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Abstract Before a knock-out tournament starts, the participants are assigned to posi-
tions in the tournament bracket through a process known as seeding. There are many
ways to seed a tournament. In this paper, we solve a discrete optimization problem of
finding a seeding that maximizes spectator interest in a tournament when spectators are
interested in matches with high competitive intensity (i.e., matches that involve teams
comparable in strength) and high quality (i.e., matches that involve strong teams).
We find a solution to the problem under two assumptions: the objective function is
linear in quality and competitive intensity and a stronger team beats a weaker one
with sufficiently high probability. Depending on parameters, only two special classes
of seedings can be optimal. While one of the classes includes a seeding that is often
used in practice, the seedings in the other class are very different. When we relax the
assumption of linearity, we find that these classes of seedings are in fact optimal in
a sizable number of cases. In contrast to existing literature on optimal seedings, our
results are valid for an arbitrarily large number of participants in a tournament.
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1 Introduction

Knock-out tournament (also known as elimination tournament) is one of the most
frequently used sports tournament formats. After each game the winner advances to
the next round and the loser is out. Contrary to round-robin competitions (every team
plays with every other), in a knock-out tournament teams play against only a very
limited number of competitors. Usually, before the start of the competition a draw is
held to fill in the tournament bracket. The role of the draw is crucial because even for
a comparatively strong team an unlucky draw may lead to early elimination. In order
to protect the best teams from meeting each other at the early stages, favorites—they
are called seeded teams—are drawn at different parts of the tournament bracket. Such
traditional design has its reasons because a loss of a strong and well-known team in
the first rounds may reduce the spectator interest in the whole tournament.

We consider a standard knock-out tournament with 2” teams, where n > 1 is the

total number of rounds. Let the set of teams in the tournament be {1, 2, ..., 2"}. We
assume that the teams are strictly ranked by their strength (rating). Let s; € R be the
strength of the team i, i = 1,2, ...,2", withs; > 50 > ... > spn.

The knock-out tournament can be represented by a binary tree of height n with 2"
terminal nodes. Before the start of the tournament, the terminal nodes of the tree are
labeled according to a seeding—a one-to-one function from the set of teams to the set
of terminal nodes. Any two labeled nodes linked to another node stand for a match;
the parent of the two nodes is then labeled with the winner of the match. The labeling
proceeds until the root of the tree is labeled with the tournament’s champion.

It is convenient to represent a seeding by a 2"7-tuple which is a permutation of the
tuple (1,2, ..., 2"). Denote the set of permutations of (1,2, ...,2") by X,,,n > 1.

Empirical research shows (see Forrest and Simmons 2002) that the spectator
demand for watching a football game depends on the two characteristics of a match—
its competitive intensity and quality. The term “competitive intensity” (hereafter CI)
refers to the degree of balancedness of a match. A match between two equally strong
teams is said to have high CI, while a match between a strong team and a weak team
is said to have low CI. The term “quality” accounts for the overall strength of teams
playing in a match. In our model, (s; + s;) is the quality while —|s; — s;| is the
competitive intensity of the match involving teams i and j.

We consider the problem of finding a seeding that maximizes an increasing function
of both CI and quality, aggregated over all the matches of the tournament. Traditional
seeding (depicted in Fig. 1 for a three-round tournament) does ensure high CI in late
stages of a tournament at a price of having relatively low CI in the early stages. On
the other hand, one can imagine seedings that let strong teams play with strong teams
and weak teams play with weak teams already in the first round. In contrast to the
traditional seeding, such seedings generate high CI in the beginning of the tournament
while low CI in the end.

Our results are as follows. If the spectator interest function is linear in both CI and
quality and it is true that in any match, a stronger team wins with sufficiently high
probability, then, depending on the parameters, only two relatively small classes of
seedings can be optimal. We call these classes close seedings and distant seedings.
We postpone the formal definitions to Sect. 3. Informally, close seedings are such that,
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Fig. 1 The examples of close (left) and distant (right) seedings

if a stronger team always beats a weaker one, in every round of the tournament the
strongest team out of the remaining participants faces the second strongest, the third
strongest faces the fourth strongest, and so on. By contrast, distant seedings are such
that at any stage of the tournament each of the top half participants meets one of the
bottom half ones. The examples of close and distant seedings in a tournament with 8
participants are provided on Fig. 1.

We derive a simple condition which governs which seedings—close or distant—
will be optimal in the linear case. It turns out that distant seedings are optimal whenever
there is a sufficiently strong preference for quality (as reflected by its relative weight in
the objective function) and if, other things being equal, the spectator interest increases
at a sufficiently high rate as the tournament proceeds. Otherwise, close seedings are
optimal. Our results hold for all values of teams’ strength.

We then drop the linearity assumption and show that close and distant seedings
remain optimal in a large number of cases. We provide sufficient conditions on the
functional form of the objective function under which distant seedings are optimal as
well as the sufficient conditions under which close seedings are optimal. In the case
of close seedings, the sufficient conditions turn out to be “almost” necessary.

One of the distant seedings (the one depicted in Fig. 1) is the very seeding that
we have referred to as “traditional” above; this seeding is widely used in practice and
has been subject to much analysis in the literature (see, for example, Hwang 1982
or Schwenk 2000). By contrast, close seedings are, to the best of our knowledge,
never employed by tournament organizers (although a “close” pairing may arise as
an outcome of a draw if no seeding is used; this was the case in 2014-2015 English
Football Association Challenge Cup where several Premier League clubs met already
in the third round of the competition). Our results, then, suggest that for a certain set
of parameters the existing practices may be far from optimal.

