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Around Anosov-Weil Theory

V. Grines and E. Zhuzhoma

Abstract. The survey is devoted to the exposition of main results of Anosov-
Weil Theory that studies nonlocal asymptotic properties of simple curves on
a surface with a non-positive constant curvature. This study consists of the
lifting these curves to an universal covering and making a “comparison” in
a sense with lines of constant geodesic curvature. We review some applica-
tions conserning constructions of topological invariants for surface dynamical
systems and foliations.
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Introduction

In 1966 our friend and teacher S.Kh. Aranson met Dmitrii Viktorovich Anosov
at Tiraspol (Moldova former part of Soviet Union) at the Symposium on Gen-
eral Topology. It became clear that dynamical systems (even, structurally stable)
can have complex dynamics with nontrivially recurrent orbits. This is related to
the problem of the topological classification of dynamical systems with complex
dynamics beginning with the simplest, in a sense, systems such as surface flows.

A classical example of an effective topological invariant is given by the Poincaré
rotation number for fixed-point-free flows on the two-dimensional torus T2 [62].
This number determines the “asymptotical rotation” of trajectories along the merid-
ians and parallels of the torus. It is well known that when all trajectories are non-
trivially recurrent,1 the rotation number is a complete topological invariant up to
the recalculation by an integer unimodular matrix.
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1Earlier, following Poincaré, such trajectories were called nonclosed Poisson stable trajectories

[62].
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In Tiraspol D.V. Anosov formulated the idea that a clue to the construction
of effective topological invariants for dynamical systems with nontrivially recurrent
motions (including foliations with nontrivially recurrent leaves) on surfaces con-
sists of studying nonclosed curves without self-intersections that possess certain
recurrent properties and in investigating the nonlocal asymptotic behavior of the
lifts of these curves to the universal covering by means of the absolute (circle at
infinity). Later, the development of this idea led to the topological classification
of the basic classes of flows, foliations, 2-webs, nontrivial one-dimensional basic
sets, and homeomorphisms with invariant foliations on closed surfaces of constant
nonpositive curvature. In 1973, while developing the above-mentioned geometric
interpretation of the Poincaré rotation number, S. Aranson and V. Grines [19] con-
structed a complete topological invariant for irrational flows on orientable closed
surfaces of constant negative curvature.

An explicit use of the universal covering in the study of the nonlocal asymptotic
behavior of the trajectories of fixed-point-free flows on T2 was first proposed by
A.Weil [65] in 1932. Before him, following Poincaré, mathematicians used a global
section and the first-return map on this section. A.Weil proposed an alternative
definition for the rotation number. This definition employs the trajectories of a
covering flow on the Euclidean plane. Namely, Weil proved that the rotation number
is equal to the angular coefficient of a straight line that has the same asymptotic
direction as the trajectories of the covering flow [65]. His arguments were based
on the fact that the lifts of the trajectories are pairwise disjoint and that each
lift divides the Euclidean plane. This fact prompted Weil to suppose that curves
without self-intersections, not necessarily defined by differential equations, should
possess similar properties. In his lecture delivered at the Moscow International
Topological Conference in 1935, Weil formulated two conjectures on the behavior
of covering curves for curves without self-intersections [66]. The first conjecture
(formulated as a theorem and referred to as the Weil theorem below) stated that
the lift of a curve without self-intersections on T2 to the universal covering has an
asymptotic direction if this lift is an unbounded curve and goes to infinity. The
second conjecture was similar to the first one but referred to closed surfaces of
negative Euler characteristic (exact statements of the conjecture and theorem are
given below).

Unfortunately, Weil’s approach was not developed and was soon forgotten.
However, in the early 1960s, interest in this subject was renewed by Anosov within
the context of a general upsurge in the theory of dynamical systems. The problem
from which Anosov started his studies consisted of determining the common features
in the asymptotic behavior of trajectories and geodesics. This problem naturally led
Anosov to the investigation of trajectories on the universal covering and to the study
of their nonlocal asymptotic behavior. In Tiraspol in 1966, Anosov communicated
the theorem stating that the coverings for the trajectories of a smooth flow with a
finite number of fixed points on a compact surface of nonpositive Euler characteristic
have asymptotic directions. He also formulated several conjectures (one of which
generalized the Weil conjecture) on the behavior of coverings for curves without
self-intersections. These conjectures, the Anosov theorem, and a number of his
subsequent works [2]–[10] catalyzed the development of the whole theory. In view
of these circumstances, the field of inquiry in question was called the “Anosov–
Weil Problem” or “Anosov–Weil Theory” in the studies of mathematicians from
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Nizhni Novgorod (and later in the studies of other mathematicians). Now, roughly
speaking, Anosov-Weil Theory includes the following two parts:

• a study of nonlocal asymptotic properties of simple curves on
a surface by lifting these curves to an universal covering, and
making a “comparison” in a sense with lines of constant geodesic
curvature;

• an application of nonlocal asymptotic properties for construc-
tions of topological invariants for surface dynamical systems and
foliations.

Simultaneously with Anosov’s works, Weil’s approach was also considered by
N. Markley [50]–[52], who paid more attention to the flows. However, these studies
were not so widely recognized in the USA as Anosov’s works in the USSR.

Acknowledgments. We thank A. Katok and Ya. Pesin for the invitation to
submit this survey. We also thank M. Brin for very careful reading of the manuscript
and helpful comments. This work was supported by the Russian Foundation for
Basic Research (project nos. 15-01-03687-a, 13-01-12452-ofi-m,16-51-10005 KO-a),
Russian Science Foundation (project no 14-41-00044) and was done in the frames
of Basic Research Programs at the HSE (project 98 in 2016) and (project T-90 in
2017).

1. Mathematical background

We give here the main definitions of Anosov-Weil Theory. We consider surfaces
being complete Riemannian manifolds M2 of constant nonpositive curvature. For
simplicity, we restrict ourself to closed surfaces.

1.1. Universal covering and the circle at infinity. The universal covering

space M
2
for M2 is isometric either to the Euclidean plane R2 (in the case of zero

curvature and Euler characteristic χ(M2) = 0) or to the hyperbolic plane Δ (in the
case of negative curvature and Euler characteristic χ(M2) < 0). Accordingly, M2

is isometric either to R2/Γ or to Δ/Γ (hyperbolic surface), where Γ is a properly

discontinuous group of isometries. Denote by π : M
2 → M2 the universal covering

map, which is a local isometry. Given a curve C ⊂ M2, a lift of C is an arcwise
connected component of the pull back π−1(C). Often the choice of this component
is clear from the context.

The Euclidean plane R2 endowed with the standard quadratic form ds2 =
dx2+dy2 is the simplest flat surface. Sometimes it is convenient to use the unit disk
D2 with coordinates ξ, η as a universal covering space: D2 = {(ξ, η) : ξ2+ η2 < 1}.
One can check that the map (1) is a homeomorphism denoted by τ : D2 → R2.
Then π◦τ is also a universal covering map, see Fig. 1, (a). The boundary S∞ = ∂D2

is called the circle at infinity or absolute.

(1) x =
ξ√

1− ξ2 − η2
, y =

η√
1− ξ2 − η2

.

For the hyperbolic plane Δ, we use the Poincaré model Δ = {z ∈ C : |z| < 1},
Fig. 1, (b). Sometimes we consider Δ as the unit disk on R2 with the topology
and metric induced by R2. Denote by dE(·, ·) (respectively, dNE(·, ·)) the Euclidean
(respectively, non-Euclidean) metric on Δ.
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Figure 1. (a) Coverings of the torus; (b) Covering of a hyperbolic surface

One introduces the absolute, or the circle at infinity (sometimes, one say circle
composed of infinitely remote points) S∞ = {z ∈ C : |z| = 1}. These points do
not belong to the hyperbolic plane; however, they play a very important role in
hyperbolic geometry. The geodesics are arcs of Euclidean circles and straight lines
orthogonal to S∞. We will suppose that endpoints of geodesics, ideal endpoints,
belong to S∞.

Let l+ ⊂ M2 be a semi-infinite continuous curve endowed with an injective

parametrization t → l+(t), t ∈ R+, and l
+

a lift of l+ under a universal covering

map π : M
2 → M2. The universal covering surface M

2
can be thought of as the

open unit disk D2 ⊂ R2 provided M2 is a flat or hyperbolic surface. Let dE(·, ·) be
the metric on S∞∪D2 induced by the standard metric of R2. The parametrization

of l+ induces the parametrization of t → l
+
(t) such that π(l

+
(t)) = l+(t). A

point σ ∈ S∞ is called the remote limit point of l
+

if there is a sequence tk,

limk→∞ tk = ∞, such that dE(σ, l
+
(tk)) → 0 as k → ∞. The limit set at infinity

lim∞(l
+
) of l

+
is the union of all remote limit points of l

+
. Denote by lim(l

+
)

the set of (ordinary) limit points that belong to M . The union of the limit set
that belongs to M and the limit set at infinity is called the complete limit set,

Lim(l
+
) = lim(l

+
) ∪ lim∞(l

+
).

Now, we present some ways for specifying points of S∞. For the flat surfaces
(torus and Klein bottle), the universal covering M is R2. Every point σ ∈ S∞
corresponds to oriented parallel rays y = kx + c, c ∈ R, with the same angular
coefficient (including ∞) k. Rationality (irrationality) of k corresponds to ratio-
nality (irrationality) of σ. For the sake of generality, assume that ∞ is a rational
“number.” We see that pairs of diametrically opposite points are parameterized by
angular coefficients k ∈ R ∪ {∞}. This specification of points of S∞ is often quite
sufficient for the case of flat surfaces. Any ray with k ∈ Q (respectively, k /∈ Q)
projects to a closed (respectively, unclosed) geodesic, and vise versa, rational points
of S∞ are exactly ideal points of lifts of closed geodesics.

Now, we consider the description of points of S∞ for the hyperbolic plane Δ,
which is the universal covering for hyperbolic surfaces. Let Γ be the group of
deck transformations that acts on Δ. Each deck transformation is extended to
S∞. By definition, a fixed point of a deck transformation that belongs to S∞ is
called a rational point. Denote by R the union of all rational points. Rational
points are exactly ideal endpoints of lifts of all closed geodesics. The remaining
points I = S∞ − R are called irrational points. Every point of S∞ corresponds
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to a family of oriented collinear parallel geodesics. However, there does not exist
a convenient generally accepted method for assigning a certain number to such a
family of geodesics. There are different types of coding that depend on the choice
of the generators of the fundamental group of a surface (see [47], [55], [56]). Below,
to specify points of S∞, we’ll consider ideal endpoints of the geodesics that belong
to lifts of special geodesic laminations. We’ll see that the description of irrational
points is much more rich than in the case of flat surfaces.

One may introduce the circle at infinity through families of parallel directed
geodesics or geodesic rays, see for example [34,35]. Any geodesic from this family
is called a representative of the point at infinity. Our definition of S∞ gives the
same object.

1.2. Asymptotic directions and co-asymptotic geodesics. We describe
some possible types of asymptotic behavior of semi-infinite curves. Let l+ = {m(t) :
t ≥ 0} ⊂ M2 be a semi-infinite simple (i.e. without self-intersections) curve and

l
+
= {m(t) : t ≥ 0} its lift to the universal covering M

2
endowed with the metric

d (d = dE if M
2
= R2, and d = dNE if M

2
= Δ).

