, by the choice of C , no vertex of 
W outside of C distinguishes C . Therefore, V (C) is a homogeneous set in G . This contradiction completes the proof of the 
proposition. �
Lemma 6. If a (P5, P5)-free prime graph contains an induced copy of 2K2, then it has a clique separator.

Proof. Let G = (V , E) be a (P5, P5)-free prime graph containing an induced copy of 2K2. Let S ⊆ V be a minimal separator 
with the property that G − S contains at least two non-trivial connected components, i.e. connected components with at 
least two vertices. Such a separator necessarily exists, since G contains an induced 2K2.

It follows from the choice of S that

• G − S has k ≥ 2 connected components C1, . . . , Ck;
• r ≥ 2 of these components, say C1, . . . , Cr , have at least two vertices, and all the other components Cr+1, . . . , Ck are 

trivial;
• every vertex in S has a neighbour in each of the non-trivial components C1, . . . , Cr (since S is minimal);
• for every i ∈ {r + 1, . . . , k}, the unique vertex of the trivial component Ci has a neighbour in S (since G is connected).

In the remaining part of the proof, we show that G has a clique separator. Let us denote Ui = V (Ci) for i = 1, . . . , k. We 
first observe the following.

Claim 1. Any vertex in S distinguishes at most one of the sets U1, . . . , Ur .

Proof. Assume v ∈ S distinguishes Ui and U j for distinct i, j ∈ [r]. Then by Observation 2 v distinguishes two adjacent 
vertices a, b in Ui and two adjacent vertices c, d in U j . But then a, b, v, c, d induce a forbidden P5.

According to Claim 1, the set S can be partitioned into subsets S0, S1 . . . , Sr , where the vertices of S0 dominate every 
member of {U1, . . . , Ur}, and for each i ∈ [r], the vertices of Si distinguish Ui and dominate U j for all j different from i. 
Moreover, for each i ∈ [r] the set Si is non-empty, as the graph G is prime. Now we prove two more auxiliary claims.
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Claim 2. For 0 ≤ i < j ≤ r, every vertex in Si is adjacent to every vertex in S j .

Proof. Assume that the claim is false, i.e. there exist two non-adjacent vertices si ∈ Si and s j ∈ S j . By Observation 2 there 
exist two adjacent vertices a, b ∈ U j that are distinguished by s j . But then si, s j, a, b and any vertex in N(si) ∩ Ui induce a 
forbidden P5, a contradiction.

Claim 3. For i ∈ [r], no vertex in Ui distinguishes two non-adjacent vertices in Si .

Proof. Assume that there exists a pair of non-adjacent vertices x, y ∈ Si that are distinguished by a vertex ui ∈ Ui . Let 
j ∈ [r] \ {i}, and let s j ∈ S j and u j ∈ U j \ N(s j). Then, since s j dominates Si , we have that u j, x, y, s j, ui induce a forbidden 
P5, a contradiction.

We split further analysis into two cases.

Case 1: there is at least one trivial component in G \ S , i.e. k > r. For i ∈ {r + 1, . . . , k} we denote by ui the unique 
vertex of Ui . Let U = {ur+1, . . . , uk} and let u∗ be a vertex in U with a minimal (under inclusion) neighbourhood. We will 
show that N(u∗) is a clique, and hence is a clique separator in G . By Claim 2, it suffices to show that N(u∗) ∩ Si is a 
clique for each i ∈ {0, 1, . . . , k}. Suppose that for some i the set N(u∗) ∩ Si is not a clique. Then, by Proposition 1, there are 
two nonadjacent vertices x, y ∈ N(u∗) ∩ Si distinguished by a vertex z ∈ V \ (N(u∗) ∩ Si). It follows from Claims 2 and 3 
that either z ∈ Si \ N(u∗) or z ∈ U . If z ∈ Si \ N(u∗), then u∗, x, y, z, and any vertex in U j , j ∈ [r] \ {i} induce a forbidden 
P5, a contradiction. Hence, assume that none of the vertices in S \ (N(u∗) ∩ Si) distinguishes two nonadjacent vertices in 
N(u∗) ∩ Si . If z ∈ U , with z being nonadjacent to x and adjacent to y, then by the minimality of N(u∗) there is a vertex 
s ∈ N(z) that is not adjacent to u∗ . Since N(z) ⊆ S , vertex s does not distinguish x and y. But then x, u∗, y, z, s induce either 
a P5 (if s is adjacent neither to x nor to y) or a P5 (if s is adjacent to both x and y), a contradiction.