However, even though close seedings sometimes turn out to be optimal in our model,
there are certain reasons for avoiding them that are beyond our framework. One of
those reasons stems from the fact that seeding is usually determined on a basis of teams’
historical rankings. If, under a certain seeding, a highly ranked team is sure to face
another strong competitor already in the first round, it may have a perverse incentive to
manipulate its rankings downwards by exerting less effort or even deliberately losing
matches in previous competitions. Therefore, our analysis suggests that the provision
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of the right incentives by means of the traditional seeding may have a cost in terms
of the tournament’s overall competitive intensity and quality. On the other hand, for
the complementing set of parameters our model predicts that the traditional method
of seeding is, in fact, optimal from the competitive intensity and quality point of view.

2 Literature review

A complete and up-to-date general survey of the operations research literature on the
design of tournaments and sporting rules may be found in Wright (2014).

A particular dimension of tournament design is the problem of finding “good”
seedings in knock-out tournaments. One approach is axiomatic—a seeding is con-
sidered “good” when it satisfies certain criteria. The most popular criterion here is
“monotonicity”: it is deemed desirable that the probability of winning the tournament
is increasing in player rank since non-monotonicity may create perverse incentives
for teams. Hwang (1982) shows that monotonicity may not hold under the traditional
method of seeding while Baumann et al. (2010) find some statistical evidence for
monotonicity violation using data from the NCAA March Madness basketball tourna-
ment. Hwang (1982) also proves that reseeding after each round restores monotonicity.
Schwenk (2000) suggests another remedy for the problem. He shows that a certain ran-
domization procedure (called “cohort randomized seeding”) satisfies an axiom closely
related to monotonicity (“sincerity rewarded”, i.e. lack of the perverse incentives itself)
as well as two other axioms.

Another approach attempts to find seedings that optimize certain quantities. A pop-
ular objective function is the probability of the highest-ranked player winning in the
tournament (which is also called predictive power). Horen and Riezman (1985) show
that in a 4-player knock-out tournament, the seeding (1,4,2,3) maximizes this proba-
bility. The authors find that matters are more complicated in an 8-player tournament
where eight different seedings can be optimal depending on the matrix of winning
probabilities. However, Ryvkin (2005) shows that, if winning probabilities depend
on the ranks of players “smoothly”, only one seeding can be optimal with 8 players.
Horen and Riezman (1985) consider also other objectives such as the probability of
a final between the two highest-ranked participants and the expected strength of the
winning player. Glickman (2008) incorporated the incomplete information about the
participant strengths in the standard model of knock-out tournament. He assumed that
knowledge about player strengths is given by a multivariate normal distribution and
formulated the corresponding general optimization problem.

The economics literature on tournament design has been traditionally concerned
with total effort exerted by players. Thus, in a typical model the winning probabilities
pij depend on strategic choices of effort and are endogenous. The variable of designer’s
choice is usually the prize structure of a tournament; the question of optimal seeding
has been addressed to a lesser extent. As a supplementary result, Rosen (1986) finds
that in a simple numerical example with two rounds a random seeding can yield higher
total effort than the distant seedings. Groh et al. (2012) report that in Rosen’s example, a
close seeding yields even higher total effort. Also, they find that the seeding (1,4,2,3)
maximizes a tournament’s predictive power while the seeding (1,3,2,4) maximizes
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both the total effort and the probability of the final between the two highest-ranked
players.

Ely et al. (2015) build a novel framework with agents demanding noninstrumental
information and find dynamic information policies that maximize suitably defined
“suspense” and “surprise”. This framework is directly applicable to modeling spectator
interest in sporting events, with “suspense” being related to competitive intensity. In
one of their examples, the authors consider the problem of finding suspense- and
surprise-optimal seedings in a simple three-player knock-out tournament in which
one of the players has a first-round “bye”. They find that a seeding in which the two
strongest teams play already in the first round and the weakest one has a bye generates
most surprise and, frequently, most suspense. This result, though limited to the simplest
example, is in line with our findings.

Unlike predictive power and total effort, the objective function that we consider has
been studied little. Vu (2010) constructs a “revenue” function that includes two terms
reflecting quality and competitive intensity, though the construction is different from
ours. He then simulates the parameters of the model, including the matrix of winning
probabilities; for every realization of parameters he does exhaustive search and finds
the optimal seeding in a tournament with 8 players. The author finds that the traditional
seeding is optimal in 23% of cases and achieves, on average, more than 99% of the
optimal value. No seeding turns out to be optimal more often than the traditional one.

The number of non-trivially different seedings in a knock-out tournament with
N = 2" participants is N!/(2V~1). This quantity grows rapidly in N that makes both
analytic work and exhaustive search generally hard to do (note that the majority of
the results described above are for N < 8 only). In contrast, we provide results for an
arbitrarily large number of participants.

3 Framework
3.1 The optimization problem

The organizers seek to maximize the overall spectator interest in watching the matches
of the tournament. We assume that spectator interest in a single match depends pos-
itively on (i) the strength of the teams involved and (ii) the degree of balancedness
of the match. Such a formulation conforms to intuition and is in accord with several
previous treatments [see, for example, expressions for “demand” in Palomino and
Rigotti (2000) and “revenue” in Vu (2010)]. It is also plausible that, other things being
equal, a match later in the tournament attracts more attention than the same match in
the beginning of the tournament.

Therefore, we model the spectator interest in a single match between teams i and
J happening in round r (denoted by D; j) as follows:

Dl-’j:a’f[y-(si+sj)—|5i—sj|]’ @)

where o > 1 is a coefficient that reflects how rapidly the attention to the tournament
increases as it unfolds. The term (s; + s;) is the quality of the match while the term
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—|s; — 5| is the competitive intensity. The relative importance of quality as compared
to competitive intensity is given by the coefficient y > 0. The function f : R —
R captures possible nonlinearities in the effect of quality and competitive intensity
on the spectator interest. We assume that f is strictly increasing and continuously
differentiable.

