
ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2017, Vol. 11, No. 3, pp. 400–414. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© D.S. Malyshev, D.V. Sirotkin, 2017, published in Diskretnyi Analiz i Issledovanie Operatsii, 2017, Vol. 24, No. 3, pp. 35–60.

Polynomial-Time Solvability of the Independent Set Problem
in a Certain Class of Subcubic Planar Graphs

D. S. Malyshev* and D. V. Sirotkin**

National Research University Higher School of Economics,
ul. Bol’shaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia

Received July 25, 2016; in final form, January 12, 2017

Abstract—The independent set problem for a given simple graph consists in computing the size
of a largest subset of its pairwise nonadjacent vertices. In this article, we prove the polynomial
solvability of the problem for the subcubic planar graphs with no induced tree obtained by identifying
the ends of three paths of lengths 3, 3, and 2 respectively.
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INTRODUCTION

The article is a continuation of the series of papers [3–6, 8–10], where the algorithmic complexity
of the independent set problem (the IS problem) was studied. Recall that an independent set (i.s.) in
an simple graph is a set of its pairwise nonadjacent vertices. A maximum independent set (m.i.s.) in G
is an independent set with the greatest number of vertices; its size is called the independence number
of G and denoted by α(G). The IS problem for a given graph G and a natural number k consists in finding
whether α(G) ≥ k.

Several algorithmic instruments for graph reduction are known for solving the IS problem. For
example, the so-called adjacent absorption law. A vertex a in a graph G adjacently absorbs
a vertex b if ab ∈ E(G) and N(a) ⊇ N(b) \ {a}. In this event, α(G) = α(G \ {a}). Adjacent absorption
is a particular representative of the so-called compressions [1]; i.e., the mappings of the vertex set of
a graph into itself that are not automorphisms and under which every two distinct nonadjacent vertices
go to distinct nonadjacent vertices. Thus, compression transforms a graph into its induced subgraph,
and the independence number is obviously preserved. Recall that a graph H is called an induced
subgraph of a graph G if H is obtained by removing some vertices of G. A graph H is called a minor of
a graph G if H is obtained from G by removing vertices and edges and also by contracting edges.

A graph class is an arbitrary set of ordinary graphs closed under isomorphisms. A graph class is
called IS-simple if the IS problem is polynomially solvable for the graphs of this class. A graph class
with NP-hard IS-problem will be called IS-hard.

A class is called hereditary if it is closed under vertex removal. It is known that every hereditary
class X can be defined by the set S of its minimal forbidden induced subgraphs; here the notation
X = Free(S) is adopted. A hereditary class is called finitely defined if the set of its minimal forbidden
induced subgraphs is finite. A minor closed graph class is a class that, together with its every graph,
contains all minors of this graph. Every minor closed class can be defined by the set of its forbidden
minors. For example, the class of planar graphs P is minor closed, the set of its forbidden minors consists
of the graphs K3,3 and K5 by Wagner’s Criterion.

A triod Ti,j,k is a tree obtained by identifying three endvertices of paths Pi+1, Pj+1, and Pk+1

respectively. The class T consists of all possible graphs whose each connected component is a tree
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with at most three leaves (i.e., a triod). It is proved in [5] that every finitely defined class X containing T
is IS-hard. The same is true if, instead of X , we consider the class P(3) ∩ X , where P(3) is the set of
subcubic planar graphs, i.e., of planar graphs with all vertex degrees at most 3. In the same article [5],
there was made the conjecture that each finitely defined class not containing T is IS-easy. To this end, it
suffices to show that, for every graph G ∈ T , the class Free(G) is IS-easy. At present, this is proved for
every graph G ∈ T with at most 5 vertices. The complexity status of the IS problem is unknown already
for the class Free(P6).

At the same time, it would be of interest to study the complexity of the IS problem for the classes
of the form Y ∩ Free(G), G ∈ T , where Y is a proper hereditary subset of the set of all graphs.
Some authors earlier proved that the following classes of graphs free of triods of a given type are IS-
simple: the class D(d) ∩ Free(T1,i,i) [8] for every d, i ∈ N, where D(d) is the class of graphs with all
vertex degrees at most d; for each i ∈ N, the classes P ∩ Free(T1,2,i) [3, 9], P ∩ Free(T1,i,i) [6], and
P(3) ∩ Free(T2,2,i) [4], and also the class D(3) ∩ Free(T2,2,2) [10].