One says that l
+
leaves any compact subset of M

2
, or is unbounded, if

(2) lim sup
t→+∞

d(a0,m(t)) = +∞,

where a0 ∈ M
2
is an arbitrary point, Fig. 2 (a). It is clear that this definition does

not depend on the choice of a0. A curve that belongs to some compact subset of

M
2
is called bounded.
We say that l

+
goes to infinity if

(3) lim
t→+∞

d(a0,m(t)) = +∞.

In general, (2) does not imply (3). Obviously, the converse is true: a curve that

goes to infinity sooner or later leaves any compact subset of M
2
and never returns

to it, Fig. 2 (b). A basic definition of the Anosov-Weil Theory is the following one.

Let l+ = {m(t) : t ≥ 0} ⊂ M2 be a semi-infinite simple curve and l
+
= {m(t) :

t ≥ 0} ⊂ M
2
its lift, where M

2
is either D2 or Δ. If l

+
tends exactly to one

point σ ∈ S∞, Lim(l
+
) = lim∞(l

+
) = σ, then we say that l

+
has an asymptotic

direction σ.
Roughly speaking, for an observer situated on M

2
, the curve l

+
goes exactly

to one point of the horizon, Fig. 2 (c). The point σ is called a point accessible

(or reached) by the curve l
+
. One also says that σ = ω(l

+
) is attained by l

+
. An

asymptotic direction is called rational (irrational) if the point σ ∈ S∞ is rational
(respectively, irrational).

Clearly, if some lift has an asymptotic direction, then any lift also has an

asymptotic direction. For a curve l
−
that is semi-infinite in the negative direction,

the asymptotic direction and its accessible point α(l
−
) are defined similarly.

Let l = {m(t) ∈ M2 : −∞ < t < +∞} ⊂ M2 be a simple infinite continuous

curve and l = {m(t) : −∞ < t < +∞} ⊂ M
2
a lift of l. The point m(0) divides

l into two semi-infinite curves: the positive l
+

= {m(t) : t ≥ 0} and negative

l
−
= {m(t) : t ≤ 0}. Suppose that l+ and l

−
have asymptotic directions ω(l) ∈ S∞

and α(l) ∈ S∞, respectively, and α(l) 
= ω(l). Then there exists a geodesic g(l) with
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Figure 2. Unbounded curve (a); a curve goes to infinity (b); the

point ω(l
+
) is reached by l

+
.

the same ideal endpoints α(l) and ω(l) oriented from α(l) to ω(l). The geodesic
g(l) is called co-asymptotic or corresponding to l, Fig. 3. It is easy to see that the

geodesic π(g(l))
def
= g(l) on M2 does not depend on the choice of l ∈ π−1(l) and is

called co-asymptotic or corresponding to l.

l

l

l

l

_

_ _

_

_

g )(

)(

( )

Figure 3. Co-asymptotic geodesic.

Clearly, a co-asymptotic or corresponding geodesic to a simple non-null-homo-
topic closed curve is the closed geodesic that is freely homotopic to the closed curve.
For the hyperbolic surface, the co-asymptotic geodesic is unique, due to properties
of hyperbolic geometry. For the torus, the co-asymptotic geodesic is not unique
and must be specified.

2. Historical background

André Weil [65] applied a covering flow to get a geometrical interpretation of
the Poincaré rotation number for a fixed-points-free flow on T2. On account of the
above terminology A. Weil proved that the covering trajectories of such flows must
have an asymptotic direction. Weil’s method of the study of asymptotic directions
is more geometric than the Poincaré’s method which consists of the study of the
first return maps on global cross-sections to the flows. What is more important Weil
apparently inferred that his method works not exclusively for the torus flows but
also for the higher genus surface flows and is applicable as well to arbitrary families
of curves not necessarily given by the differential equations. This led him to the
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two conjectures (quoted below) on a nonlocal asymptotic behavior of a lift for any
curve without topologically transversal self-intersections. We quote the original of
his talk at the First international topological conference in Moscow [66] held in
1935:

”Dans la présente communication, l’auteur discute deux méthodes pouvant servir à
l’etude de la question et d’autres analogues. La première, qui a déjà été développée
dans un article du [65], consiste à considérer dans le plan (x, y) en même temps
que la courbe C de la famille, toutes les courbes Cp,q qui s’en déduisent par une
translation (p, q), p et q étant des entiers: la position relative de ces courbes par
rapport à C permet, non seulement de déterminer le nombre de rotation, mais
encore la transformation qui ramène la famille étudiée à une forme canonique. La
méthode s’applique dans le cas de Poincaré, et plus généralement chaque fois que la
famille ne présante pas de ‘col à l’infini’ (au sens de Niemytzky). D’ailleurs cette
dernière circonstance ne peut vraisemblablement pas se présenter si la famille ne
contient pas de courbe fermée. À cette méthode se relie encore le théorème suivant,
d’ailleurs obtenu par une voie quelque peu différente:

Soit, sur le tore, une courbe de Jordan, image continue de la demi-droite 0 ≤
t < +∞; on suppose que cette courbe soit sans point double; alors, si l’image de la
courbe dans le plan (x, y), surface de recouvrement universelle du tore, tend vers
l’infini avec t, elle y tend avec une direction asymptotique bien déterminée, c’est-

à-dire que la rapport x(t)
y(t) tend vers une limite quand t tend vers +∞.

Une généralisation très intéressante du probllème étudié, qui parâıt susceptible
d’être abordée par la même méthode, est l’étude, sur une surface close de genre p,
des solutions d’une équation différentielle du premier ordre n’ayant d’autres points
singuliers que de cols, ou en termes topologiques, d’une famille de courbes dont tous
les points singuliers sont d’indice négatif. Un premier résultat est suivant:

Sur le cercle hyperbolique, surface de recouvrement universelle de la surface
étudiée, toute courbe de la famille tend, dans chaque direction, vers un point à
l’infinie bien détetminé. ...

Actually, A.Weil singled out two conjectures on the behavior of the covering of
curves without self-intersections. The first conjecture says that the covering of a
curve without self-intersections on the torus has an asymptotic direction, provided
this covering goes to infinity. Since A.Weil informed that this statement was proved
by Magnier, one formulates this conjecture as a theorem.

Theorem 2.1 (Theorem of Weil). Let l = {m(t) : t ≥ 0} be a semi-infinite
(continuous) curve without self-intersections on the torus T 2, and let l = {m(t) :
t ≥ 0} be its lift to D2. If the curve l goes to infinity, it has an asymptotic direction.

The second conjecture is similar to the first conjecture and is applied to the
higher genus surfaces.

Conjecture 2.1 (Conjecture of Weil). Let l = {m(t) : t ≥ 0} be a semi-infinite
(continuous) curve without self-intersections on a closed hyperbolic surface M2, and
let l = {m(t) : t ≥ 0} be its lift to Δ. If the curve l goes to infinity, it has an
asymptotic direction.

Proof of Conjecture 2.1. Suppose that l does not have an asymptotic direction.
Since the curve l goes to infinity, its limit set at infinity contains at least two points
and coincides with the complete limit set, Lim(l) = lim∞(l). The complete limit
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set of the lift of a semi-infinite curve is closed and connected. Therefore, Lim(l)
contains a nontrivial interval, which we denote by I ⊂ S∞.

Since the group Γ of deck transformations is a Fuchsian group of the first kind,
there exists a hyperbolic isometry γ ∈ Γ such that the ideal endpoints of its axis
O(γ) belong to the interval I. Note that O(γ) is projected to a closed geodesic on
the surface.

Take a sufficiently long interval A ⊂ O(γ) such that one of its endpoints is
mapped by γ into A. The interval A divides the axis O(γ) into two subintervals A1

and A2. Each of these subintervals has one ideal endpoint in I. Since the curve l
goes to infinity, it does not intersect A starting from a certain moment. The fact
that I belongs to the limit set of the curve l implies that there exists an arc S of the
curve l that intersects O(γ) only at the endpoints, such that one of the endpoints
is in A1 and the other in A2, Fig. 4. But then the curve l has self-intersections

A

A

A

_

_

_

_

_

1

2

I

S

S

( )

Figure 4. The arcs S and γ(S) intersect.

because S and γ(S) intersect. This contradicts the assumption. �

Due to unclear reasons, neither Weil nor Magnier have ever published the proof
of their statements. Unfortunately Weil’s idea was ignored until the 1960s. In the
60s within the framework of the general progress in dynamical systems Anosov
revived the interest to this problem. Anosov’s study was motivated by the common
asymptotic behavior which the trajectories of a surface flow and the geodesics curves
can exhibit.

In the 1960s, on the the American continent apparently under M. Morse’s
influence, G. Hedlund brought to the attention of N.G. Markley (who was then his
student) all the bunch of problems connected with the area [50]. Unfortunately
only a minor part of Markley’s results has been published [51,52]. N.G. Markley
proved independently Weil’s conjecture as well as several related results for the
flows on surfaces of constant negative curvature.

In 1966 at Tiraspol’s Symposium on General Topology Anosov communicated
the theorem stating that unbounded coverings for semitrajectories of smooth flows
with a finite number of fixed points on a closed surface of nonpositive Euler char-
acteristic have an asymptotic direction. Besides, Anosov formulated a number of
conjectures on the behavior of coverings to the curves without self-intersections.
Anosov’s theorem and Anosov’s conjectures sparked the interest to the above area.

One of the conjectures of Anosov concerned a deviation of a curve from the co-
asymptotic geodesic. In 1967, V. Pupko [63] stated the restricted deviation prop-
erty for the curve without self-intersections but her proof was unclear. About 1972,
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Aranson and Grines came to Moscow to present their results on the classification
of transitive flows on hyperbolic surfaces. The essential part of this presentation
was the proof of the existence of an asymptotical direction for a nontrivially recur-
rent trajectory. Anosov asked Grines about the deviation property, and it looked
like he doubted Pupko’s statement. Soon, Grines realized that in the example by
C. Robinson and F. Williams [64] there are curves with an unbounded deviation.
Aranson and Grines constructed a counter-example (described by Anosov in [2]) to
Pupko’s statement even if a curve is a semi-trajectory of flow on closed orientable
surface of genus g = 2. Later Anosov constructed counter-examples to Pupko’s
statement on other surfaces including T2 and the Klein bottle [2,3,6].

3. Nonlocal behavior of curves on universal coverings

Weil’s theorem and conjecture say that a lift of a simple (i.e., without self-
intersections) curve has an asymptotic direction provided the lift goes to the cir-
cle at infinity S∞. However, this does not imply the existence of an asymptotic
direction for an unbounded lift of a semitrajectory because apriori the covering
semitrajectory can oscillate. Here we represent Anosov’s results on the existence of
asymptotic directions for semitrajectories of surface flows.

3.1. Anosov’s theorems on asymptotic directions. The first theorem is
on continuous (or topological ) flows. To formulate this theorem, we need the
following definition. A subset F ⊂ M2 is called contractible to a point if there
exists a continuous mapping ϕ : F × [0; 1] → M such that ϕ(m, 0) = m and
ϕ(m, 1) = m0 for any m ∈ F , where m0 ∈ F is a certain point.

Theorem 3.1. If the set of fixed points of a topological flow f t on a closed
surface M2 of nonpositive Euler characteristic is contractible to a point, then any

semitrajectory of the covering flow f
t
on M

2
is either bounded or has an asymptotic

direction.