Case 2: there are no trivial components in G \ S , i.e. k = r. First, observe that |S0| ≤ 1, since G is prime and no vertex 
outside of S0 distinguishes S0 (which follows from the definition of S0, Claim 2 and the fact that k = r). Further, Claims 2 
and 3 imply that for each i ∈ [r] no vertex in V \ Si distinguishes two nonadjacent vertices in Si . Therefore, applying 
Proposition 1 we conclude that Si is a clique. Hence S = ⋃r

i=0 Si is a clique separator in G . �
Lemma 7. Let G be a (P5, P5)-free prime graph containing an induced copy of 2K2. Then G contains a permissible antisimplicial 
vertex.

Proof. By Lemma 6 graph G has a clique separator, and therefore it also has a minimal clique separator S . Let C1, . . . , Ck , 
k ≥ 2, be connected components of G − S , and Ui = V (Ci), i = 1, . . . , k. Since S is a minimal separator, every vertex in S
has at least one neighbour in each of the sets U1, . . . , Uk . By Claim 1 in the proof of Lemma 6, any vertex in S distinguishes 
at most one of the sets U1, . . . , Uk , and therefore, the set S partitions into subsets S0, S1 . . . , Sk , where the vertices of S0
dominate every member of {U1, . . . , Uk}, and for each i ∈ [k] the vertices of Si distinguish Ui and dominate U j for all j
different from i.

If S0 	= ∅, then any vertex in S0 is adjacent to all the other vertices in the graph, and therefore it is permissible and 
antisimplicial. Hence, without loss of generality, assume that S0 = ∅ and S1 	= ∅.

Let s be a vertex in S1 with a maximal (under inclusion) neighbourhood in U1. We will show that s is antisimplicial 
and permissible. Suppose that the graph induced by the antineighbourhood of s contains a connected component C with at 
least two vertices. Since G is prime, by Observation 2 it must contain a vertex p outside of C distinguishing two adjacent 
vertices q and t in C . Then p does not belong to N(s) ∩ U1, since otherwise q, t, p, s together with any vertex in U2 would 
induce a P5. Therefore, p belongs to S1. Since the set N(s) ∩ U1 is maximal, it contains a vertex y nonadjacent to p. But 
now t, q, p, s, y induce either a P5 or its complement, as y does not distinguish q and t . This contradiction shows that every 
component in the graph induced by the antineighbourhood of s is trivial, i.e. s is antisimplicial.

Assume now that s is not permissible, i.e. there exists an independent dominating set I in G − s that does not contain 
a neighbour of s. Since s dominates U2 ∪ . . . ∪ Uk , the set I is a subset of U1 \ N(s). But then I is not dominating, since no 
vertex of U2 has a neighbour in I , This contradiction completes the proof of the lemma. �
Lemma 8. The class of prime (P5, P5)-free graphs has the antineighborhood property.

Proof. Let F be the class of (2K2, P5)-free graphs (this is a subclass of (P5, P5)-free graphs, since 2K2 is an induced 
subgraph of P5). Clearly, graphs in F can be recognised in polynomial time. Moreover, the WID problem can be solved in 
polynomial time for graphs in F , because the problem is polynomially solvable on 2K2-free graphs (according to [1], these 
graphs have polynomially many maximal independent sets).