In this article, we prove that the graph class P(3) ∩ Free(T3,3,2) is IS-simple.

1. NOTATIONS
We use the following notations: Pn is a simple path with n vertices, Kn is a complete graph with n

vertices, Kn,m is a complete bipartite graph with n vertices in one part and m vertices in the other, a, b is
the set of naturals {a, a + 1, . . . , b}, and N(x) is a neighborhood of x. The graph G \ V ′ is obtained from
a graph G by removing all vertices of V ′ ⊆ V (G), and G[V ′] is the subgraph of G induced by V ′ ⊆ V (G).

The notation [a, b1, b2, b3, c1, c2, c3, d1, d2] means that the vertices involved generate the triod T3,3,2

with the edge set {ab1, b1b2, b2b3, ac1, c1c2, c2c3, ad1, d1d2}.
The domain in a plane embedding of a planar graph bounded by a induced cycle (v1, . . . , vk) of this

graph will be denoted by D(v1, . . . , vk).

2. THE REPLACEMENT OPERATION AND ITS IMPORTANCE
In this article, we will use some local graph transformations that are particular cases of the so-

called replacement schemes proposed in [2]. In [2], the sufficiently general class of transformations is
considered under which the independence number is exactly preserved but it is observed that admitting
the change of the independence number by some constant would give nothing principally new.

Let H1 and H2 be graphs and let A ⊆ V (H1) ∩ V (H2). We say that H1 and H2 are α-similar with
respect to A if there exists a constant c such that α(H1 \ X) = α(H2 \ X) + c for every X ⊆ A.

Let G be a graph and let H be its induced subgraph. Call a subset A ⊆ V (H) H-separating if none
of the vertices in the graph H \ A is adjacent to any of the vertices of G \ V (H).

Suppose that graphs H1 and H2 are α-similar with respect to A ⊆ V (H1) ∩ V (H2). Assume that G
contains a induced subgraph H1 with H1-separating set A. The replacement of the subgraph H1 in G
by the graph H2 consists in formation of the graph G∗ with the vertex set (V (G) \ V (H1)) ∪ V (H2)
and the edge set (E(G) \ E(H1)) ∪ E(H2).

Lemma 1. If G∗ is the graph obtained by replacing H1 with H2 in G then

α(G∗) = α(G) + α(H2) − α(H1).

Proof. Let S be a m.i.s. in G,

M = S \ V (H1), X =
⋃

x∈M

(N(x) ∩ V (H1)).

Since X ⊆ A, we have α(G) = |M |+ α(H1 \X). If we add to M a m.i.s. of H2 \X in G∗ then we obtain
an i.s. of size |M | + α(H2 \ X). Consequently,

α(G∗) ≥ |M | + α(H2 \ X) = α(G) − α(H1 \ X) + α(H2 \ X) = α(G) − α(H1) + α(H2).

The reverse inequality is proved by analogy. Lemma 1 is proved.

The replacement is the most important instrument for obtaining the main result of this article.
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3. IRREDUCIBLE GRAPHS AND THEIR PROPERTIES

3.1. Compressible Subgraphs with Separating Set

Suppose that H is a graph, A ⊆ V (H), and B = V (H) \A. Let M(H,A) denote the family of all sets
X ⊆ A such that α(G[B ∪ Y ]) < α(G[B ∪ X]) for each Y ⊂ X. The definition of α-similarity shows
that c = α(H1) − α(H2), and so α(H1) − α(H1 \ X) = α(H2) − α(H2 \ X) for every X ⊆ A. Hence,
after removing the vertices of every set X ⊆ A from H1 and H2, the independence numbers change
identically. It follows that M(H1, A) = M(H2, A) for α-similar graphs H1 and H2 with respect to A.
The converse is also obvious: H1 and H2 are α-similar with respect to A ⊆ V (H1)∩ V (H2) if and only if
M(H1, A) = M(H2, A).

Call a pair (H,A) degenerate if the union of all elements in M(H,A) is not equal to A.

Lemma 2. If a graph G has a induced subgraph H with H-separating set A and (H,A) is
a degenerate pair then, for some vertex x ∈ A, we have α(G \ {x}) = α(G).