Corollary 3.1. If the set of fixed points of a topological flow f t on a closed
surface M2 of nonpositive Euler characteristic is finite, then any semitrajectory of

the covering flow f
t
on M

2
is either bounded or has an asymptotic direction.

Presently, Theorem 3.1 gives the most general sufficient conditions for an un-
bounded semitrajectory of a topological flow to have an asymptotic direction.

Theorem 3.2. If a flow f t on a closed surface M2 of nonpositive Euler charac-

teristic is analytic, then any semitrajectory of the covering flow f
t
on M

2
is either

bounded or has an asymptotic direction.

Theorem 3.2 does not follow from Theorem 3.1 because the set of fixed points
of an analytic flow may contain, for instance, homotopically nontrivial closed curves
and, hence, may not be contractible to a point.

Note that the problem of whether a closed curve has an asymptotic direction
is solved without difficulty.

Theorem 3.3. Let C be a closed curve on a surface M2. Then,

(1) if C is null homotopic, then any of its lifts C to M
2
is a closed (and,

hence, bounded) curve;
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(2) if C is non-null-homotopic, then any of its lifts C to M
2
is a nonclosed

infinite curve both of whose semi-infinite curves have a rational asymptotic
direction.

Now, we quote some sufficient conditions for the existence of asymptotic di-
rections for so-called widely disposed simple semi-infinite continuous curve. These
conditions are then applied to special curves. We’ll consider the cases of flat and
hyperbolic surfaces separately.

Let T be an arc or a simple closed curve that intersects a semi-infinite curve
l+ transversally. The curve l+ is said to be widely disposed with respect to T if
there do not exist any T -loops that bound a disk. Recall that T -loop is defined

as follows. Suppose that l+ intersect T at two points a and b. The arc âb of l+

with endpoints a, b is called a T -arc if T ∩ âb = a ∪ b. The T -arc together with

a subinterval ab ⊂ T between the points a, b forms a simple closed curve âb ∪ ab
called a T -loop.

On T2, the concept of wide disposition with respect to a non-null-homotopic
simple closed curve coincides with the concept of orientability of the intersection
with this curve (orientability means that the index of the intersection is the same
at every points of intersection). It can easily be shown that the orientability of the
intersection implies the wide disposition on any surface.

Theorem 3.4. Let C be a simple closed curve on T2, and suppose that a
simple infinite curve l orientably intersects C infinitely many times in such a way
that the positive and negative semi-infinite curves l+ and l− of l also intersect C
infinitely many times. Then, any lift l of l to the universal covering R2 is an infinite

curve whose positive and negative semi-infinite curves l
+
and l

−
have diametrically

opposite asymptotic directions.

On a hyperbolic surface, one can easily construct an example of a semi-infinite
curve that is widely disposed with respect to C and intersects the curve C non-
orientably. Let us formulate a sufficient condition for the existence of an asymptotic
direction of a widely disposed semi-infinite curve on a hyperbolic surface.

Theorem 3.5. Let C be a simple closed curve on a hyperbolic surface M2, and
suppose that a simple semi-infinite curve l+ is widely disposed with respect to C

and transversally intersects C infinitely many times. Then any lift l
+ ⊂ Δ of l+

has an asymptotic direction. Moreover, the point of S∞ that is accessible by l
+

is

the topological limit of the lifts Ci of C that are successively intersected by l
+

as
the parameter increases.

This theorem also holds true for noncompact and non-orientable surfaces [12].
The theorem can be conveniently applied to study the existence of asymptotic
directions for semi-infinite curves belonging to a simple curve that is infinite in
both directions.

Theorem 3.6. Let C be a simple closed curve on a hyperbolic surface M2, and
suppose that a simple infinite curve l is widely disposed with respect to C; moreover,
the positive and negative semi-infinite curves l+ and l− of l transversally intersect C
infinitely many times. Then any lift l of l on the universal covering is an infinite

curve whose positive and negative semi-infinite curves l
+

and l
−

have asymptotic

directions. Moreover, ω(l
+
) 
= α(l

−
).
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3.2. Anosov’s theorems on the approximation of curves. In this sec-
tion, we represent one of the fundamental results in this field, Anosov’s theorem [3]
on the approximation, from the viewpoint of the Frechet distance ρF , of a semi-
infinite continuous curve by a semitrajectory of a smooth flow.

Theorem 3.7. Let l = {m(t) : t ≥ 0} be a semi-infinite continuous curve
without self-intersections on a surface M2. Then for any r > 0 there exists a C∞

flow f t on M2 such that one of its semitrajectories T = {f t(m0) : m0 ∈ M2, t ≥ 0}
lies at the Frechet distance ≤ r from l; i.e.,

ρF ([l], [T ]) ≤ r.

Recall that the inequality ρF ([l], [T ]) ≤ r means the following: there exists a
homeomorphism s : [0; +∞) → [0; +∞) such that supt≥0 d(m ◦ s(t), f t(m0)) ≤ r,

where d(·, ·) is the metric on M2.
The main idea of the proof of Theorem 3.7 is to approximate the curve l by a

C∞-embedded curve l∞ that is r-close to l in the sense of the Frechet metric and
is obtained by a successive construction of arcs of increasing length. Since l∞ is
smoothly embedded, it is embedded into M2 together with a certain strip. Next,
we declare all boundary points of this strip fixed points and construct a C∞ flow
with a semitrajectory l∞.

Note that the initial curve l may contain points of its own limit set or may even
completely belong to its own limit set. Therefore, the construction of l∞ must be
accompanied by “extruding the tails” of intermediate semi-infinite curves from a
certain neighborhood of their initial arcs.

In 1995, Anosov [8] generalized Theorem 3.7 and obtained its metric (in the
sense of measure theory) version.

Theorem 3.8. Let l = {m(t) : t ≥ 0} be a semi-infinite continuous curve
without self-intersections on a surface M and μ be a smooth measure on M with
everywhere positive C∞ density. Then, for any r > 0, there exists a C∞ flow f t that
preserves the measure μ and is such that one of its semitrajectories T = {f t(m0) :
m0 ∈ M2, t ≥ 0} lies at the Frechet distance ≤ r from l; i.e.,

ρF ([l], [T ]) ≤ r.

3.3. Limit sets at infinity. Here, we consider the question concerning pos-
sible limit sets at infinity for arbitrary unbounded curves that cover simple semi-
infinite curves on a surface. For an observer standing on the universal covering,
this question can be reformulated as follows: What regions of the horizon can be
covered by an unbounded curve that is a lift of a simple curve? In particular, do

there exist “wild” covering curves l
+
whose complete limit set Lim(l

+
) contains the

whole absolute? A positive answer to the latter question was obtained by Anosov
in [3].

Anosov’s wild curve. We provide a schematic example (in the form of an ex-
istence theorem) of a “wild” covering curve whose limit set contains the whole
absolute and that is projected to a simple curve on a surface.

Theorem 3.9. Let M2 be a closed surface of nonpositive Euler characteristic.
There exists a continuous semi-infinite curve l ⊂ M2 without self-intersections such

that its lift l to the universal covering M
2
contains the whole absolute in its limit

set.
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Sketch of the proof. Take a countable family of neighborhoods Vn ⊂ M
2 ∪ S∞

such that 1)
⋃

n Vn ⊃ S∞; 2) for any point σ ∈ S∞ and any of its neighborhoods
U(σ), there exists Vi such that Vi ⊂ U(σ). Take a smooth semi-infinite curve
l0 = {m0(t) : t ≥ 0} on the universal covering that intersects all Vn. Then,
ω(l0) ⊃ S∞. The curve l0 = π(l0) ⊂ M , generally speaking, has self-intersections;
we will deform it to obtain the required curve without self-intersections. After
reparameterizing and slightly jiggling the curve l0, we can divide it into arcs ln,n+1 =
{m0(t) : n ≤ t ≤ n+ 1}, n ≥ 0, that satisfy the following conditions:

1) each arc ln,n+1 has no self-intersections; 2) m0(n + 1) /∈ {m0(t) : 0 ≤ t <
n+ 1}; 3) there exists a sequence tn ≥ 1 such that m0(tn) ∈ Vn for any n ≥ 1.

l 1,2l‘
1,2

l l0,1 0,1

Figure 5. Deleting of self-intersections.

Let us fix the endpoints of the arc l1,2 and deform it into an arc l′1,2 so that
the arc l0,1 ∪ l′1,2 has no self-intersections, see Fig. 5. Let us subject the curve l2,3
(where the role of l0,1 is now played by the arc l0,1 ∪ l′1,2) to a similar deformation.
Continuing this process, we obtain a curve l without self-intersections on the surface
M2. By property (3), its lift l contains the whole absolute in its limit set. �

The following theorem on the existence of a wild semitrajectory follows imme-
diately from Theorems 3.7 and 3.9.

Theorem 3.10. On any closed surface M2 of nonpositive Euler characteristic,

there exists a C∞ flow f t that has a positive semitrajectory l+ such that its lift l
+

to the universal covering contains the whole absolute in its limit set at infinnity,

S∞ = lim∞(l
+
).

Limit sets at infinity of the lifts of curves on the torus T2. All possible limit sets
at infinity for unbounded curves that are the lifts of curves without self-intersections
have been described only for T2. It is obvious that any point of S∞ may serve as
the limit set at infinity for a lift of a ray, which is projected to a simple curve on T2.
Moreover, any pair of diametrically opposite points on S∞ can serve as the limit
set at infinity. It follows from Theorem 3.9 that the whole absolute may serve as
the limit set at infinity. The following theorem, which was proved by Glutsyuk [36]
after Anosov’s questions, shows that any (either open or closed) arc of the absolute
that covers more than half of S∞ cannot be a limit set. Recall that the absolute
S∞ is a unit circle and, hence, has the length 2π.

Theorem 3.11. Let Ω ⊂ S∞ be a closed set such that there exists an arc of
length strictly less than π among the connected components of the set S∞ \Ω. Then
Ω cannot serve as the limit set at infinity for any curve without self-intersections
on T2. However, any closed arc of S∞ of length at most π is realized as the limit
set at infinity for a certain curve without self-intersections on T2.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AROUND ANOSOV-WEIL THEORY 135

D. Panov [57] constructed a pseudo-Anosov homeomorphism f : T2 → T2 such
that a lift for any unstable leaf is dense in the part of the universal covering R2.
For closed hyperbolic surfaces, the question concerning possible limit sets at infinity
has not yet been solved in the general case.

4. Asymptotic properties of special curves

Now, we are mainly considering curves that have the dynamical origin e.g. tra-
jectories of flows, and leaves of foliations, and one-dimensional invariant manifolds
of diffeomorphisms with hyperbolic structure on non-wandering sets. Such curves
often form so-called local laminations. The motivation for the definition of local
lamination is the statement from theory of differential equations that says that
trajectories locally looks like parallel straight lines away from the singularities.