Denote by M, the set of matches played in round r. M, depends both on the seeding
x and the random outcomes of previous matches. Suppose that for any two teams i
and j, there exists a fixed probability p;; that i beats j. Let P = (p;;). We assume
that matrix P has the following properties: (i) p;; + pji = 1 for all i, j; (ii) p;; is
nonincreasing in i and nondecreasing in j. Such probability matrices are sometimes
called doubly monotonic.

To highlight the dependence of M, on seeding x, denote itby M, (x). The probability
distribution of M, (x) can be computed given P, x and the rules of the knock-out
tournament. Then, the expression

ED(x) = Ei Z Dj;

r=1(ij)eM(x)

represents expected spectator interest of a whole tournament, where the notation (ij) €
M, (x) means that the match between teams i and j belongs to the random set M, (x).
We study the following problem:

max ED(x). (2)

The results in this paper are formulated under the following assumption on P:

Assumption 1 For any two teams i and j, p;; = 1 wheneveri < j, i.e. a stronger
team always beats a weaker one.

Due to the finiteness of the set of seedings and the continuity of the expectation with
respect to probabilities, all our results also hold when Assumption 1 holds “approxi-
mately” i.e. when the probabilities p;; are sufficiently high fori < j. Itis not difficult
to provide counterexamples showing that our results do not hold for any doubly mono-
tonic matrix P.

3.2 Close and distant seedings

Two sets of seedings play a special role in our analysis, as they turn out be the only
possible solutions to the problem (2) when f is linear. We first discuss them informally.

As noted in the introduction, close seedings are seedings such that under Assump-
tion 1, in every round any team faces an opponent closest to it in rank out of the
participants remaining in the tournament. Hence, in the first round the team i where
i is odd is paired with the team i 4+ 1 and these pairs are placed within the bracket in
such a way that in the second round the team 1 faces the team 3, the team 5 faces the
team 7, and so on.
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Fig. 2 The examples of close 1/4 1/2 Final Winner
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In contrast, distant seedings are such seedings that under Assumption 1 a team from
the strongest half of remaining teams meets a team from the weakest half of remaining
teams in each match of the tournament. For example, for n = 3 the traditional seeding
(1,8,4,5,3,6,2,7) is adistant seeding. Figure 2 shows again the examples of a close
and a distant seeding, this time we fill the tournament bracket with the winners of each
match under Assumption 1.

We now give formal definitions of close and distant seedings that do not make direct
use of Assumption 1. We define “close tuples” and “distant tuples”. A close seeding
is a seeding that can be represented by a close tuple, and a distant seeding is a seeding
that can be represented by a distant tuple.

Let A and B be two finite subsets of N. We say that A and B do not overlap if
either the smallest element of A is greater than the largest element of B or the smallest
element of B is greater than the largest element of A. Otherwise we say that A and B
overlap.

We give formal definitions of close and distant tuples by induction over the number
of rounds, n. In these definitions, we assume that tuples consist of natural numbers.

Definition 1 (Close 2k-tuples)

(1) Ifk =1, any 2k-tuple is close;
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(2) Suppose we defined close 2¥-tuples for some k = [ > 1. A 2/*!-tuple x is close
if and only if two conditions hold:
(a) The 2/-tuples (x1, xa, ..., x) and (Xp14 1, X140, - .., Xpi41) are close;
(b) The sets {x1, x2, ..., xy}and {x5 |, Xpi 5, ..., Xp+1} do not overlap.

For a 2"-tuple x, let W(x) be the set {r € N : 3k : r = min{xp;_1, x2x}}. Anal-
ogously, let L(x) be the set {f € N : 3k : + = max{xor_1, x2¢}}. That is, under
Assumption 1 W(x) would be the set of teams that win of the first round and L(x)
would be the set of teams that lose in first round if the seeding is x.

Definition 2 (Distant 2*-tuples)

(1) If k = 1, any 2*-tuple is distant;

(2) Suppose we defined distant 2*-tuples for some k = [. A 2/*!-tuple x is distant if
and only if two conditions hold:
(a) The 2l-tuple (min{xy, x2}, min{x3, x4}, ..., min{xy+1_;, Xo+1}) is distant;
(b) The sets W(x) and L(x) do not overlap.

Note that in case of four participants, any seeding is either close or distant. However,
as number of participants grows, the share of close and distant seedings in the set of all
seedings converges to 0. One may compute that the share of close and distant seedings
taken together is 15.56 % for n = 3,0.3 % forn = 4 and 3.3 - 1077 forn = 5.! Note
also that under Assumption 1 any close seeding leads to the same set of matches being
played (and thus the same value of the objective function), whereas different distant
seedings can involve different pairings of teams from the stronger half and the weaker
half, and thus yield different values of the objective function. Under linearity of f,
however, all distant seedings generate the same level of spectator interest.

4 Results: linear f

Denote the set of close seedings by C, and the set of distant seedings by D. Denote
by X*(s, «, y) the set of optimal seedings as a function of the tuple of strengths s, the
later-round preference parameter o and the quality preference parameter y .

Theorem 1 Suppose f is linear, and Assumption 1 holds. Then:

(1) Ifa(y +1) <2, thenV¥s X*(s,a,y) = C;
(2) Ifa(y +1) > 2, then Vs X*(s,a, y) = D;
(3) Ifa(y + 1) = 2, then any seeding is optimal.