If a prime (P5, P5)-free graph G = (V , E) does not belong to F , then by Lemma 7 it contains a permissible vertex 
v whose antineighbourhood is an independent set, and therefore, G − N(v) ∈ F . It remains to check that a permissible 



70 V. Lozin et al. / Theoretical Computer Science 700 (2017) 63–74
Fig. 3. The graph P5
∗

.

antisimplicial vertex in G can be found in polynomial time. It follows from the proof of Lemma 7 that in a minimal clique 
separator of G any vertex with a maximal neighbourhood is permissible and antisimplicial. A minimal clique separator in a 
graph can be found in polynomial time [17], and therefore the desired vertex can also be computed efficiently. �

Now the main result of the section follows from Theorem 5 and Lemma 8.

Theorem 9. The WID problem is polynomial-time solvable in the class of (P5, P5)-free graphs.

4. WID in (P5, P3 + P2)-free graphs

To solve the problem for (P5, P3 + P2)-free graphs, let us introduce the following notation: for an arbitrary graph F , we 
denote by F ∗ the graph obtained from F by adding three new vertices, say b, c, d, such that b dominates (adjacent to each 
vertex of) F , while c is adjacent to b and d only (see Fig. 3 for an illustration in the case F = P 5). The importance of this 
notation is due to the following result proved in [13].

Theorem 10. Let F be any connected graph. If the WID problem can be solved in polynomial time for (P5, F )-free graphs, then this 
problem can also be solved in polynomial time for (P5, F ∗)-free graphs.

This result together with Theorem 9 leads to the following conclusion.

Corollary 1. The WID problem is polynomial-time solvable in the class of (P5, P5
∗
)-free graphs.

To solve the problem for (P5, P3 + P2)-free graphs, in this section we reduce it to (P5, P3 + P2, P5
∗
)-free graphs, where 

the problem is solvable in polynomial time by Corollary 1.
Let G be a (P5, P3 + P2)-free graph containing a copy of P5

∗
induced by vertices a1, a2, a3, a4, a5, b, c, d, as shown in 

Fig. 3.
Denote by U the set of vertices in G that have at least one neighbour in {a1, a2, a3, a4, a5}, that is, U = N(a1) ∪ . . .∪ N(a5). 

In particular, {a1, a2, a3, a4, a5, b} is a subset of U . We assume that

(**) the copy of P5
∗

in G is chosen in such a way that U has the minimum number of elements.

Now we prove several auxiliary results about the structure of G .

Proposition 2. If a vertex x ∈ U has a neighbour y outside of U , then x is adjacent to each of the vertices a1, a2, a3, a4 .

Proof. Let A = {a1, a2, a3, a4}. Note that if x is adjacent to a5, then it must be adjacent to at least one vertex in A, since 
otherwise a forbidden P5 arises. If x is adjacent to exactly one or to exactly two adjacent vertices in A, then {x, y} ∪ A
induces a subgraph containing a forbidden P5. If x is adjacent to exactly two non-adjacent vertices in A, say a1 and a3, then 
x must be adjacent to a5, since otherwise y, x, a3, a2, a5 induce a P5. But this is impossible, since in this case x, a1, a2, a3, a5
induce a P3 + P2. Finally, if x has exactly three neighbours in A, then {x} ∪ A induces a forbidden P3 + P2. Therefore, x
must be adjacent to every vertex in A. �

Taking into account Proposition 2, we partition the set U into three subsets as follows:

U1 consists of the vertices of U that are adjacent to each of the vertices a1, a2, a3, a4, and have at least one neighbour 
outside of U ;

U2 consists of the vertices of U that are adjacent to each of the vertices a1, a2, a3, a4, but have no neighbours outside of 
U ;

U3 = U \ (U1 ∪ U2).
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Notice that U1 is non-empty as it contains b. Also {a1, a2, a3, a4, a5} ⊆ U3, and no vertex in U3 has a neighbour outside 
of U .