Local laminations. Let M ⊂ M2 be a subset of M2 (which may coincide with
M2) that contains some closed subset S ⊂ M. Let M be the union S

⋃
α Lα,

where Lα are pairwise disjoint Cr-smooth simple curves. We say that the family
{Lα} forms a Cr,l local lamination if, for any point P ∈ M − S, there exist a
neighborhood U(P ) of P , and a Cl diffeomorphism ψ : U(P ) → R2, ψ(P ) = (0, 0),
such that any connected component of the intersection U(P ) ∩ Lα (provided that
this intersection is nonempty) is mapped by ψ onto the line y = const and the
restriction ψ|U(P )∩Lα

is a Cr diffeomorphism onto its image. The curves Lα are
called leaves. Each point of the set S is called a singularity. A point that is not a
singularity is called regular.

The concept of a local lamination generalizes the classical concepts of lamina-
tion and foliation. If ∪αLα is closed and S = ∅, then M is called a Cr,l lamination.
An important example of a lamination is a geodesic lamination. Note that a local
Cr,l lamination without singularities is not always a lamination. If M = M2, then
M is called a Cr,l foliation. One may say that a local lamination with singularities
is a “foliation” (with singularities) on a subset. If this subset is closed and there
are no singularities, then we obtain a lamination. If this subset coincides with the
manifold (and there may be some singularities), then the local lamination is a fo-
liation. It follows from the above that the concept of a local lamination is a quite
general concept, which includes, as particular cases, the concepts of lamination and
foliation.

A foliation on a surface is called transitive if it has at least one everywhere
dense leaf. A foliation is called highly transitive if every (one-dimensional) leaf is
dense on a surface. Obviously, any highly transitive foliation is a transitive one.
One can prove that if a transitive foliation has only isolated singularities, then each
singularity is of saddle type (see Fig. 6). In general, a transitive foliation can have
separatrix connections, while a highly transitive foliation has no separatrix con-
nections (obviously, a separatrix connection can’t be dense). A highly transitive
foliation can have fake saddles whose number could be arbitrary with no connection
with the topology of supporting surface. In this sense, fake saddles are artificial.
Therefore, it is natural to distinguish transitive foliations without separatrix con-
nections and fake saddles. A highly transitive foliation with no fake saddles is
called irrational if it has only isolated singularities. An irrational foliation is called
strongly irrational if it is without thorns.
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= = = =1 2 3 4

Figure 6. Singularities of saddle type: the thorn (ν = 1), the fake
saddle (ν = 2), the tripod (ν = 3), a saddle with four separatrices
(ν = 4), where ν is the number of separatrices.

The question of whether closed leaves and non-closed leaves that tend to a
closed leaf have an asymptotic direction is actually solved as follows:

• If a closed leaf is null homotopic (as a curve), then it has no asymptotic
direction. If a closed leaf is non-null-homotopic, then its lift is an in-
finite curve both of whose semi-infinite curves have rational asymptotic
directions.

• If a non-closed leaf tends to a null-homotopic closed leaf, then it has no
asymptotic direction. If a non-closed leaf tends to a non-null-homotopic
closed leaf, then it has a rational asymptotic direction.

It is convenient to consider flows as orientable foliations using the correspond-
ing terminology. A similar statement holds true for a semitrajectory that tends to a
loop composed of separatrix connections and saddles. Obviously, a semitrajectory
that tends to a single fixed point has no asymptotic direction. It remains to consider
the question of whether semitrajectories that tend to trajectories whose limit set
contains regular points have an asymptotic direction. According to Maier theorem
[48, 49], such semitrajectories tend to nontrivially recurrent trajectories. There-
fore, it is natural to consider first the question of whether nontrivially recurrent
semitrajectories have an asymptotic direction.

Nontrivially recurrent semitrajectories and semileaves. Recall that a nontriv-
ially recurrent semitrajectory is a nonclosed semitrajectory that belongs to its own
limit set. Such semitrajectories may exist only on orientable surfaces of genus g ≥ 1
and on non-orientable surfaces of genus g ≥ 3 [13,49,62]. The Euler characteristic
of these surfaces is nonpositive, and their universal covering is homeomorphic to
a disk. The following theorem proved in [19] shows that a nontrivially recurrent
semitrajectory of a flow with any set of fixed points has an asymptotic direction,
and this asymptotic direction is irrational.

Theorem 4.1. Let l be a nontrivially recurrent semitrajectory of a flow f t on
a closed surface M2 of nonpositive Euler characteristic, and let l be its lift to the

universal covering M
2
. Then, l has an irrational asymptotic direction.

Corollary 4.1. Let l be a nontrivially recurrent trajectory of a flow f t on
a closed surface M2 of nonpositive Euler characteristic, and let l be its lift to the

universal covering M
2
. Then, l has irrational asymptotic directions ω(l), α(l) ∈

S∞; moreover, ω(l) 
= α(l).
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An analysis of the proof of Theorem 4.1 shows that similar assertions are valid
for local laminations on a hyperbolic surface.

Theorem 4.2. Let C be a simple closed curve on a hyperbolic surface M2, and
suppose that all leaves of a local lamination D are widely disposed with respect to C.
Suppose that a nontrivially recurrent leaf l of D transversally intersects C infinitely
many times. Then, the positive and negative semileaves of the covering leaf l have
different irrational asymptotic directions on the universal covering.

4.1. Dynamical and asymptotical properties. Here we show how prop-
erties of remote limit points influence dynamical properties of flows and foliations.
For example, the first theorem says that if a foliation (or a flow) with a finite set
of singularities has a semi-leaf with an irrational asymptotic direction, then the
foliation has a quasiminimal set. Recall that a quasiminimal set is the closure of
a nontrivially recurrent semi-leaf. A quasiminimal set is called irreducible if any
nontrivially homotopic closed curve on M intersects this quasiminimal set.

Theorem 4.3. If a foliation F with finitely many singularities on M2 has a
semi-leaf with an irrational direction, then F has a quasiminimal set (in particular,
F has a nontrivially recurrent leaves).

Let us introduce some notation. We consider only hyperbolic surfaces here. In
this case, using geodesic laminations, we can get a good description for points of
the circle at infinity.

A lamination whose leaves are geodesics is called a geodesic lamination. One can
reformulate this definition in the traditional way: a geodesic lamination is a family
of pairwise disjoint simple geodesics such that their union is a closed set. Here,
a simple geodesic is either an infinite curve without self-intersections or a simple
closed curve. Denote by L(M2) = L the set of geodesic laminations on M2. A
geodesic lamination is trivial if it consists of closed geodesics and isolated non-closed
geodesics. Denote the set of trivial geodesic laminations by Λtriv(M

2) = Λtriv. So,
it is natural to call a geodesic lamination nontrivial if it contains a non-closed
geodesic that is non-isolated in the geodesic lamination. A nontrivial lamination is
said to be strongly nontrivial if it consists of non-closed and non-isolated geodesics.
Denote by Λ the set of strongly nontrivial geodesic laminations. A lamination is
minimal if it contains no proper sub-laminations. A minimal strongly nontrivial
geodesic lamination is called weakly irrational. It follows from [32,35] that if L is
a strongly nontrivial geodesic lamination then 1) every geodesic of L is nontrivially
recurrent; 2) L is a union of connected pairwise disjoint weakly irrational geodesic
laminations; 3) every geodesic of a weakly irrational geodesic lamination is dense
in this lamination.

So, Λ consists of weakly irrational geodesic laminations. Denote by Λor (respec-
tively, Λnon) the set of orientable (respectively, non-orientable) weakly irrational
geodesic laminations on M , Λ = Λor ∪ Λnon. An important class of geodesic lami-
nations is given by irreducible laminations. A geodesic lamination G ∈ Λ is called
irreducible if any closed geodesic on M2 intersects G. On a closed orientable hyper-
bolic surface, this condition is equivalent to the fact that any component of the set
M −G is simply connected [32]. Denote by Λirr ⊂ Λ the set of irreducible weakly
irrational geodesic laminations. We’ll call a geodesic lamination from Λirr strongly
irrational (or simply, irrational). Set

Λor ∩ Λirr def
= Λirr

or , Λnon ∩ Λirr def
= Λirr

non.
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Let G ∈ L be a geodesic lamination on a hyperbolic surface M . It is clear

that the preimage π−1(G)
def
= G is a geodesic lamination on the universal covering

Δ. If G has a geodesic with an ideal endpoint σ ∈ S∞, we say that σ is accessible
(or, reached, or attained) by the lamination G. Taking a certain liberty, we will
also say that σ is accessible by the lamination G, although this lamination lies on
the surface. Denote by G∞ ⊂ S∞ the set of points on S∞ that are accessible by
the lamination G. Again, taking a certain liberty, we will use the notation G∞.
Sometimes, when the subscript is in use, we will denote the set of accessible points
by G(∞) or G(∞). Thus, Λ(∞) ⊂ S∞ is the set of points reached by all laminations
from Λ, and Λirr(∞) ⊂ S∞ is the set of points reached by the strongly irrational
geodesic laminations.

Theorem 4.4. Let F be a foliation with finitely many singularities on M2 and

l+ a positive semi-leaf of F such that its lifting l
+

to Δ has the asymptotical direc-
tion σ ∈ S∞. If σ ∈ Λ(∞)−Λirr(∞), then F is not highly transitive and there is a
nontrivially homotopic closed curve that is not intersected by any nontrivially recur-
rent leaf. If σ ∈ Λirr(∞), then F has an irreducible quasiminimal set. Moreover, F
is either highly transitive or can be obtained from a highly transitive foliation by a
blow-up operation of at least countable set of leaves and by the Whitehead operation.
When F is not highly transitive, F has a unique nowhere dense quasiminimal set.

Take G ∈ Λirr. A point σ ∈ G(∞) is a point of the first kind if there is only one
geodesic of G with the endpoint σ. Otherwise, σ is called a point of the second kind.
One can prove that this definition does not depend on the choosing of G ∈ Λirr.
The following theorem shows that the type of asymptotic direction reflects certain
“dynamical” properties of the foliation [28].

Theorem 4.5. Let F be an irrational foliation on M and l+ a positive semi-

leaf of F such that its lifting l
+

to Δ has the asymptotical direction σ ∈ S∞. Then
σ ∈ Λirr(∞). Moreover,

(1) If σ is a point of the first kind then l+ belongs to a nontrivially recurrent
leaf.

(2) If σ is a point of the second kind then l+ belongs to a separatrix of a saddle
singularity.

We have the following sufficient condition for the existence of a continuum set
of fixed points.

Theorem 4.6. Suppose that a flow f t on M2 reaches a point from Λirr
non(∞).

Then f t has a continuum of fixed points. Furthermore, f t has neither nontrivially
recurrent semitrajectories nor closed transversals nonhomotopic to zero.

It turns that some points of S∞ attained by C∞ flows prevent these flows to be
analytic. Recall that σ ∈ S∞ is called a point achieved by f t if there is a positive
(or negative) semitrajectory l± of f t such that some lift l̄± of l± has the asymptotic
direction defined by σ.

Denote by Afl, A∞, Aan ⊂ S∞ the sets of points achieved by all topological,
C∞, and analytic flows respectively. Due to the remarkable result by Anosov [4],
Afl = A∞ (see Theorem 3.8). Obviously, Aan ⊂ A∞. It follows from the following
theorem that A∞ −Aan 
= ∅ [29].
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Theorem 4.7. There exists a continual set U(M2) ⊂ A∞ such that any C∞

flow f t that reaches a point from U(M2), is not analytic. The set U(M2) is dense
and has zero Lebesgue measure on S∞.