Denote by P, the set of participants of round r. Denote by W, the set of winners
of round r and by L, = P, \ W, the set of losers of round r. Consider special sets

Wr={(1,1+2,142-2,1+3-2",...,2"+1-2)
and W** ={1,2,3,...,2""}.

211
! The share of close seedings in the set of all seedings is equal to 2(2T), while the share of distant seedings

is the same number multiplied by HZ;; 5.
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Lemma 1 Foranyroundr, Y s; < Y si< Y. s
iceWr icW, iceWr*

Proof of Lemma 1 The inequality > s; < Y s; is obvious. As for the inequality
icW, ieWr*

> si < Y si, consider the weakest team that wins in round r. It is a winner of a
ieWr ieW,
sub-tournament with 2" participants, so there are at least 2" — 1 teams weaker than it.
Hence, its strength is at least sp»41_pr. Consider the second weakest team that wins
in round r. It is a winner of another sub-tournament with 2" participants, so there
exist another 2" — 1 teams that are weaker than it. Overall, it must be stronger than
2" — 1+ 27 teams, so its strength is at least sp»41_7.or. Proceeding in this fashion, we
see that the strength of the i’ h weakest winner of round r is at least Sony1—i.2r which
implies the result. O

Proof of Theorem 1 Without loss of generality, consider f () = ¢. Consider the quan-
titiesu, = Y (y(si +s;) — |si —s;|). Note that for any r,
(ij)eM,(x)

w=yY si—| D si=Y si|=vY si—[2) si—) s

ieP, ieW, iel, ieP, ieW, ieP,

=@+DY si—-2) s 3)

ieP ieW,

n
The objective function is equal to Y | o u,. Substituting u, from (3) and using the fact
r=1
that by the nature of a knock-out tournament W,._; = P,, one gets that

Xn:aru, —aly+ DY s+ (az(y F1)— 2a) 3 s+ <a3(y F1)— 2a2)
r=1

ieP; ieWy

Zsi+~-~+(ot"(y+1)—2a"_l) Sos-2) s @

ieWy ieW,_1 ieW,

Under Assumption 1,2 Y s; = 2s; and ) s; are just constants so eventually
ieW, ieP
we should maximize the expression

n—1
@y+D=2) o > s )

=1 ieW,

Then there are three cases.
n—1
Case I a(y + 1) < 2, so we should minimize the expression ) o" > s;. By
r=1 ieW,
Lemma I, ) s; is minimized when W, = W}*. The key point is that it is feasible
ieW,
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to set W, = W simultaneously for all . It is evident that this happens if and only

if the seeding is close.
n—1
Case 2 a(y + 1) > 2, so we should maximize the expression Y o” Y s;. By
r=l  ieW,
Lemma 1, ) s; is maximized when W, = W**. Again, it is feasible to set
ieW,
W, = W* simultaneously for all r. This happens if and only if the seeding is
distant.
Case 3 a(y + 1) = 2. The objective function is constant, so any seeding is

optimal. O

Theorem 1 shows that if the effect of a match’s quality and competitive intensity
on spectator interest is linear, only two types of seedings—close seedings or distant
seedings—can possibly maximize the objective function. It also elucidates the way
the solution to Problem (2) depends on the parameters « and y .

This relationship is intuitive. First, note that there is a trade-off between com-
petitive intensity at early stages and late stages of the tournament; close seedings
generate great intensity in first rounds, but a very unbalanced final, whereas dis-
tant seedings create unbalanced matches early in the tournament, but guarantee a
final between the top two teams. As a result, close seedings are optimal when « is
relatively low while distant seedings are optimal when « is relatively high. (Close
seedings can be optimal even if @ > 1 because the sheer number of matches in
the beginning of the tournament is greater than the number of matches at later
stages.)

Second, notice that the longer strong teams are not eliminated from the tour-
nament the higher its overall quality is (as high levels of strength are counted
more times in (2)). Close seedings eliminate top teams quickly (except the
strongest one) while distant seedings favor strong teams by pairing them with
weak ones. As a result, close seedings are optimal when y is relatively low
while distant seedings are optimal when y is relatively high. When the specta-
tors care mostly about quality (y is arbitrarily large), distant seedings are always
optimal; by contrast, when the spectators care only about competitive intensity
(y = 0) and ¢ < 2, close seedings are optimal. Thus, when ¢« < 2 so
that spectator preference for later-stage matches is not too strong, there also
exists a trade-off between the tournament’s overall quality and competitive inten-
sity.

Finally, note that the set of optimal seedings does not depend on cardinal levels of
the teams’ strength even though they enter the objective function explicitly. Thus, in
order to implement the solution stated in Theorem 1, the organizers would have to
know only the relative ranking of the teams, and the value of the parameters o and y .

5 Results: general f
To which extent do the results of the previous section generalize when f is not longer

linear? In this section, we show that close and distant seedings can arise as a solution
to Problem (2) for a nontrivial set of functions.
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5.1 Optimality of close seedings

First, suppose that the spectators care only about competitive intensity, i.e. ¥ = 0. In
this case we are able to give, for a fixed n and o, both necessary conditions and sufficient
conditions on f for close seedings to be the only optimal seedings. These necessary
and sufficient conditions differ only insignificantly; in a sense, what we provide is
almost a charaterization of the set of functions f such that Vs X*(s, «, y) = C.

Note that for y = 0 only negative arguments enter f in (1). Therefore, in this
subsection f is understood as a function from the set of nonpositive real numbers to
R.

Recall that function f is called subadditive if ¥V u, v from the domain u + v also
belongs to the domain and f(u + v) < f(u) + f(v).

Theorem 2 (A sufficient condition for the optimality of close seedings)
Suppose Assumption I holds and y = 0.