Proof. Suppose that a vertex x ∈ A belongs to no set of the family M(H,A). Assume that S is an m.i.s.
in G and x ∈ S. The set X = A ∩ S does not belong to M(H,A). Then there exists Y ⊂ X such that
x 	∈ Y and

α(H[B ∪ X]) = α(H[B ∪ Y ]) = |S ∩ V (H)|.
Let Z be an m.i.s in H[B ∪ Y ]. Then (S \ V (H)) ∪ Z is an i.s. of size α(G) in G \ {x}. Lemma 2 is
proved.

Below in Section 3.1, we assume that the pair (H,A) is nondegenerate. If A = {v1, v2} ⊆ V (H) then
there are three possible cases:

(I) M(H,A) = {{v1, v2}}, (II) M(H,A) = {{v1}, {v2}}, (III) M(H,A) = {{v1}, {v2}, {v1, v2}}.

In each of these cases, define a graph H ′ as follows:

(I) H ′ is a simple path (v1, v3, v2); (II) H ′ is the complete graph on the two vertices v1, v2;
(III) H ′ is the empty graph on the two vertices v1 and v2.

In each of these cases, the graphs H and H ′ are α-similar with respect to A.

Lemma 3. Suppose that H = (V,E) is a connected induced subgraph in G including an H-
separating set A = {v1, v2} and |V (H)| ≥ 3. Let G∗(t) be the result of replacing H by H ′(t) in G,
where H ′(t) is defined by the rule number t. Then, for every t, G∗(t) belongs to P(3) ∩ Free(T3,3,2)
if G does not contain separating cliques and lies in the same set.

Proof. Obviously, G∗(t) ∈ P(3). Assume that G∗(t) has a induced triod T3,3,2. Since G does not include
separating cliques and |V (H)| ≥ 3, therefore v1v2 is not an edge in G. This and the connectedness of H
imply that H contains a induced path of length at least 2 between v1 and v2. Therefore, G has a induced
subgraph T3,3,2 in each of the cases (I)–(III) by the definition of H ′(t); a contradiction. Hence, the
assumption was erroneous, and Lemma 3 is proved.

Refer to a induced connected subgraph H in a graph 2-compressible if H has an H-sepa- rating set
with exactly two vertices and |V (H)| ≥ 4.

Let H be a graph and let A = {v1, v2, v3} ⊆ V (H). Depending on the family M(H,A), in each of the
cases, define the graph H ′ as follows:

(I) if M(H,A) = {{v1}, {v2}, {v3}, {v1, v2}} then H ′ is a simple path (v1, v3, v4, v5, v2);
(II) if M(H,A) = {{v1, v2, v3}} then put H ′ to be a simple path (v1, v4, v2, v5, v3);
(III) if M(H,A) = {{v1}, {v2, v3}} then H ′ is a simple path (v1, v2, v4, v3);
(IV) if M(H,A) = {{v1}, {v2}, {v3}, {v1, v2}} then H ′ is the tree with vertices v1, v2, v3, v4, v5 and

edges v1v4, v2v4, v4v5, and v5v3;
(V) if M(H,A) = {{v1, v2}, {v1, v3}} then H ′ is the graph with vertices v1, v2, v3, v4, v5, v6 and

edges v1v4, v4v5, v4v2, v2v5, v5v6, and v6v3;
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(VI) if M(H,A) = {{v1}, {v2}, {v3}} then put H ′ = K3 with vertices v1, v2, and v3;
(VII) if M(H,A) = {{v1}, {v2}, {v3}, {v1, v2}} then H ′ is a simple path (v1, v4, v5, v3, v2).

In each of these cases, H and H ′ are α-similar with respect to A.

A induced subgraph H in a graph is called (3, t)-compressible if the H-separating set contains
exactly three vertices and |V (H)| ≥ 4 (if t = VI), or |V (H)| ≥ 5 (if t = III), or |V (H)| ≥ 6 (if t in
{I, II, IV, VII}), or |V (H)| ≥ 7 (if t = V).

In what follows, apply each of the above-described seven compressions to the graphs of the class
P(3) ∩ Free(T3,3,2) so that the result again belong to the same class (as a rule, the result of applying
a replacement to G is a induced subgraph of G).