One can prove that Λtriv(∞) ⊂ Aan ⊂ Λtriv(∞) ∪ Λor(∞), and Λnon(∞) ⊂
A∞ −Aan.

4.2. Geodesic frameworks of local laminations. Applying a medical ter-
minology, one can say that the geodesic framework of local lamination is its geodesic
skeleton around which the leaves that have asymptotic directions are grouped. The
geodesic framework contains the full information on the asymptotic directions of
leaves of a given local lamination. The geodesic framework of a local lamination is
defined only if this lamination has a leaf or a generalized leaf (the union of sepa-
ratrices and their singularities) that has a co-asymptotic geodesic. To be precise,
let D be a local lamination on M2. Denote by A±(D) the union of all leaves and
generalized leaves of D that have co-asymptotic geodesics. The topological closure

G(D)
def
= clos

⋃
l∈A±(D)

g(l)

is called the geodesic framework of the local lamination D.
Since a lamination and a foliation are local laminations, we have defined the

concepts of geodesic framework for foliations and laminations. It follows immedi-
ately from the definition that a geodesic framework is a geodesic lamination. The
geodesic framework of an arbitrary invariant set of a local lamination is defined
similarly.

On T2, a geodesic lamination either forms an irrational linear foliation (hence,
this lamination fills the whole torus) or is a family of pairwise homotopic closed
geodesics. Therefore, below in this section, we’ll consider geodesic frameworks on
closed orientable hyperbolic surfaces.

Geodesic frameworks of quasiminimal sets. Recall that by Theorem 3.6, a non-
trivially recurrent leaf l has a co-asymptotic geodesic g(l) provided l is widely
disposed with respect to some simple closed curve C.

Lemma 4.1. Let l be a nontrivially recurrent leaf of a local lamination D, and
suppose that l is widely disposed with respect to a certain simple closedown curve C
and transversally intersects C. Then the co-asymptotic geodesic g(l) is nontrivially
recurrent.

It follows from a theorem of Cherry [33] (see generalizations in [26,27]) that any
quasiminimal set with closed support contains a continuum of nontrivially recurrent
leaves each of which is everywhere dense in the quasiminimal set. A quasiminimal
set Q is called a Maier quasiminimal set if each semi-leaf from Q that does not
tend exactly to one singularity is everywhere dense in Q. In particular, a leaf from
Q that is different from a separatrix connection is everywhere dense in Q and is
nontrivially recurrent in, at least, one direction. The following theorem describes a
geodesic framework of the Maier quasiminimal set.

Theorem 4.8. Let Q be a Maier quasiminimal set containing a finitely many
singularities and separatrices of a local lamination D with closed support supp D.
Suppose that every nontrivially recurrent leaf from Q is widely disposed with respect
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to some simple closed curve C. Then

• the geodesic framework G(Q) is equal to clos g(l) for any nontrivially
recurrent leaf l ∈ Q;

• the geodesic framework G(Q) is a weakly irrational geodesic lamination;
• any geodesic from G(Q) is the co-asymptotic geodesic of a certain leaf or
a generalized leaf that belongs to Q.

Geodesic frameworks of special foliations. Consider a foliation with isolated
singularities of negative index (in particular, with saddles of negative index). Then
any semileaf of such a foliation that does not tend to a singularity has an asymptotic
direction. In addition, any leaf or generalized leaf that is not a separatrix connection
has a co-asymptotic geodesic.

Theorem 4.9. Let F be an irrational foliation on a closed orientable hyperbolic
surface M2 with singularities that are saddles of negative index. Then,

(1) the geodesic framework G(F) of F is an irrational geodesic lamination;
(2) any geodesic from G(F) is a co-asymptotic geodesic for a certain leaf or

generalized leaf of F . Moreover,
(a) any point σ ∈ Λ1,∞(M2) ∩ G(F)∞ is reached by a leaf projected to

an internal nontrivially recurrent leaf on M2 whose co-asymptotic
geodesic is also internal;

(b) any point σ ∈ Λ2,∞(M2) ∩ G(F)∞ is reached by a leaf l that is an
α-separatrix of a singularity, and the left and right Bendixson exten-
sions of the leaf l in the negative direction2 have different asymptotic
directions α1 and α2. Two geodesics that connect σ with the points
α1 and α2 are sides of a geodesic polygon with a finite number of sides
that belong to G(F), and these geodesics are projected to boundary
geodesics on M2;

(3) each component of the set M2−G(F) is a simply connected domain any of
whose lifts to the universal covering is the interior of a geodesic polygon P
with a finite number of sides and with vertices lying on S∞. In this case,
the sides of P belong to G(F), and each vertex is reached by exactly one
separatrix of a certain saddle of the covering foliation F . Conversely, each
saddle of F corresponds to a unique geodesic polygon formed by geodesics
from G(F), such that the separatrices of the saddle reach all vertices of the
polygon and the number of separatrices is equal to the number of vertices.

4.3. Deviations of curves from co-asymptotic geodesics. Here we focus
our attention on the deviation of curves that have asymptotic directions from co-
asymptotic geodesics on the universal covering. First, we consider examples of
curves with unbounded deviation. Historically, the first example with an unbounded
deviation was constructed by Aranson and Grines. They constructed a foliation that
has a nontrivially recurrent leaf with unbounded deviation from the co-asymptotic
geodesic. We now describe this example.

On a closed orientable surface M2
g1 of genus g1 ≥ 1, consider an irrational

foliation F1 that has a topological saddle s1 with k ≥ 3 separatrices (hence, the
index of the saddle is equal to ind s1 = 1 − k

2 ). Since all saddles of the foliation
F1 have a negative index, F1 is a widely disposed foliation with respect to any

2Without loss of generality, we may assume that the leaf l is oriented toward the point σ.
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closed transversal and a transversal segment. On another surface M2
g2 of genus

g2 ≥ 1, take a Denjoy-type foliation F2 with a minimal set Ω(F2) such that the set
M2

g2 − Ω(F2) has a component S2 of index ind s1, Fig. 7.

Figure 7. The saddle s1 and the component S2 of index ind s1.

Let us place the saddle s1 inside a disk D1 whose boundary ∂D1 is transversal
to the foliation F1 everywhere except for points a1, . . . , ak ∈ ∂D1 that are arranged
in the order corresponding to the positive (counterclockwise) orientation of ∂D1.
Without loss of generality, we may assume that the leaves passing through the
points a1, . . . , ak are pairwise different and are not separatrices of any saddles.
Between the points ai and ai+1, i = 1, . . . , k (where ak+1 = a1), on ∂D1, there is
a unique point of intersection of a separatrix of the saddle s1 with ∂D1, which we
denote by ci, such that the arc (s1; ci) of the separatrix does not intersect ∂D1 (we
assume that ck+1 = c1). Then the foliation F1 induces in D1 the first-return map

φ1 : ∂D1 −
k⋃

i=1

ci → ∂D1 −
k⋃

i=1

ci,

φ1|(ci;ai] : (ci; ai] → [ai; ci+1), φ1|[ai;ci+1) : [ai; ci+1) → (ci; ai]

where i = 1, . . . , k. By the construction, φ2
1 = id. In the component S2, take

an open disk D2 ⊂ S2 whose boundary ∂D2 intersects Ω(F2) only at points
b1, . . . , bk ∈ ∂D2 that are arranged in the order corresponding to the negative
(clockwise) orientation of ∂D2. In addition, let us require that the disk D2 divides
S2 into k domains Wi, i = 1, . . . , k, that are homeomorphic to an open strip, Fig. 7.
Since the index of the component S2 is ind s1 = 1− k

2 , this can be done.
Let us declare that the points ai and ci, i = 1, . . . , k, are the singularities of the

foliation F1, and denote the obtained foliation by F ′
1. Note that since the leaves

passing through the points a1, . . . , ak are pairwise different and are not separatrices,
any one-dimensional leaf of the foliation F ′

1 different from the leaves of the form
(s1; ci) is everywhere dense on M2

g1 .
Let us modify the foliation F2 by placing a Reeb foliation in each strip Wi,

i = 1, . . . , k, and declaring each point of the set Ω(F2) a singularity. The points
di ∈ (bi; bi+1) ⊂ ∂D2, i = 1, . . . , k, are chosen arbitrarily, where bk+1 = b1. The
foliation is extended arbitrarily into the interior of D2. Let us glue together the
two surfaces M2

g1 − Int D1 and M2
g2 − Int D2 by Θ : ∂D1 → ∂D2. As a result, we

obtain a closed surface M2
g1+g2 of genus g1 + g2 ≥ 2, which is the connected sum

M2
g1�M

2
g2 of the surfaces M2

g1 and M2
g2 . The foliations F ′

1 and F ′
2 form a foliation

on M2
g1+g2 , which we denote by F . It follows from the construction that there is

a leaf l of F which is everywhere dense on the surface. Hence, l has an irrational
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asymptotic direction. One can prove that l possesses the property of unbounded
deviation.

Examples of curves with rational and irrational asymptotic directions and with
the property of unbounded deviation on T2 and the Klein bottle were first con-
structed by Anosov [4, 6]. Note that the construction of a curve with a rational
direction is a more complicated. An elegant example of the flow with a semi-
trajectory that has a rational asymptotic direction and possesses the property of
unbounded deviation was constructed in [53] (see also [54]).

It is natural to consider conditions under which the deviation from special
curves is bounded. The following theorem was proved in [8].

Theorem 4.10. Let f t be a topological flow on T2 and l be a lift to R2 of a
semitrajectory l = π(l) that has an asymptotic direction. Suppose that one of the
following conditions is fulfilled: 1) the set of fixed points of the flow f t is contractible
to a point; 2) l is a nontrivially recurrent semitrajectory. Then l possesses the
property of bounded deviation.

For flows on hyperbolic surfaces, the following theorem was proved in [24].

Theorem 4.11. Let f t be a topological flow with a finite set of fixed points on a

closed hyperbolic surface M . Let l
+

be a positive semitrajectory of a covering flow

f
t
on M = Δ that has an asymptotic direction. Then l

+
possesses the property of

bounded deviation.

As to analytic flows, Anosov [8] proved the following result.

Theorem 4.12. Let f t be an analytic flow on a closed orientable surface of
constant nonpositive curvature, and let l be a semitrajectory of the covering flow that
has an asymptotic direction. Then l possesses the property of bounded deviation.

Similar statements hold for surface foliations. Now, we pass on to the local lam-
inations that play an important role in studying surface diffeomorphisms, namely,
to one-dimensional stable or unstable manifolds of points that belong to hyperbolic
nonwandering sets. The following theorem was proved in [41].

Theorem 4.13. Let f : M → M be an A-diffeomorphism of a closed surface M
of nonpositive Euler characteristic. Let Ω be a one-dimensional widely disposed

attractor (repeller) of f, and let l
u(s)
x be the unstable (respectively, stable) manifold

of a point x ∈ Ω. Then both curves l
u(s)
x − x has asymptotic direction and possess

the property of bounded deviation.