(1) Fix n = 2 and suppose that:
(a) f is subadditive;
(b) inf f'(t) > (o — 1) sup f/(¢).
ThenVs X*(s,a,y) = C.

(2) Fixn > 3 and suppose that:
(a) f is subadditive;
(b) inf f'(t) > 2= sup f'(1).
ThenVs X*(s,a,y) = C.

The sufficient conditions stated in the Theorem show that close seedings are indeed
optimal for any numerical levels of strength in a considerable number of cases. The
conditions (b) ensure that the variation in the derivative of f is not too high. In a sense,
they give a precise statement of the idea that f should not differ too much from a linear
function. Note that when f is linear, inf f/(z) = sup f’(¢) and so both conditions (b)
become just ¢ < 2, which is in accord with Theorem 1. Subadditivity ensures that in
every two-round sub-tournament, the close structure (1, 2, 3, 4) is weakly better than
the structure (1, 4, 2, 3).

To prove Theorem 2 for the case n > 3, we need the following lemma.

Lemma 2 Suppose Assumption 1 holds, and a seeding xo is optimal. Then all the
seedings induced by xo in all sub-tournaments are optimal in the corresponding
sub-tournaments, i.e. they maximize spectator interest in the corresponding sub-
tournaments given the sets of participants in the sub-tournaments.

The proof of the lemma is evident so we omit it. O

Proof of Theorem 2 Part 1 (n = 2).
It is sufficient to prove that the seeding (1,2,3,4) is strictly better than both seedings
(1,4,2,3) and (1,3,2,4). As for the seeding (1,3,2,4), we should prove the inequality

f(=lst —s2D) + f(=ls3 —s4]) + af(=Is1 —s3]) > f(=|s1 — s3])
+ f(=ls2 —s4]) + af (=|s1 — s2). (6)
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This may be rewritten as

fsa—53) = fsa—s2) > (@ — DIf(s2 —51) — fs3 —s1)] (7N
By Mean Value Theorem, it is true that for an increasing differentiable function f

and any two pointsa and b,a < b, inf f'(t)(b—a) < f(b)— f(a) < sup f'(¢t)(b—a).
So we have

f(sa—s3) = f(sa —52) = inf f(1)(s2 = 53) > (¢ — Dysup f'(1)(s2 — s3) >
> (@ — DIf(s2 —s1) — fs3—sD], ®)

where the second inequality is by assumption.
As for the seeding (1,4,2,3), we should prove the inequality

f(=lst = s20) + f(=ls3 = s4]) + af (=s1 = s3)) > f(=Is1 —sa) + f(=Is2 — s3])
+oaf(=ls1 — s20). ©))

This can be rewritten as

f(s3—=s1)+ f(s4—s3) > f(sa—s)+ fls3—s2)+ (a—D[f(s2—51)— f(s3—s1].

(10)
The inequality
S(s3 —s51) + f(s4 —53) > f(s4 —51). (11)
is true by subadditivity. However, it is also true that
fO) — f(s3—s2) = inf f'()(s2 — s3) > (@ — 1) sup f'()(s2 — s3) >
> (@ — D[f(s2 —s1) — f(s3 —s1], (12)

where the second inequality is again by assumption. Given that f(0) = 0, adding
inequalities (11) and (12) proves the desired inequality (9).

Part 2 (n > 3).
The proof is by induction. We prove the statement not only for n > 3, but for all
n>2.

Induction base (n = 2) The inequality inf f'(z) > % sup f'(¢) implies that 1 <

o < 2 as an infimum cannot be strictly greater than a supremum. But for | < o < 2

we have ﬁ—za > (o — 1) so the condition in the Part 1 is satisfied. Hence, the result of
Part 1 applies.

Induction step Suppose close seedings are strictly optimal for any tournament (and
sub-tournament) with n = [ > 2 rounds. Consider a tournament with n = [ + 1
rounds.

Take any optimal seeding x* = (x1, x2, ..., Xo+1). Suppose x* is not close. By
definition, there are three possibilities: (i) the tuple (xi, x2, ..., xy) is not close;

@ Springer



J Comb Optim

(ii) the tuple (X511, X511 5, . .., Xy+1) is not close; (iii) the sets {xq, x2, ..., xy} and
{X2I+1 s Xl 4Dy o v ey X21+1} Overlap.
Note that the tuple (xi,x2,...,xy) is a seeding in the upper-bracket sub-

tournament of the grand tournament. By Lemma 2, this seeding should be optimal
in the sub-tournament. But there are 2/ participants in this sub-tournament, so by
induction hypothesis, the tuple (x1, x2, ..., xy) should be close. Analogously, the
tuple (X514 1, X149, . .., Xp+1) should be close. This rules out the first two possibili-
ties. We are left with the third one: suppose that the sets A = {x1, x2, ..., xy} and
B = {xp 1, X145, ..., Xy+1} overlap. Without loss of generality, assume that the
strongest team belongs to A. There are again two cases.

Case 1 There are two or more teams in A which are weaker than the strongest
team in B. Let u be the weakest team in A and v be the second weakest. As
the tuple (x1,x2,...,xyu) is close, these teams play against each other in the
first round, and v wins. As v is weaker than the strongest team in B, the tuple
w = (min{xy, x2}, min{x3, x4}, ..., min{xy+1_;, xoi+1}) is not close. However, w is
a seeding in a sub-tournament of the grand tournament (this sub-tournament includes
all the matches of the grand tournament except first-round matches). There are 2/
participants in this sub-tournament, so by Lemma 2 and the induction hypothesis, w
should be close. Contradiction.

Case 2 There exists exactly one team in A which is weaker than the strongest team in
B. Let this team be u > 2. The strongest team in B should be the team 2‘.