Suppose now that H is a graph and A = {v1, v2, v3, v4} ⊆ V (H). Again, in each of the cases of the
family M(H,A), define a graph H ′:

(I) if M(H,A) = {{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v3, v4}}, then as H ′ consider the simple cycle
(w1, w3, w2, w4);

(II) if M(H,A) =
{
{v1}, {v2}, {v3}, {v4}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}

}
then H ′ is the graph

with vertices w1, w2, w3, w4 and edges w1w2, w3w4;
(III) if M(H,A) = {{v2, v4}, {v1, v3, v4}} then H ′ is the graph with vertices V (H ′) = {w1, w2, w3,

w4, w5, w6, w7, w8} and edges E(H ′) = {w1w5, w5w6, w6w2, w6w7, w7w3, w3w8, w8w2, w8w4};
(IV) if M(H,A) = {{v2, v4}, {v1, v3}} then H ′ is the graph with vertices V (H ′) = {w1, w2, w3, w4,

w5, w6, w7, w8} and edges E(H ′) = {w1w5, w5w6, w6w2, w6w7, w7w3, w3w4, w4w8, w2w8}.
In each of these cases, H and H ′ are α-similar with respect to A.

A induced subgraph H of a graph is called (4, t)-compressible if the H-separating set contains
exactly four vertices and |V (H)| ≥ 5 (if t ∈ {I, II}) or |V (H)| ≥ 9 (if t ∈ {III, IV}).

In what follows, apply each of the above-described four compressions to the graphs of the class
P(3) ∩ Free(T3,3,2) so that the result again belong to the same class (as a rule, the result of applying
a replacement to G is a induced subgraph of G).

Let us write a H-separating set as a collection that is called an H-separator (as distinct from the
set). We assume that under replacement the ith element of a collection goes to the vertex vi.

3.2. The Notion of Irreducible Graph and Its Meaning

Call a connected graph G irreducible if the following are fulfilled simultaneously:
1◦. G belongs to P(3) ∩ Free(T3,3,2).
2◦. G has no separating cliques.
3◦. G does not posses a induced subgraph H and an H-separating set A such that |V (H)| ≤ 12,

|A| ≤ 4, and the pair (H,A) is degenerate.
4◦. G has no connected induced subgraph H1 with more than 12 vertices such that to G one can

apply the replacement of the subgraph H1 by some graph H2 such that |V (H2)| < |V (H1)| and the
result belongs to the class P(3) ∩ Free(T3,3,2).

It is known that, for a hereditary graph class X , the IS problem is polynomially reducible to the
same problem for the part X constituted by all connected graphs of X without separating cliques [5].
Suppose that G ∈ P(3) ∩ Free(T3,3,2). Exhausting all subsets of its vertices of size at most 12 and
exhausting all graphs with at most 11 vertices and also solving at most 24 = 16 IS problems for each of
the graphs with at most 12 vertices, we can check in time O(|V (G)|12) whether G satisfies conditions 3◦
and 4◦. The membership of a graph with n vertices and m edges in the class P(3) is recognized in
time O(n + m) [7]. The membership of a graph with n vertices in the class Free(T3,3,2) is recognized
in time O(n9) by exhausing all 9-element subsets of vertices and checking the inducedness of the
subgraph T3,3,2 by one of these subsets. The above-listed facts and Lemma 2 imply that the IS problem
for the graphs of class P(3) ∩ Free(T3,3,2) is polynomially reducible to the IS problem for the irreducible
graphs of this class.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 11 No. 3 2017



404 MALYSHEV, SIROTKIN

3.3. Some Auxiliary Results
Lemma 4. For all induced 5-cycle in an irreducible graph G, at least four vertices of the cycle

have degree 3.

Proof. Suppose the contrary: The graph G has an induced cycle (x1, x2, x3, x4, x5) in which either
deg(x3) = deg(x5) = 2 or deg(x4) = deg(x5) = 2. In the former case, the pair (G[x1, x2, x3, x4, x5],
{x1, x2, x4}) is degenerate. In the latter case, we obtain the (3, VI)-compressible subgraph H =
G[x1, x2, x3, x4, x5] with H-separator (x1, x2, x3). The result of compression, denoted by G∗, is a minor
of G since G∗ is obtained by contracting the edges x1x5 and x4x3; therefore, G∗ ∈ P(3).

The graph G∗ has no induced triod T3,3,2: for this it suffices to show that no induced triod T3,3,2 in G∗

includes the edge x1x3. Indeed, if such a triod T3,3,2 in G∗ exists then G includes an induced triod T3,3,2

one of whose edges is x1x5.
Lemma 4 is proved.