The analysis of the aforementioned example of Robinson and Williams [64]
shows that for stable (respectively, unstable) manifolds of points of a one-dimension-
al attractor (respectively, repeller), Theorem 4.13 is generally incorrect. The above
arguments do not work because the theorem on the product structure cannot be
applied to all points of stable (respectively, unstable) manifolds of points of a one-
dimensional attractor (respectively, repeller). However, if we require that f : M2 →
M2 is a structurally stable diffeomorphism, then we obtain the following result
[40,41]:

Theorem 4.14. Let f : M2 → M2 be a structurally stable A-diffeomorphism
of a closed orientable hyperbolic surface M and let Ω be a one-dimensional widely

disposed attractor (respectively, repeller) of f . Let l
s(u)
x be the stable (respectively,
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unstable) manifold of a point x ∈ Ω and Lσ be one of the connected components of

the set l
s(u)
x − x that does not contain a periodic boundary point. Then Lσ has an

asymptotic direction and possesses the property of bounded deviation.

On the torus, Theorem 4.14 is valid without the requirement that the diffeo-
morphism should be structurally stable [38,41].

Theorem 4.15. Let f : M2 → M2 be an A-diffeomorphism of T2, and let Ω
be a one-dimensional widely disposed attractor (repeller) of the diffeomorphism f .

Let l
s(u)
x be the stable (respectively, unstable) manifold of a point x ∈ Ω and Lσ be

one of the connected components of the set l
s(u)
x −x that does not contain a periodic

boundary point. Then Lσ has an asymptotic direction and possesses the property of
bounded deviation.

5. Applications to foliations and dynamical systems

Recall that two foliations F1, F2 on a surface M are topologically equivalent if
there exists a homeomorphism h : M2 → M2 such that h(Sing (F1)) = Sing (F2)
and h sends every leaf of F1 onto a leaf of F2. One says that h maps the foliation F1

onto the foliation F2. Orientable foliations (flows) F1, F2 are orbitally topologically
equivalent if the homeomorphism h : M2 → M2 above keeps the orientation of
leaves (resp., trajectories). In general, the classification assumes the following steps:

(1) Find a constructive topological invariant which takes the same values for
topologically equivalent foliations.

(2) Describe all topological invariants which are admissible, i.e. may be real-
ized in the chosen class of foliations.

(3) Find a standard representative in each equivalence class, i.e. given any
admissible invariant, one constructs a foliation whose invariant is the ad-
missible one.

An invariant is called complete if it takes the same value if and only if two foliations
are topologically equivalent. The ‘if’ part only gives a relative invariant.

5.1. Classification of irrational flows and foliations. For completeness,
we begin with the classical results on the classification of irrational flows on the
torus T2. After that we present the classification of strongly irrational foliations on
a closed hyperbolic surface. Let us recall that an irrational foliation is a foliation
with no fake saddles such that every one-dimensional leaf is dense. A strongly
irrational foliation is an irrational one with no thorns (saddle type singularities
of the index 1

2 ). We see that an irrational flow which can be considered as an
orientable irrational foliation is a strongly irrational foliation automatically. Note
that an irrational flow on T2 is a transitive (even minimal) fixed-point-free flow.

Irrational flows on 2-torus. A classical example of constructing an effective
topological invariant is given by the Poincaré rotation number for fixed-point-free
flows on T2. Let f t be a flow on T2. Suppose that f t has a nontrivially recurrent
trajectory l. Let π : R2 → T2 be the covering projection, and l a lift of l. By
Weil’s theorem, l has an asymptotic direction with the co-asymptotic geodesic a
straight line y = kx. Since any straight line divides the plane R2 into two half-
planes, all nontrivially recurrent trajectories of f t have the same co-asymptotic
geodesic y = kx. The number k is called the rotation number of f t, denoted by
rot (f t). The existence of nontrivially recurrent trajectory implies the nonexistence
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of periodic trajectories that non-homotopy to zero. Therefore, the rotation number
k = rot (f t) is irrational.

Theorem 5.1. Let f t
1 and f t

2 be flows on T2 such that the both f t
1 and f t

2 have
nontrivially recurrent trajectories. If f t

1 and f t
2 are topologically equivalent, then

there is an integer unimodular matrix

(
a b
c d

)
such that

(4) rot (f t
2) =

−c+ a · rot (f t
1)

d− b · rot (f t
1)

, d− b · rot (f t
1) 
= 0.

Theorem 5.2. Let f t be an irrational flow on T2. Then f t is orbitally topo-
logically equivalent to a linear flow of the form ẋ = 1, ẏ = μ where μ = rot (f t).

As a consequence, we get the following classical classification result.

Theorem 5.3. Let f t
1 and f t

2 be irrational flows on T2. Then f t
1 and f t

2

are topologically equivalent if and only if there is the integer unimodular matrix(
a b
c d

)
such that ( 4) holds. Moreover, given any irrational μ ∈ R, the flow

of the form ẋ = 1, ẏ = μ is irrational and μ = rot (f t) (clearly, every number
calculated by ( 4) is irrational).

Irrational foliations on hyperbolic surfaces. Let F be a strongly irrational foli-
ation on a closed orientable surface M2. By Theorem 4.9, the geodesic framework
G(F) of F is a minimal strongly nontrivial geodesic lamination such that each
component of M2−G(F) is an open geodesic polygon with a finite number of sides
and ideal vertices. Thus, G(F) is a strongly irrational geodesic lamination.

The following four theorems obtained by Aranson and Grines [19] give a com-
plete classification of strongly irrational foliations on M2 (see the survey [21]). This
theorems correspond to the three steps of the topological classification. The first
and second theorems produce a constructive topological invariant which takes the
same values for topologically equivalent foliations. The third theorem describes all
topological invariants which are admissible, i.e. may be realized in the chosen class
of foliations. The fourth theorem shows that for any admissible invariant there is
a strongly irrational foliation whose invariant is the admissible one.

Theorem 5.4. Let F1, F2 be strongly irrational foliations on a closed orientable
hyperbolic surface M . Then F1, F2 are topologically equivalent via a homeomor-
phism M2 → M2 homotopic to identity if and only if their geodesic frameworks
coincide, G(F1) = G(F2).

The generalized mapping class group GM is the quotient

Homeo (M2)/Homeo0 (M2),

where Homeo (M2) is the group of self-homeomorphisms of M2 and Homeo0 (M2)
is the subgroup of homeomorphisms homotopic to the identity. It is known that any
homeomorphism f : M2 → M2 induces a one-to-one map f∗ : L → L, f∗ ∈ GM
[32]. Given λ ∈ L, the family

GM(λ) = {f∗(λ) | f∗ ∈ GM}

is called an orbit of the geodesic lamination λ.
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Theorem 5.5. Let F1, F2 be strongly irrational foliations on a closed orientable
hyperbolic surface M2. Then F1, F2 are topologically equivalent if and only if the
orbits of their geodesic frameworks coincide.

We see that the orbit of a geodesic framework is a complete topological invariant
for strongly irrational foliations. Thus the geodesic framework is an analog of
Poincaré rotation number for the class of strongly irrational foliations (flows) on
T2. The next theorem shows that the geodesic framework of a strongly irrational
foliation is a strongly irrational geodesic lamination. This is completely similar to
an irrational Poincare rotation number.

Theorem 5.6. Let F be a strongly irrational foliation on a closed orientable
hyperbolic surface M2. Then its geodesic framework G(F) is a strongly irrational
geodesic lamination, G(F) ∈ Λirr.

Theorem 5.7. Given any strongly irrational geodesic lamination G ∈ Λirr on
a closed orientable hyperbolic surface M , there is a strongly irrational foliation F
on M2 such that G(F) = G.

As a consequence, one gets the classification of irrational flows. Note that the
classification of irrational flows on closed non-orientable surfaces was obtained in
[18].

5.2. Classification of nontrivial minimal sets. Recall that a minimal set
of a flow is a nonempty closed set that is invariant (i.e., consists of trajectories of
the flow) and does not contain proper subsets with the above-described properties.
A similar definition applies to foliations, provided that “invariant” means a union of
leaves and singularities. The trivial minimal sets of flows include fixed points, peri-
odic trajectories, and the minimal set that coincides with a closed surface, which is
the torus in this case. The situation for foliations is analogous. Nontrivial minimal
sets are nowhere dense and locally homeomorphic to the product of a segment and
a Cantor set. A nontrivial minimal set consists of nonclosed trajectories that are
recurrent in the Birkhoff sense, in short B-recurrent. Moreover, every B-recurrent
trajectory is everywhere dense in the minimal set [17].

Nontrivial minimal sets on T2. We present here results from [25]. It is obvious
that the geodesic framework of a nontrivial minimal set on the torus T2 is a linear
irrational flow.

Lemma 5.1. Let N be a nontrivial minimal set of a flow f t on T2 and G(N)
the geodesic framework of N . Then there exists a continuous mapping h : T2 → T2

that is homotopic to the identity with the following properties: 1) h(N) = T2; 2)
each trajectory from N is homeomorphically mapped by h onto a geodesic of G(N);
3) if w is the component of the set T2 \N then h(w) is a geodesic of G(N).

Denote by δ(N) the boundary of the set N that is accessible from T2 \N . It
can be shown that δ(N) is invariant and consists of a finite or a countable family
of trajectories of N . Therefore, by Lemma 5.1, h(δ(N)) is a finite or a countable
family of geodesics from G(N). This family of geodesics is called a distinguished
family of the minimal set N and is denoted by R(N). Of course, this family
depends on the transformation h from Lemma 5.1 and is determined by the set N
up to a translation, i.e., up to a homeomorphism of T2 whose covering is given by
x �→ x + x0, y �→ y + y0, where x0 and y0 are certain constants. The following
theorem gives a topological classification of nontrivial minimal sets of flows on T2.
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Theorem 5.8. Let N1 and N2 be nontrivial minimal sets of flows f t
1 and f t

2,
respectively, on T2. Then, N1 and N2 are orbitally topologically equivalent via a
homeomorphism T2 → T2 homotopic to the identity if and only if their geodesic
frameworks coincide (with regard to the orientation of geodesics) and there exists a
translation of T2 that sends the distinguished family of one minimal set to the dis-
tinguished family of the other minimal set. The geodesic framework of a nontrivial
minimal set on T2 is a linear irrational flow. For any finite or countable fam-
ily N0 of trajectories of a linear irrational flow, there exists a flow with a nontrivial
minimal set N such that R(N) = N0.

Note that the geodesic framework and the cardinality of the set of distinguished
geodesics alone do not provide a complete topological invariant. Moreover, it can
be shown that there exists a continuum of pairwise topologically non-equivalent
nontrivial minimal sets with the same geodesic framework and any prescribed fixed
cardinality ≥ 2 of the set of distinguished geodesics.

Nontrivial minimal sets on a hyperbolic surface. The classification below was
obtained in [20]. Let N be a nontrivial minimal set of a flow f t on an orientable
closed hyperbolic surface M2. A component of the set M2\N is called a Denjoy cell
if it is simply connected and its boundary accessible from M2\N consists of exactly
two trajectories of N . These two trajectories have the same co-asymptotic geodesic
called a distinguished geodesic. Similar to the case of the torus, we’ll call a family
of distinguished geodesics a distinguished family of the geodesic framework of the
minimal set N . Since the generation or elimination of Denjoy cells do not change
the geodesic framework of a nontrivial minimal set, the presence of these cells can
be considered, in a sense, artificial. Therefore, we first consider a classification of
nontrivial minimal sets without Denjoy cells. Let us recall that a minimal strongly
nontrivial geodesic lamination is called weakly irrational.