Proposition 3. U1 is a clique in G.

Proof. Suppose to the contrary that U1 contains two non-adjacent vertices x1 and x2. Also, let y1 and y2 be neighbours 
of x1 and x2 outside of U , respectively. Vertex y1 is not adjacent to x2, since otherwise x1, x2, a1, a2, y1 induce a P3 + P2. 
Similarly, y2 is not adjacent to x1. Hence y1 	= y2, and therefore, to avoid a copy of P5 induced by y1, x1, a1, x2, y2, vertices 
y1 and y2 must be adjacent. For the same reason, a5 should be adjacent to both x1 and x2. But then x1, x2, a3, a4, a5 induce 
a copy of the forbidden P3 + P2, a contradiction. �
Proposition 4. The graph G[U2 ∪ U3] is P5

∗
-free.

Proof. Suppose to the contrary that G[U2 ∪ U3] contains vertices a′
1, a

′
2, a

′
3, a

′
4, a

′
5, b

′, c′, d′ inducing a P5
∗

(similarly to 
Fig. 3). Since no vertex in U2 ∪ U3 has a neighbour outside of U in G , and c′, d′ are not adjacent to any of the vertices 
a′

1, a
′
2, a

′
3, a

′
4, a

′
5, we conclude that |N(a′

1) ∪ . . . ∪ N(a′
5)| ≤ |U | − 2, which contradicts the minimality of |U |. �

Now we describe a reduction from the graph G with a weight function w to a graph G ′ with a weight function w ′ , 
where |V (G ′)| ≤ |V (G)| − 4, G ′ is (P5, P3 + P2)-free, and idw(G) = idw ′(G ′). First, we define G ′ as the graph obtained from 
G by

1. removing the vertices of U3;
2. adding edges between any two non-adjacent vertices in U1 ∪ U2;
3. adding a new vertex u adjacent to every vertex in U1 ∪ U2.

Clearly, |V (G ′)| ≤ |V (G)| − 4, as the set U3 of the removed vertices contains at least 5 elements and we add exactly one 
new vertex u. In the next proposition, we show that the above reduction does not produce any of the forbidden subgraphs.

Proposition 5. The graph G ′ is (P5, P3 + P2)-free.

Proof. Note that the graph G ′ − (U2 ∪ {u}) is isomorphic to G − (U2 ∪ U3), and therefore it contains no P5 or P3 + P2 as 
an induced subgraph. Hence, if G ′ contains a forbidden subgraph, then at least one of the vertices of this subgraph should 
lie in U2 ∪ {u}.

By construction of G ′ and the definition of U2, the set U2 ∪ {u} is a clique, and every vertex in this set is simplicial 
in G ′ . Therefore, no vertex of U2 ∪ {u} can be a part of an induced copy of P3 + P2. Also, U2 ∪ {u} can contain at most 
one vertex of an induced copy of P5, and if U2 ∪ {u} contains such a vertex, it must be a degree-one vertex of the P5. 
Suppose to the contrary that G ′ contains a copy of P5 induced by v1, v2, v3, v4, v5 with v1 ∈ U2 ∪{u} and {v2, v3, v4, v5} ⊆
V (G ′) \ (U2 ∪ {u}). But then a1, v2, v3, v4, v5 induce a forbidden P5 in G , a contradiction. �

Now we define a weight function w ′ on the vertex set of G ′ as follows:

1. w ′(x) = w(x), for every x ∈ V (G ′) \ ({u} ∪ U1 ∪ U2);
2. w ′(u) = idw(G[U3]);
3. w ′(x) = w(x) + idw(G[U \ N[x]]), for every x ∈ U1;
4. w ′(x) = w(x) + idw(G[U \ (U1 ∪ N[x])]), for every x ∈ U2.

Lemma 11. Given a weighted graph (G, w), the weighted graph (G ′, w ′) can be constructed in polynomial time.