Lemma 5. Let G be a planar subcubic graph and let C∗
1 , C∗

2 , and C∗
3 be its three pairwise distinct

cycles such that each of the sets

E(C∗
1 ) ∩ E(C∗

2 ), E(C∗
2 ) ∩ E(C∗

3 ), E(C∗
1 ) ∩ E(C∗

3 )

generates a simple path in G. Suppose also that G contains three edges e∗1, e∗2, and e∗3 that
constitute an induced path in given order, where

e∗1 ∈ (E(C∗
1 ) ∩ E(C∗

2 )) \ E(C∗
3 ), e∗2 ∈ E(C∗

1 ) ∩ E(C∗
2 ) ∩ E(C∗

3 ),
e∗3 ∈ (E(C∗

2 ) ∩ E(C∗
3 )) \ E(C∗

1 ).

Then, for every planar embedding of G, we have one of the inclusions

D(C∗
3 ) ⊂ D(C∗

2 ), D(C∗
1 ) ⊂ D(C∗

2 ).

Proof. Consider an arbitrary planar embedding of G. It suffices to consider the two cases: either
D(C∗

2 ) ⊂ D(C∗
1 ) or D(C∗

2 ) � D(C∗
1 ) and D(C∗

1 ) � D(C∗
2 ). Since, for all distinct i and j, E(C∗

i ) ∩
E(C∗

j ) generates a simple path in G and G is subcubic planar; therefore, D(C∗
i ) ∩ D(C∗

j ) is a Jordan
curve. Let P be the simple path in G generated by the set of edges E(C∗

1 ) ∩ E(C∗
2 ). Clearly, e∗1, e

∗
2 ∈

E(P ). Since e∗3 	∈ E(C∗
1 ), we have e∗3 	∈ E(P ). Obviously, e∗2 is a final edge of P ; otherwise, e∗2, e∗3, and

the edges of P adjacent to e∗2 and different from e∗1 have a common vertex and lie in C∗
2 .

Recall that D(C∗
2 ) ∩ D(C∗

3 ) is a Jordan curve of which the edges e∗2 and e∗3 are parts and e∗1 is not;
moreover, G is a subcubic planar graph. This obviously implies D(C∗

3 ) ⊂ D(C∗
2 ) in both that cases.

Lemma 5 is proved.

4. NONEXISTENCE OF IRREDUCIBLE GRAPHS WITH
SUFFICIENTLY LARGE GENERATED TRIODS

This section aims at proving that there is no irreducible graph including an induced triod T2,2,10.
Suppose that such a graph G = (V,E) exists. Consider its induced triod T2,2,10. Denote the vertex of
the triod of degree three by o, designate the vertices of the branch with ten vertices as a1, a2, . . . , a10

(in receding order from o) and the vertices of the other two branches as b1, b2 and c1, c2 (also in receding
order from o).

In the next three lemmas, we demonstrate the impossibility of the equality

N(b2) \ {b1} = N(c2) \ {c1}.
We will prove these lemmas by way of contradiction on setting N ′ = N(b2) \ {b1}. Note that N ′ 	= ∅;
otherwise, b1 constitutes a separating clique of G. Obviously, N ′ consists either of a single vertex x or
of two vertices x and y. In proving the next three lemmas, we will assume that x and y are nonadjacent;
otherwise, the subgraph G[b2, c2, x, y] is 2-compressible. Finally, we will suppose that deg(b1) ≥ deg(c1)
since this assumption does not diminish generality.

Lemma 6. Each element of N ′ = N(b2) \ {b1} is not adjacent to no one of the vertexes of
{a1, a2, a3}.
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Proof. Suppose that some x ∈ N ′ has a neighbor ai′ ∈ {a1, a2, a3}. Obviously, this can be only a1;
otherwise, [ai′ , ai′+1, ai′+2, ai′+3, ai′−1, ai′−2, ai′−3, x, c2], where a0 = o and a−1 = b1.

Let N ′ = {x, y}. If yb1 ∈ E then [a1, a2, a3, a4, x, b2, y, o, c1]. Clearly, y has a neighbor ai′′ in
{a2, a3, a4}; otherwise, [a1, a2, a3, a4, x, c2, y, o, b1]; but then

[ai′′ , ai′′+1, ai′′+2, ai′′+3, ai′′−1, ai′′−2, ai′′−3, y, c2].