Now generate a new seeding % by switching the positions of « and the team 2! in
x*. We claim that x generates greater spectator interest than x*.

Subcase 1 u = 2! + 1. The only differences in matches between x* and X are as
follows: in round 1, X assigns matches 2! —1,2!) and (2’ + 1,2 + 2) whereas x*
assigns matches ' —1,2' + 1) and (2!, 2! +2). In rounds 2 through n — 1, X assigns
the team 2/ + 1 to play against various weaker teams #;, whereas x* assigns the team
2! to play against the very same teams. Finally, in round n = [ + 1, X assigns team 1
to play with 2/ + 1 whereas x* assigns team 1 to play with 2.

So the objective function at X is strictly greater than at x* if and only if

1
S(sor — sy 1)+ f(sp40 —Sp141) + Zai_lf(sti — Sy + ozlf(s21+1 —51) >
i=2
l .
> flsop = Su_) + flspg0 = s+ Y a7 flsy —sy) e flsy—s1). (13)
i=2

Rearranging terms, we get

[f(Szl - Szl_l) - f(S21+1 - Szl_l)] + [f(S21+2 - Szl+1) - f(Szl_;,_z - Szl)] +
1
+ D T f sy = sapg) = fls = s)] > e [f sy = 51) = a1 — s
i=2
(14)
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Applying bounds given by mean value theorem (similar to that in Part 1) and dividing
both parts by (s — sy 1) we see that the inequality (14) is implied by the inequality

-1
(2 + Za") inf £'(t) > o' sup f'(1).

i=1

But this inequality follows directly from the assumption of the Theorem and the fact
that forall/ >2and 1 <a <2

of o?

=< .
2+a4a?+- 4o T 24«

Hence, & generates greater spectator interest, and x™* is not optimal. Contradiction.

Subcase 2 u > 2! + 1. The only differences in matches between % and x* are as
follows: in round 1, X assigns matches (2" —1,2" and (2! + 1, u) whereas x* assigns
matches (2! — 1, u) and (2, 2! 4+ 1). In rounds 2 through n — 1, x assigns the team
2! + 1 to play against various weaker teams #;, whereas x* assigns the team 2/ to play
against the very same teams. Finally, in round n = [ + 1, x assigns team 1 to play with
2! + 1 whereas x* assigns team 1 to play with 2.

So the objective function at x is strictly greater than at x* if and only if

/

Flsa = sy )+ flsu—su)+ Y fsy —sapp) +a floygy —s1) >
i=2

1
> fsu—sp_1) + flspryy —so0) + Zai_lf(s,i —85y1) + ozlf(szz —51).
i=2
15)

By subadditivity, f(sy — sp_1) < f(spy — Sp_1) + f(su — Sp1y ). Using this
inequality and then applying the technique similar to those in Part 1 and Subcase 1
above, proves inequality (15).

Hence, again, x* is not optimal. Contradiction.

This proves that any optimal seeding is close. To prove that any close seeding is
optimal, note that an optimal seeding exists and all close seedings yield the same value
of the objective function. O

It is remarkable that the conditions stated in Theorem 2 are not only sufficient, but
also almost necessary for the optimality of close seedings. The necessary conditions
differ from the sufficient conditions only in a knife-edge case when inf f'(¢) = (@ —

1) sup f/(¢) forn = 2 and inf f/(¢) = % sup f'(r) forn > 3.

Theorem 3 (A necessary condition for the optimality of close seedings.)
Suppose Assumption 1 holds and y = 0.
(1) Fix n = 2 and suppose that Vs X*(s,a, y) = C. Then:
(a) f is subadditive;
(b) inf f'(t) > (@ — 1) sup f/(1).
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(2) Fixn > 3 and suppose that Vs X*(s,a,y) = C. Then:
(a) f is subadditive;

(b) inf f'(6) > £ sup f'(0).

Lemma 3 Let f be a subadditive strictly increasing and continuously differentiable
function R_ — R satisfying f(0) = 0. Then inf f/'(x) = f’(0), where f' (0) is the
left derivative at zero.

Proof By definition of a derivative we have

()= lim S+ A= f(1) =~ lim f@) + f(AD) — f()
At—0— At At—0— At

where the inequality follows from subadditivity of function f and the fact that
At < 0. O

Proof of Theorem 3 Part 1 (n = 2).
A close seeding (1,2,3,4) should be strictly better than the seeding (1,4,2,3) (this is
inequality (9) again:

f(=lst = s2) + f(=ls3 = sal) + af (=ls1 —s3)) > f(=|s1 —sa]) + f(=Is2 — s3])
+oaf(=ls1 = s20). (16)

So we again have

fls3—=s1)+ f(sa—53) > f(sa—s1)+ f(s3—52)+(a@—D[f(s2—51)— f(s3—5D].

(17)
Fix s1, 53, 54 and let s, — s3. As by assumption f is continuous and f(0) = 0, the
term f(s3 —s2) + (¢ — 1)[f(s2 —s1) — f(s3 — 51)] can be made arbitrarily small so
we should have

fs3—s1)+ f(s4 —53) = f(sa —s1). (18)

This is nothing but the subadditivity.
Also, (1,2,3,4) should be strictly better than the seeding (1,3,2,4). So we have
inequality (6) again:

f(sa=83) = fsa —52) > (@ = D[f (52 = 51) — fs3 —s1)]. 19)

Fix all strengths except s; and let s, — s3. Then use first-order Taylor expansions
around the limit points. One gets:

f(sa—53)(s2 — 53) > (0 — 1) f'(s3 — 51) (52 — 53) + 052 — 53). (20)
Now divide both parts by (so — s3) and note that the term o(sz — s3)/(s2 — s3) can

be ignored if the strict inequality is replaced with a weak one. Let s4 — s3. As by
assumption the derivative of f is continuous, one gets

fLO) = (@ = D) f'(s3 = s0). 2L
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By subadditiviy and Lemma 3, f/ (0) = inf f'(r). So, by varying s; we immediately
get the required result:

inf f'(1) = (« — 1) sup f'(2).