Proof. To construct G ′ we need to find in G an induced copy of P5
∗

that minimises |U |. Clearly, this can be done in 
polynomial time.

To show that w ′ can be computed in polynomial time we observe that each of the graphs G[U3], G[U \ (U1 ∪ N[x])] for 
x ∈ U2, and G[U \ N[x]] for x ∈ U1 is an induced subgraph of G[U2 ∪ U3]. This observation together with Proposition 4 and 
Corollary 1 imply the desired conclusion and finish the proof of the lemma. �

Now let us show that idw (G) = id′
w(G). For this, we will need two auxiliary propositions.

Proposition 6. Any independent dominating set in G[U3] dominates U1 ∪ U2 .
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Proof. Let A = {a1, a2, a3, a4}, and let I be an independent dominating set in G[U3]. If I contains at least one of the vertices 
from A, then I dominates U1 ∪ U2, so we assume that I ⊆ U3 \ A. Note that a vertex x ∈ U3 \ A has at most two neighbours 
in A. Indeed, x cannot have four neighbours by the definition of U3, and it cannot have three neighbours, since otherwise 
{x} ∪ A induces a forbidden P3 + P2. Now, if I contains a vertex x ∈ U3 \ A that is adjacent to a1 and a3, then I dominates 
U1 ∪ U2, since otherwise x together with a1, a2, a3 and a non-neighbour of x in U1 ∪ U2 induce a forbidden P3 + P2.

Assume that I contains none of the above vertices. Then there exist vertices x, y ∈ I such that x is adjacent to a1 and 
non-adjacent to a3, and y is adjacent to a3 and non-adjacent to a1. If I does not dominate U1 ∪ U2, then there exists a 
vertex z ∈ U1 ∪ U2 that is adjacent neither to x nor to y. But then x, a1, z, a3, y induce a forbidden P5. �
Proposition 7. For every vertex x ∈ U2 , any independent dominating set in the graph G − U dominates U1 \ N(x).

Proof. Suppose to the contrary that there exists an independent dominating set I in the graph G −U that does not dominate 
a vertex y ∈ U1 \ N(x). By the definition of U1, vertex y has a neighbour z in V (G) \ U . Since I is dominating in G − U , 
there exists a vertex v ∈ I that is adjacent to z. But then v, z, y, a1, x induce a forbidden P5, a contradiction. �
Lemma 12. For any weighted graph (G, w), we have idw(G) = idw ′ (G ′).

Proof. First, we show that idw (G) ≥ idw ′(G ′). Let I be an independent dominating set of the minimum weight in G . We 
distinguish between the following three cases:

1. I ∩ U1 	= ∅.
By Propositions 2 and 3, the set U1 is a clique separating V (G) \ U from U \ U1. Therefore, I has only one element in 
U1, say x, and:

idw(G) = w(x) + idw(G[U \ N[x]]) + idw(G − (U ∪ N[x])).
Consequently

idw(G) = w ′(x) + idw ′(G ′ − N[x]) ≥ idw ′(G ′).

2. I ∩ U1 = ∅ and I ∩ U2 	= ∅.
Let x ∈ I ∩ U2. Then using Proposition 7

idw(G) = w(x) + idw(G[U \ (U1 ∪ N[x])]) + idw(G − U ) = w ′(x) + idw ′(G ′ − N[x]) ≥ idw ′(G ′).

3. I ∩ (U2 ∪ U1) = ∅.
In this case, taking into account Proposition 6, we conclude that

idw(G) = idw(G[U3]) + idw(G − U ) = w ′(u) + idw ′(G ′ − N[u]) ≥ idw ′(G ′).