Now, let N ′ = {x}. There exists a vertex b′1 ∈ N(b1) \ {b2, o}; otherwise, the vertices x and a1

form a separating clique of G. If b′1c1 ∈ E then, obviously, b′1 must be adjacent to some vertex ai′′′ in
{a2, a3, a4}; otherwise, [a1, a2, a3, a4, o, b1, b

′
1, x, c2]. It is easy to see that i′′′ 	= 2; otherwise, {b′1, a2} is

a separating clique in G. Then

[ai′′′ , ai′′′+1, ai′′′+2, ai′′′+3, b
′
1, b1, b2, ai′′′−1, ai′′′−2].

Consider the case when b′1 and c1 are nonadjacent. Clearly, b′1 is adjacent at least with one of the
vertices a2 and a3; otherwise, [x, a1, a2, a3, b2, b1, b

′
1, c2, c1]. We may assume that b′1 is nonadjacent to a2;

otherwise, {x, a1} is a separating clique in G (if deg(c1) = 2) or c1 has a neighbor not belonging to
{o, c2, b

′
1} and adjacent to a3; moreover, b′1 and this neighbor are similar as regards arguments. In other

words, we may assume that b′1a3 ∈ E.
Suppose that c1 has a neighbor c′1 /∈ {o, c2, b

′
1}. In this event, either b′1c

′
1 ∈ E or c′1a2 ∈ E; otherwise,

[x, b2, b1, b
′
1, c2, c1, c

′
1, a1, a2]. Suppose first that b′1c

′
1 ∈ E. If c′1a2 ∈ E then {b′1, a3} is a separating

clique in G; otherwise, [b′1, c
′
1, c1, c2, a3, a2, a1, b1, b2]. Suppose on the contrary that b′1c

′
1 /∈ E. Then c′1 is

adjacent to a2; otherwise, [x, b2, b1, b
′
1, c2, c1, c

′
1, a1, a2]. Clearly, c′1 must be adjacent to some vertex ai

for i ∈ {4, 5}; otherwise, [a2, a3, a4, a5, a1, x, b2, c
′
1, c1]. Hence, [a1, a2, c

′
1, ai, o, b1, b

′
1, x, c2]. It remains

to consider the case when deg(c1) = 2. The vertex a2 has a neighbor a′2 /∈ {a1, a3} since otherwise
b′1 and a3 constitute a separating clique in G. The vertices a′2 and b′1 are nonadjacent; otherwise,
[a3, a4, a5, a6, b

′
1, b1, b2, a2, a1]. But then [x, b2, b1, b

′
1, a1, a2, a

′
2, c2, c1].

We have a contradiction in all cases. Therefore, the assumption of the existence of a vertex x fails.
Lemma 6 is proved.

Lemma 7. If b′1 ∈ N(b1) \ {o, b2} and c′1 ∈ N(c1) \ {o, c2} then b′1 = c′1.

Proof. Suppose the contrary. Let v be an arbitrary vertex in N ′ = N(b2) \ {b1}. By Lemma 6, none of
the vertices a1, . . . , a10 is a neighbor of v. Without loss of generality, we may consider the two cases: (1)
b′1v 	∈ E and c′1v 	∈ E; (2) b′1v 	∈ E and c′1v ∈ E.

(1) Each of the vertices b′1 and c′1 has a neighbor in the set {a1, a2, a3}; otherwise,

[o, c1, c2, v, a1, a2, a3, b1, b
′
1] or [o, b1, b2, v, a1, a2, a3, c1, c

′
1].

Assume that b′1a3 ∈ E. Then

[b1, b2, v, c2, b
′
1, a3, a4, o, a1], if b′1a4 	∈ E, b′1a1 	∈ E,

[b1, b2, v, c2, b
′
1, a4, a5, o, a1], if b′1a4 ∈ E, b′1a1 	∈ E,

[b1, o, c1, c
′
1, b

′
1, a3, a4, b2, v], if b′1a1 ∈ E.