Part 2 (n > 3).

Fix o and suppose Vs X*(s, o, 0) = C, i.e. close seedings are strictly optimal. In
particular, this means that the close seeding (1,2, 3,4, 5,6, ...,2") is strictly better
than the seeding (1,4, 2, 3,5,6,...,2"). Note that the sets of matches generated by
these two seedings differ only in a two-round sub-tournament won by the team 1.
Hence, we should have that the seeding (1, 2, 3, 4) in this two-round sub-tournament
should be strictly better than (1, 4, 2, 3). Applying the argument from Part 1 to this
sub-tournament, we get that f is subadditive.

In order to prove that the inequality inf|f/(x)| > ﬁ_za sup | f/(x)| holds, note
that the close seeding (1,2,3,4,5,6,7,8,...,2") should be strictly better than
(1,2,3,5,4,6,7,8,...,2"). The sets of matches generated by these two seedings dif-
fer only in a three-round sub-tournament won by team 1. The corresponding inequality,

then, boils down to

[f(s4 —53) — f(s5s —s3)]+ [f(s6 —55) — f(s6 —54)]
+alf(s7—s5) — f(s7—sa)] > &*[f(sa —s1) — f(s5 —sD]. (22)

Fix all strengths except s4 and let s4 — s5. Then use first-order Taylor expansions
around the limit points. One gets:

f(ss —53)(s54 — 55) + f'(s6 — 55) (54 — 55) + af (57 — 55)|(54 — 55)
> @ f/(s5 — 51) (54 — 55) + 0(s54 — 55). (23)

Now divide both parts by (s4 — s5), ignore the term o(s4 — s5)/(s4 — s5) and let all
strengths except s1 go to s3. As by assumption the derivative of f is continuous, one
gets

Q+a) f0) = o f(s3 — 51). (24)

By subadditivity and Lemma 3, f/ (0) = inf f/(¢). So, by varying s; we get the
required result:

o2

inf /(1) >
lnf()_2+a

sup f'(1).

]

An infimum cannot be strictly greater than a supremum; this implies that (e —1) < 1
and % < 1. Hence, we obtain the following corollary.

Corollary 1 Suppose the spectators care only about competitive intensity. If o > 2
there does not exist a strictly increasing and continuously differentiable function f
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satisfying f(0) = O such that close seedings maximize spectator interest for any tuple
of strengths. O

We know already from Theorem 1 that if f is linear, y = 0, and @ > 2, close seed-
ings are not optimal. Corollary 1 shows that if the preference for later-stage matches
is sufficiently strong, no nonlinear effect of competitive intensity on spectator interest
can restore the optimality of close seedings.

Ignoring the knife-edge cases, Theorems 2 and 3, taken together, provide a charac-
terization of the set of functions F («, n) such that close seedings are the only optimal
seedings in the n-round tournament given the parameter «. Note that F(«, 3) is sub-
stantially smaller than F (e, 2) since the condition inf f/(z) > ﬁ—za sup f'(¢) is strictly
more restrictive than the condition inf f/(r) > (@ — 1) sup f’(¢). This is understand-
able given the fact that a three-round tournament is a more complex structure than a
two-round tournament and thus more conditions must hold for close seedings to be
optimal. However, it is not the case that F'(«, 4) is substantially smaller than F («, 3).
Indeed, for n > 3, sets F(«, n) differ from F(«, 3) in at most the knife-edge case
when the condition (b) in part 2 of Theorem 3 holds as equality. This counterintuitive
result suggests that, in a certain sense, there is a qualitative increase in the complexity
of tournament structure when the number of rounds rises from 2 to 3 only; further

increases in the number of rounds have a less significant effect.

5.2 Optimality of distant seedings

In this subsection, we provide the result analogous to Theorem 2 that deals with the
optimality of distant seedings.

Unlike close seedings, different distant seedings in general result in different sets
of matches being played and thus generate different levels of spectator interest. This
complicates the analysis, and the results for distant seedings are true only in a weaker
form than the results for close seedings. Namely, we have to replace the statement
X*(s,a,y) = Cwith X*(s, @, y) C D.Moreover, we state only a sufficient condition,
but not a necessary condition, for the optimality of distant seedings. However, in the
case of distant seedings we do not have to assume that y = 0; we provide results for
an arbitrary nonnegative value of y.

Theorem 4 (A sufficient condition for the optimality of distant seedings) Suppose
Assumption 1 holds. Fix n > 1 and suppose o(y + 1) inf f'(x) > 2sup f'(x). Then
Vs X*(s,a,y) C D.

Again, note that the above result is in total accord with Theorem 1 when f is linear.

Proof Theorem 4 The proof is by induction.

Induction base (n = 1) is obvious.

Induction step Suppose that the statement has been proved forn = [ > 1. Consider
n=1[04+1.

Take any optimal seeding x* = (x1, x2, ..., Xy+1). Suppose x* is not distant. By
definition, there are two possibilities:
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(i) the tuple w = (min{xq, x2}, min{x3, x4}, ..., min{x,+1_1, xy+1}) is not distant;
(ii) the sets W(x*) and L(x*) do overlap.