Let us now prove the reverse inequality idw(G) ≤ idw ′ (G ′). Let I be an independent dominating set of the minimum 
weight in G ′ . Since u does not have neighbours outside of U1 ∪ U2, and {u} ∪ U1 ∪ U2 is a clique in G ′ , the set I has exactly 
one element in {u} ∪ U1 ∪ U2, which we denote by x. Similarly to the first part of the proof, we consider three cases:

1. x ∈ U1.
In this case

idw ′(G ′) = w ′(x) + idw ′(G ′ − N[x]) = w(x) + idw(G[U \ N[x]]) + idw(G − (U ∪ N[x])) ≥ idw(G).

2. x ∈ U2.
In this case, by Proposition 7,

idw ′(G ′) = w ′(x) + idw ′(G ′ − N[x]) = w(x) + idw(G[U \ (U1 ∪ N[x])]) + idw(G − U ) ≥ idw(G).

3. x = u.
In this case, by Proposition 6,

idw ′(G ′) = w ′(x) + idw ′(G ′ − N[x]) = idw(G[U3]) + idw(G − U ) ≥ idw(G). �
Now we are ready to prove the main result of this section.

Theorem 13. The WID problem is solvable in polynomial time for (P5, P3 + P2)-free graphs.
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Proof. Let (G, w) be an n-vertex (P5, P3 + P2)-free weighted graph. If G contains an induced copy of P5
∗

, then by Proposi-
tion 5, and Lemmas 11 and 12, the graph (G, w) can be transformed in polynomial time into a (P5, P3 + P2)-free weighted 
graph (G ′, w ′) with at most n −4 vertices such that idw (G) = idw ′ (G ′). Repeating this procedure at most 
n/4� times we ob-
tain a (P5, P3 + P2, P5

∗
)-free weighted graph (H, σ) such that idw (G) = idσ (H). By Corollary 1 the WID problem for (H, σ)

can be solved in polynomial time. Finally, it is not difficult to see that a polynomial-time procedure computing idw (G) can 
be easily transformed into a polynomial-time algorithm finding an independent dominating set of weight idw (G). �
5. Concluding remarks and open problems

In this paper, we proved that weighted independent domination can be solved in polynomial time for (P5, P 5)-free 
graphs and (P5, P3 + P2)-free graphs. A natural question to ask is whether these results can be extended to a class defined 
by one forbidden induced subgraph.

From the results in [3] it follows that in the case of one forbidden induced subgraph H the problem is solvable in 
polynomial time only if H is a linear forest, i.e. a graph every connected component of which is a path. On the other hand, 
it is known that this necessary condition is not sufficient, since independent domination is NP-hard in the class of 2P3-free 
graphs. This follows from the fact that all sat-graphs are 2P3-free [19].

In the case of a disconnected forbidden graph H , polynomial-time algorithms to solve weighted independent domination

are known only for mP2-free graphs for any fixed value of m. This follows from a polynomial bound on the number of 
maximal independent sets in these graphs [1]. The unweighted version of the problem can also be solved for P2 + P3-free 
graphs [13]. However, for weighted graphs in this class the complexity status of the problem is unknown.

Open Problem 1. Determine the complexity status of weighted independent domination in the class of P2 + P3-free graphs.

In the case of a connected forbidden graph H , i.e. in the case when H = Pk , the complexity status is known for k ≥ 7 (as 
P7 contains a 2P3) and for k ≤ 4 (as P4-free graphs are precisely the cographs). Therefore, the only open cases are P5-free 
and P6-free graphs. As we mentioned in the introduction, the related problem of finding a maximum weight independent 
set (WIS) has been recently solved for P5-free graphs [12]. This result makes the class of P5-free graphs of particular interest 
for weighted independent domination and we formally state it as an open problem.

Open Problem 2. Determine the complexity status of weighted independent domination in the class of P5-free graphs.

We also mentioned earlier that a polynomial-time solution for WIS in a hereditary class X does not necessarily imply 
the same conclusion for WID in X . However, in the reverse direction such examples are not known. We believe that such 
examples do not exist and propose this idea as a conjecture.

Conjecture 1. If WID admits a polynomial-time solution in a hereditary class X , then so does WIS.
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