Theorem 5.9. Let N be a nontrivial minimal set of a flow f t on a closed
orientable hyperbolic surface M2. Suppose that N does not contain Denjoy cells.
Then, N is orbitally topologically equivalent, via a homeomorphism M2 → M2

homotopic to the identity, to its own geodesic framework G(N) that is an orientable
weakly irrational geodesic lamination, G(N) ∈ Λor. For any orientable weakly
irrational geodesic lamination Λ ∈ Λor, there exists a nontrivial minimal set N
without Denjoy cells of a certain flow f t such that G(N) = Λ.3

We now, consider nontrivial minimal sets with Denjoy cells and describe the
type of geodesics that form distinguished families of these minimal sets. Recall that
a nontrivially recurrent geodesic may be either left or right improper; i.e., it may
approach itself to an indefinitely close distance from either the left or the right side.
If a nontrivially recurrent geodesic is improper only from one side, then it is called
a boundary one. Otherwise (i.e., if a geodesic is improper from both sides), it is
called internal.

A weakly irrational geodesic lamination on a closed hyperbolic surface has a
finite nonzero number of boundary nontrivially recurrent geodesics and a continuum
set of internal ones. The definition of a Denjoy cell and the density of each geodesic
in a minimal geodesic lamination imply that each geodesic from a distinguished
family is internal. The following two theorems give topological classification of
nontrivial minimal sets of flows on a closed orientable hyperbolic surface.

3In fact, one can make it so that N = Λ.
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Theorem 5.10. Let N1 and N2 be nontrivial minimal sets of flows f t
1 and f t

2,
respectively, on a closed orientable hyperbolic surface M2. Then N1 and N2 are
orbitally topologically equivalent via a homeomorphism M2 → M2 homotopic to
the identity if and only if they have identical geodesic frameworks (with regard to
the orientation of geodesics) and the same family of distinguished geodesics.

Disregarding the orientation of geodesics, we obtain a criterion for topological
equivalence.

Theorem 5.11. Let N be a nontrivial minimal set of a flow f t on a closed ori-
entable hyperbolic surface M2. Then the geodesic framework G(N) is an orientable
weakly irrational geodesic lamination that contains at most a countable distinguished
family that consists of internal geodesics. Conversely, let Λ be an orientable weakly
irrational geodesic lamination on M2 and let N be at most a countable family of
internal geodesics of Λ. Then there exists a nontrivial minimal set N of a certain
flow f t such that G(N) = Λ and the distinguished family of the geodesic framework
G(N) coincides with N .

5.3. Classification of irrational 2-webs. A 2-web on a surface is a pair of
foliations such that they have a common set of singularities and are topologically
transversal at all non-singular points. Suppose that two foliations F1 and F2 on
a surface M2 form a 2-web denoted by (F1,F2). The set of singularities of the
foliation Fi (for any i) is called the set of singularities of (F1,F2) denoted by
Sing (F1,F2). A 2-web is irrational or strongly irrational if it consists of a pair of
irrational or strongly irrational foliations respectively.

2-webs (F1,F2) and (F ′
1,F ′

2) are topologically equivalent if there is a homeomor-
phism ϕ : M2 → M2 that maps the foliations Fi (i = 1, 2) to the corresponding
foliations F ′

i and ϕ (Sing (F1,F2)) = Sing (F ′
1,F ′

2). All classification results of
this subsection was obtained in [23].

On the torus T2, a strongly irrational 2-web consists of a pair of transversal
irrational foliations without singularities.

Theorem 5.12. Let (F1,F2) be a strongly irrational 2-web on T2. Then
(F1,F2) is topologically equivalent via a homeomorphism homotopic to the iden-
tity to its own geodesic framework, which is a pair of linear transversal irrational
foliations. Two strongly irrational 2-webs on T2 are topologically equivalent via a
homeomorphism T2 → T2 homotopic to the identity if and only if their geodesic
frameworks coincide.

Let us pass on to strongly irrational 2-webs on a closed orientable hyperbolic
surface. The geodesic framework of a strongly irrational foliation on a closed ori-
entable hyperbolic surface M2

h , h ≥ 2, is a strongly irrational geodesic lamination.
If foliations F1 and F2 form a strongly irrational 2-web, then their geodesic frame-
works must satisfy the following consistency conditions:

• The sets M2
h \supp G(F1) and M2

h \supp G(F2) have the same number of
simply connected components, which is equal to the number of singulari-
ties of the foliations F1 and F2 (which is the same for these foliations).

• For each simply connected component P1 of the setM
2
h\supp G(F1), there

exists a simply connected component P2 of the set M2
h \ supp G(F2) such

that there exist lifts P 1 and P 2 of these components that are polygons
with alternating ideal vertices on S∞, Fig. 8.
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Figure 8. The polygons P 1 and P 2

Theorem 5.13. Let (F1,F2) and (F ′
1,F ′

2) be strongly irrational 2-webs on a
closed orientable hyperbolic surface M2. Then (F1,F2) and (F ′

1,F ′
2) are topologi-

cally equivalent via a homeomorphism M2 → M2 that is homotopic to the identity
if and only if their geodesic frameworks coincide. For any pair of consistent strongly
irrational geodesic laminations, there exists a strongly irrational 2-web whose geo-
desic framework is equal to this pair of laminations.

Sketch of proof. . We restrict ourselves to the first part of the statement. A
homeomorphism of M2 that is homotopic to the identity has a lift that is extended
to the identity homeomorphism of S∞. Therefore, if the webs are topologically
equivalent via a homeomorphism homotopic to the identity, then their geodesic
frameworks coincide.

Suppose that the geodesic frameworks (G(F1), G(F2)) and (G(F ′
1), G(F ′

2)) co-

incide, G(F1) = G(F ′
1), G(F2) = G(F ′

2). Consider the lifts (F1,F2) and (F ′
1,F

′
2)

of the 2-webs (F1,F2) and (F ′
1,F ′

2), respectively. Let m ∈ Δ be a point that is not a
singularity of the 2-web (F1,F2). According to Theorem 4.9, semileaves, say l1 and
l2, of F1 and F2 passing through m have the asymptotic directions defined by some
points σ1 and σ2 of S∞ respectively. Since the foliations F1 and F2 are transver-
sal outside the set of singularities, σ1 
= σ2. The points σ1 and σ2 are reached

by the geodesic frameworks of the foliations F ′
1 and F ′

2, respectively. Therefore,

by Theorem 4.9, there exist semileaves l
′
1 and l

′
2 of these foliations that reach the

points σ1 and σ2, respectively. Note that according to Theorem 4.9, if li does not

belong to a separatrix of a singularity, then l
′
i does not belong to a separatrix of any

singularity; and conversely, if li belongs to a separatrix of a singularity, then l
′
i also

belongs to a separatrix of a singularity, i = 1, 2. Since the co-asymptotic geodesics

of the corresponding leaves or semileaves that contain li and l
′
i coincide and the

geodesic frameworks of the foliations F ′
1 and F ′

2 are transversal, the semileaves l
′
1

and l
′
2 intersect at some point denoted by m′. Since F ′

1 and F ′
2 form a 2-web, the

point m′ is unique. Denote the mapping m → m′ by φ. By virtue of Theorem 4.9,
φ is extended to all the singularities of the 2-web (F1,F2) and maps a singularity

to a singularity of the 2-web (F ′
1,F

′
2) with the same number of separatrices that

reach the same points on S∞.
One can verify that φ covers a certain homeomorphism φ : M2 → M2 that

realizes a topological equivalence of the 2-webs (F1,F2) and (F ′
1,F

′
2). Since by the
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construction, φ is extended to the absolute as the identity mapping, φ is homotopic
to the identity. �

5.4. Homeomorphisms with invariant local laminations. Let f : M2 →
M2 be a homeomorphism of a surface M and F a foliation on M2 that is invariant
under f (i.e. f(Sing (F)) = Sing (F) and f maps every leaf onto a leaf). F is
said to be contracting if, given any points a and b that belong to same leaf, the
distance between fn(a) and fn(b) tends to zero as n → +∞ in the interior metric
on the leaves. A foliation F is called expanding if it is contracting under f−1.

Following Anosov and Zhuzhoma [12] a homeomorphisms f : M2 → M2 is
called almost pseudo-Anosov (AP-homeomorphism) if it satisfies the conditions:

• f has invariant foliations Fs, Fu that form a strongly irrational 2-web.
• Fs is contractive and Fu is expanding under f .

AP-homeomorphisms are in sense non-uniform pseudo-Anosov homeomorph-
isms. The class of AP-homeomorphisms includes pseudo-Anosov ones for which
the contraction and expansion satisfy some uniform estimates.

Homeomorphisms of T2 and hyperbolic surfaces. Let us recall that on T2 a
strongly irrational 2-web actually is a 2-web consisting of a pair of transversal
irrational foliations without singularities. The following theorem says that an AP-
homeomorphism T2 → T2 is Anosov hyperbolic automorphism up to conjugacy (see
[44]).

Theorem 5.14. Let f : T2 → T2 be AP-homeomorphism. Then f is conjugate
to an Anosov hyperbolic automorphism.

Let f : Δ → Δ be a lift for f : M2 → M2 where M2 is a closed orientable
hyperbolic surface. Due to [56] (see also [46]), f extends continuously to a homeo-
morphism Δ∪S∞ → Δ∪S∞ denoted again by f . The crucial step in a classification
of AP-homeomorphisms is the following theorem (see [39]).

Theorem 5.15. Let f1, f2 : M2 → M2 be AP-homeomorphisms of a closed
orientable hyperbolic surface M = Δ/Γ. Then f1 and f2 are conjugate via a homo-
topy trivial homeomorphism if and only if there exist the lifts f1, f2 : Δ → Δ of
f1, f2 respectively whose extensions on S∞ coincide, f1|S∞ = f2|S∞ .

Let G be a group and φ1, φ2 automorphisms of G. Recall that φ1, φ2 are
conjugate if there is an automorphism ξ : G → G such that φ2 ◦ ξ = ξ ◦ φ1. It
is well known that a homeomorphism f : M2 → M2 induces an automorphism
f∗ : π1(M

2) → π1(M
2) of the fundamental group π1(M). Two homeomorphisms

f1, f2 : M2 → M2 are called π1-conjugate if f1∗, f2∗ are conjugate automorphisms
of the group π1(M).

If h ◦ f1 = f2 ◦ h then h∗ ◦ f1∗ = f2∗ ◦ h∗. Therefore, two conjugate homeo-
morphisms are necessarily π1-conjugate. Moreover theorem 5.15 and Nielsen [56]
imply that the π1-conjugacy is also a sufficient condition of conjugacy for AP-
homeomorphisms (see [15,16,39] and also [35]).

Theorem 5.16. Let f1, f2 : M2 → M2 be AP-homeomorphisms of a closed
orientable hyperbolic surface M = Δ/Γ. Then f1 and f2 are conjugate if and only
if they are π1-conjugate.

Note that in [14–16], necessary and sufficient conditions for the conjugacy of
homeomorphisms f : M → M of a closed hyperbolic surface were obtained in the
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case when one of the invariant foliations is irrational and the other is of Denjoy
type, as well as in the case when both invariant foliations are of Denjoy type.