Analogously to the proof of Theorem 2, note that w is the seeding in a sub-tournament
with 2/ participants. So, by induction hypothesis and Lemma 2, w should be distant.
Therefore, we are left with possibility (ii).

For any team u and seeding y, define the sets W(uly) = {w € W(y)
w is stronger than u} and W (u|y) = {w € W(y) : w is weaker than u}. As W(x™)
and L (x™*) overlap, there exists u € L(x™*) such that W (u|x*) is not empty. Call the set
of all such u’s U*. (As U* C L(x*), for any u € U*, W (u|x*) is not empty either).

Lemma 4 For any u € U* there exists w € W (u|x™) such that w loses in round 2 to
a team from W (u|x™).

Proof of Lemma 4 Suppose there is no such w. Hence, all teams in W (u|x*) that lose
in round 2, lose to a team from W (u|x™). Thus, there is an even number of teams in
W (u|x*) and half of them win in round 2 and half of them lose. However, as we have
seen above, the seeding in round 2 (tuple w) is distant and any distant seeding has the
following obvious property: if a team wins in a round, all stronger teams also win in
that round. So it must be that all teams in W («|x*) also win in round 2. But this implies
that there are more winning teams in round 2 than losing teams. Contradiction. O

Take any u € U* and any w € W (u|x*) guaranteed by Lemma 4. Generate a new
seeding X by switching the positions of # and w in x*. We claim that £ is strictly better
than x*.

As w loses to a team from W (u|x*) in round two in the original seeding, u will also
lose to it. Hence the switch will produce changes in matches played only in the first
two rounds. Call the team that u loses to under y, a; the team that w wins in round 1
under y, b, and the team that w loses to in round 2 under y, c.

By simple bookkeeping, x is strictly better than x* whenever

al f(y(se+su) = (e —su) — f(¥(se + sw) — (5¢ — 5w))]
> [f(y(sqa + su) — (sa — su)) —
— f(Y(sqa + sw) — (sa — sw))]
+ Ly (sw +sp) — (sw —sp)) — f(y(su+sp) — (su—sp)]. (25)

However, (25) is true because the following three inequalities are true:

al f(y(se+su) = (sc —su) — [y (se + sw) — (5¢ — 5w))]
> a(y + Dinf f/(#)(sw — su), (26)
a(y + 1yinf £/(t)(sw — su) > 2sup £/ (1) (s — Su), 27)
2sup £/ (1) (sw — 1) = [f (¥ (Sa +50) — (Sa — $u)) — [ (¥ (Sa + Sw)
—(sa = sw)] + Lf (Y (sw + 55) — (Sw —55)) — f (¥ (50 + 55) — (54 — 5p))],
(28)
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where the first and the third inequalities are our usual bounds guaranteed by Mean
Value Theorem and the second inequality is by assumption. Hence, x* is not optimal.
Contradiction. O

6 Concluding remarks

In this paper, we consider the problem of finding optimal seedings in knock-out tour-
naments where the objective function takes into account the competitive intensity and
quality of every match, with the importance of every match increasing in the number
of round. We prove that when the objective function is linear, only two classes of
seeding can possibly be optimal (Theorem 1). We then identify sufficient (Theorems
2 and 4) and necessary (Theorem 3) conditions under which these classes are optimal
in the general case.

Our results imply that the problem is computationally easy for sufficiently high
winning probabilities. In contrast, Vu (2010) proves a number of hardness results for
the problem of maximizing the winning probability of a given player by the reduction
from a vertex cover problem. However, in the general case the computational com-
plexity of the problem studied in our paper, as well as the complexity of other optimal
seeding problems, is not known.

References

Baumann R, Matheson VA, Howe C (2010) Anomalies in tournament design: the madness of March
madness. J Quant Anal Sports. doi:10.2202/1559-0410.1233

Ely J, Frankel A, Kamenica E (2015) Suspense and Surprise. J Polit Econ 123(1):215-260

Forrest D, Simmons R (2002) Outcome uncertainty and attendance demand in sport: the case of English
soccer. J R Stat Soc Ser D Stat 51 Part 2:229-241

Glickman ME (2008) Bayesian locally optimal design of knockout tournaments. J Stat Plann Inference
138:2117-2127

Groh C, Moldovanu B, Sela A, Sunde U (2012) Optimal seedings in elimination tournaments. Econ Theory
49:59-80

Horen J, Riezman R (1985) Comparing draws for single elimination tournaments. Oper Res 33:249-262

Hwang F (1982) New concepts in seeding knockout tournaments. Am Math Mon 89:235-239

Palomino F, Rigotti L (2000) The sport league’s dilemma: competitive intensity versus incentives to win.
Working Paper, University of California, Department of Economics

Rosen S (1986) Prizes and incentives in elimination tournaments. Am Econ Rev 76(4):701-715

Ryvkin D (2005) The predictive power of noisy elimination tournaments. Working paper, Center for Eco-
nomic Research and Graduate Education-Economic Institute, Prague

Schwenk A (2000) What is the correct way to seed a knockout tournament. Am Math Monthly 107:140-150

Vu TD (2010) Knockout tournament design: a computational approach. PhD dissertation, Stanford Univer-
sity, Department of Computer Science

Wright M (2014) OR analysis of sporting rules: a survey. Eur J Oper Res 232:1-8

@ Springer


http://dx.doi.org/10.2202/1559-0410.1233

	Competitive intensity and quality maximizing seedings in knock-out tournaments
	Abstract
	1 Introduction
	2 Literature review
	3 Framework
	3.1 The optimization problem
	3.2 Close and distant seedings

	4 Results: linear f
	5 Results: general f
	5.1 Optimality of close seedings
	5.2 Optimality of distant seedings

	6 Concluding remarks
	References