Classification of one-dimensional basic sets. Let Ω be a one-dimensional basic
set of an A-diffeomorphism f : M2 → M2 of a closed orientable hyperbolic surface
M2. Then Ω is either an attractor or a repeller [58,67]. Assume, for definiteness,
that Ω is an attractor. In this case, Ω is an expanding attractor : its topological
dimension coincides with the dimension of unstable manifolds. Profound results
on the structure and dynamics of expanding attractors belong to Williams [67].
However, solving the problem of the classification of one-dimensional expanding at-
tractors, one should take into account the character of the embedding of expanding
attractors into the surface.

Recall that a closed subset Ωc of a basic set Ω is called C-dense if both inter-
sections W s(m) ∩ Ωc and Wu(m) ∩ Ωc are everywhere dense in Ωc for any point
m ∈ Ωc. It is well known [1,31] that a basic set consists of a finite number of C-
dense components that are cyclically mapped to each other by the diffeomorphism.
Passing to an iterate of the diffeomorphism, we can make it so that the diffeomor-
phism has only C-dense basic sets. Below, unless otherwise stated, we will assume
that expanding attractors are C-dense.

If Ω is a one-dimensional expanding attractor then the unstable manifolds

{Wu(m) : m ∈ Ω} def
= Wu(Ω) form a local C1 lamination that consists of non-

trivially recurrent leaves. Each leaf of Wu(Ω) is everywhere dense in Wu(Ω). This,
combined with Theorem 4.8, implies the following proposition.

Theorem 5.17. Let f : M2 → M2 be an A-diffeomorphism of a closed ori-
entable hyperbolic surface M2, and Ω a one-dimensional widely disposed (in partic-
ular, orientable) expanding attractor of f . Then

(1) the geodesic framework G(Wu(Ω)) of Wu(Ω) is a weakly irrational geo-
desic lamination;

(2) any geodesic of G(Wu(Ω)) is a co-asymptotic geodesic of a leaf belonging
to Wu(Ω).

Similar to Section 5.2, we introduce the concept of a distinguished geodesic as
a geodesic that is co-asymptotic for more than one leaf of the lamination Wu(Ω).
The family of distinguished geodesics forms the distinguished set.

The next theorem follows from results obtained by Grines [37], and R. Plykin
[61] (see also [22], [42], [43]) and give necessary and sufficient conditions for the
conjugacy of one-dimensional basic sets via a homotopically trivial homeomorphism.

Theorem 5.18. Let f1, f2 : M2 → M2 be two A-diffeomorphisms of a closed
orientable hyperbolic surface M2, and let Ω1 and Ω2 be two one-dimensional widely
disposed (in particular, orientable) expanding attractors of these diffeomorphisms,
respectively. Then f1 and f2 are conjugate on Ω1 and Ω2 via a homotopically trivial
homeomorphism M2 → M2 if and only if the geodesic frameworks G(Wu(Ω1)) and
G(Wu(Ω2)) are equal (without regard to the orientation on the geodesics), and they
have the same family of distinguished geodesics, and there exist lifts f1, f2 : Δ → Δ
of these diffeomorphisms whose extensions to S∞ coincide, f1|S∞ = f2|S∞ .

Two homeomorphisms of a hyperbolic surface are homotopic if and only if they
have lifts with identical extensions to the absolute. Therefore, Theorem 5.18 can
be reformulated as follows.
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Theorem 5.19. Let f1, f2 : M2 → M2 be two homotopic (to each other) A-
diffeomorphisms of a closed orientable hyperbolic surface M, and let Ω1 and Ω2

be their one-dimensional widely disposed (in particular, orientable) expanding at-
tractors, respectively. Then f1 and f2 are conjugate on Ω1 and Ω2 via a homo-
topically trivial homeomorphism M2 → M2 if and only if the geodesic frameworks
G(Wu(Ω1)) and G(Wu(Ω2)) are equal (without regard to the orientation on the
geodesics) and have the same family of distinguished geodesics.

Note that it is possible to get a generalization of the last two theorems for
nonorientable closed surfaces using results from [45].
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ing the trajectory of flows on closed surfaces. III (Russian, with Russian summary), Izv. Ross.
Akad. Nauk Ser. Mat. 59 (1995), no. 2, 63–96, DOI 10.1070/IM1995v059n02ABEH000012;
English transl., Izv. Math. 59 (1995), no. 2, 287–320. MR1337159

[9] D. V. Anosov, On lifts to the plane of semileaves of foliations on a torus with a finite
number of singularities (Russian, with Russian summary), Tr. Mat. Inst. Steklova 224 (1999),

no. Algebra. Topol. Differ. Uravn. i ikh Prilozh., 28–55; English transl., Proc. Steklov Inst.
Math. 1 (224) (1999), 20–45. MR1721353

[10] D. V. Anosov, Flows on closed surfaces and related geometric problems (Russian, with Rus-
sian summary), Tr. Mat. Inst. Steklova 236 (2002), no. Differ. Uravn. i Din. Sist., 20–26;
English transl., Proc. Steklov Inst. Math. 1 (236) (2002), 12–18. MR1931002

[11] D. V. Anosov and E. V. Zhuzhoma, Asymptotic behavior of covering curves on the universal
coverings of surfaces (Russian, with Russian summary), Tr. Mat. Inst. Steklova 238 (2002),
no. Monodromiya v Zadachakh Algebr. Geom. i Differ. Uravn., 5–54; English transl., Proc.
Steklov Inst. Math. 3 (238) (2002), 1–46. MR1969302

[12] D. V. Anosov and E. V. Zhuzhoma, Nonlocal asymptotic behavior of curves and leaves of
laminations on universal coverings (Russian, with English and Russian summaries), Tr. Mat.
Inst. Steklova 249 (2005), 239; English transl., Proc. Steklov Inst. Math. 2 (249) (2005),
1–219. MR2200607

[13] S. H. Aranson, Trajectories on nonorientable two-dimensional manifolds (Russian), Mat. Sb.
(N.S.) 80 (122) (1969), 314–333. MR0259284

http://www.ams.org/mathscinet-getitem?mr=887599
http://www.ams.org/mathscinet-getitem?mr=954292
http://www.ams.org/mathscinet-getitem?mr=979299
http://www.ams.org/mathscinet-getitem?mr=1029036
http://www.ams.org/mathscinet-getitem?mr=988845
http://www.ams.org/mathscinet-getitem?mr=1265977
http://www.ams.org/mathscinet-getitem?mr=1337159
http://www.ams.org/mathscinet-getitem?mr=1721353
http://www.ams.org/mathscinet-getitem?mr=1931002
http://www.ams.org/mathscinet-getitem?mr=1969302
http://www.ams.org/mathscinet-getitem?mr=2200607
http://www.ams.org/mathscinet-getitem?mr=0259284


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

152 V. GRINES AND E. ZHUZHOMA

[14] S. Kh. Aranson, Topological equivalence of foliations with singularities and homeomorphisms
with invariant foliations on two-dimensional manifolds (Russian), Uspekhi Mat. Nauk 41
(1986), no. 3(249), 167–168. MR854244

[15] S.Kh. Aronson, Topological Classification of Foliations with Singularities and Homeomor-
phisms with Invariant Foliations on Closed Surfaces, Part 1: Foliations, 1988, 6887 V-88;
Part 2: Homeomorphisms, 1989, 1043 V-89. DEP VINITI, Gorkii.

[16] S. Kh. Aranson, Topology of vector fields, of foliations with singularities, and of homeomor-

phisms with invariant foliations on closed surfaces (Russian), Trudy Mat. Inst. Steklov. 193
(1992), 15–21; English transl., Proc. Steklov Inst. Math. 3 (193) (1993), 13–18. MR1265978

[17] S. Kh. Aranson, G. R. Belitsky, and E. V. Zhuzhoma, Introduction to the qualitative theory of
dynamical systems on surfaces, Translations of Mathematical Monographs, vol. 153, Ameri-
can Mathematical Society, Providence, RI, 1996. Translated from the Russian manuscript by
H. H. McFaden. MR1400885

[18] S. Kh. Aranson, E. V. Zhuzhoma, and I. A. Tel′nykh, Transitive and supertransitive flows
on closed nonorientable surfaces (Russian), Mat. Zametki 63 (1998), no. 4, 625–628, DOI
10.1007/BF02311259; English transl., Math. Notes 63 (1998), no. 3-4, 549–552. MR1680986

[19] S. H. Aranson and V. Z. Grines, Certain invariants of dynamical systems on two-dimensional
manifolds (necessary and sufficient conditions for the topological equivalence of transitive
systems) (Russian), Mat. Sb. (N.S.) 90(132) (1973), 372–402, 479. MR0339275

[20] S. H. Aranson and V. Z. Grines, The representation of minimal sets of flows on two-
dimensional manifolds by geodesic lines (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 42
(1978), no. 1, 104–129, 215. MR0501166

[21] S. Kh. Aranson and V. Z. Grines, Topological classification of flows on closed two-dimensional
manifolds (Russian), Uspekhi Mat. Nauk 41 (1986), no. 1(247), 149–169, 240. MR832412

[22] S. Kh. Aranson and V. Z. Grines, Topological classification of cascades on closed two-
dimensional manifolds (Russian), Uspekhi Mat. Nauk 45 (1990), no. 1(271), 3–32, 222, DOI
10.1070/RM1990v045n01ABEH002322; English transl., Russian Math. Surveys 45 (1990),
no. 1, 1–35. MR1050926

[23] S. Kh. Aranson, V. Z. Grines, and V. A. Kaimanovich, Classification of supertransi-
tive 2-webs on surfaces, J. Dynam. Control Systems 9 (2003), no. 4, 455–468, DOI

10.1023/A:1025687817308. MR2001955
[24] S. Aranson, V. Grines, and E. Zhuzhoma, On Anosov-Weil problem, Topology 40 (2001),

no. 3, 475–502, DOI 10.1016/S0040-9383(99)00071-3. MR1838992
[25] S.Kh. Aranson, E.V. Zhuzhoma, On the Topological Equivalence of Nowhere Dense Minimal

Sets of Dynamical Systems on the Torus. Izv. Vyssh. Uchebn. Zaved., ser. Matem., 1976 (5),
104-107.

[26] S. Kh. Aranson and E. V. Zhuzhoma, Quasiminimal sets of foliations, and one-dimensional
basic sets of A-diffeomorphisms of surfaces (Russian), Dokl. Akad. Nauk 330 (1993),
no. 3, 280–281; English transl., Russian Acad. Sci. Dokl. Math. 47 (1993), no. 3, 448–450.
MR1241956

[27] S. Kh. Aranson and E. V. Zhuzhoma, On the structure of quasiminimal sets of foliations
on surfaces (Russian, with Russian summary), Mat. Sb. 185 (1994), no. 8, 31–62, DOI
10.1070/SM1995v082n02ABEH003572; English transl., Russian Acad. Sci. Sb. Math. 82
(1995), no. 2, 397–424. MR1302622

[28] S. Aranson and E. Zhuzhoma, Maier’s theorems and geodesic laminations of surface flows,
J. Dynam. Control Systems 2 (1996), no. 4, 557–582, DOI 10.1007/BF02254703. MR1420359

[29] S. Kh. Aranson and E. V. Zhuzhoma, On properties of the absolute that affect the smoothness
of flows on closed surfaces (Russian, with Russian summary), Mat. Zametki 68 (2000), no. 6,
819–829, DOI 10.1023/A:1026696213559; English transl., Math. Notes 68 (2000), no. 5-6,
695–703. MR1835180
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