Suppose that b′1a2 ∈ E, c′1a1 ∈ E, b′1a3 	∈ E, and c′1a3 	∈ E. Under these conditions, b′1 and c′1 are
nonadjacent; otherwise, [b′1, b1, b2, v, a2, a3, a4, c

′
1, c1]. Then [b1, b

′
1, a2, a3, o, c1, c

′
1, b2, v]. This exhausts

Case 1.
(2) If N ′ = {v} then the subgraph H1 = G[o, b1, b2, c1, c2, c

′
1, v] with H1-separator (o, c′1, b1) is (3, I)-

compressible. The result of the compression is obtained by removing c1 and c2 from G.
Let N ′ = {v, u}. If uc′1 ∈ E then the subgraph G[b2, c2, v, u, c1, c

′
1] is 2-compressible. Otherwise,

uc′1 	∈ E. Then, for ub′1 	∈ E, we obtain a contradiction by analogy with Case 1, and, for ub′1 ∈ E, the
subgraph H2 = G[o, b1, b2, c1, c2, v, u, b′1, c

′
1] with H2-separator (b′1, o, c

′
1) is (3, II)-contractible. The

result of the compression is obtained by removing the vertices u, v, b2, and c2 from G.
We have a contradiction in all cases. Therefore, the assumption b′1 	= c′1 fails. Lemma 7 is proved.
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Lemma 8. N(b2) \ {b1} 	= N(c2) \ {c1}.

Proof. Suppose the contrary. As above, put N ′ = N(b2) \ {b1}. The two cases are possible: (1) N ′ =
{x}; (2) N ′ = {x, y} and the vertices x and y are nonadjacent.

(1) Let deg(x) = 2. Then there exist vertices b′1 ∈ N(b1) \ {o, b2} and c′1 ∈ N(c1) \ {o, c2}; otherwise,
{o, b1} or {o, c1} is a separating clique of G. By Lemma 7, we have b′1 = c′1. Then the subgraph
G[b′1, o, b1, c1, b2, c2, x] is 2-compressible.

We will assume that deg(x) = 3. Consider the possible subcases:

1.1: deg(b1) ∈ {2, 3} and deg(c1) = 2. Under these conditions, the induced subgraph

H1 = G[o, b1, c1, b2, c2, x]

with H1-separator (o, b1, x) is (3, III)-compressible. The result of the compression is obtained by
removing the vertices c1 and c2 from G.

1.2: deg(b1) = 3 and deg(c1) = 3. In this subcase, by Lemma 7, the vertices b1 and c1 are adjacent to
the same vertex p 	= o. Clearly, here the vertices p and x are nonadjacent; otherwise, {o} is a separating
clique of G. Then the subgraph H2 = G[o, p, b1, c1, b2, c2, x] with H2-separator (o, p, x) is (3, IV)-
compressible. The result of the compression is obtained by removing c1 and c2 from G.

(2) Without loss of generality, assume that deg(x) ≥ deg(y). The three subcases are possible:

2.1: deg(b1) = deg(c1) = 2. If deg(x) = 2 and deg(y) = 2 then o constitutes a separating clique in G.
If deg(x) = 3 then this variant is completely equivalent to Case 1.2.

2.2: deg(b1) = 3 and deg(c1) = 2. If deg(x) = deg(y) = 2 then {o, b1} is a separating clique
in G. If deg(x) = 3 and deg(y) = 2 then the subgraph H3 = G[o, b1, c1, b2, c2, x, y] with H3-separator
(b1, x, o) is (3, I)-compressible. The result of compression is obtained by removing b2 and y from G.

Suppose that deg(x) = deg(y) = 3. For symmetry reasons, we may assume that, in some planar
embedding of G, the vertex y lies inside D′ = D(o, c1, c2, x, b2, b1). Clearly, if b′1 ∈ N(b1) \ {o, b2} then
b′1 is adjacent to at least one of the vertices a1, a2, and a3; otherwise, [o, c1, c2, x, a1, a2, a3, b1, b

′
1].

Consequently, the vertices b′1, a1, . . . , a10 are simultaneously either inside D′ or outside D′. If they
are inside D′ then they must lie inside the domain D′′ = D(o, c1, c2, y, b2, b1). Hence, a neighbor of y
different from b2 and c2 must belong to D′′; otherwise, {b1, o} is a separating clique in G. Therefore,
{x} is a separating clique in G. If b1, a1, . . . , a10 do not belong to D′ then the neighbor of x different
from b2 and c2 must also lie outside D′; otherwise, {b1, o} is a separating clique in G. Hence, y forms
a separating clique in G.

2.3: deg(b1) = deg(c1) = 3. By Lemma 7, b1 and c1 are adjacent to a common vertex q 	= o. If one of
the edges qx or qy belongs to E then the induced subgraph G[o, q, b1, c1, b2, c2, x, y] is 2-compressible.
If {o, q, x, y} is an independent set in G then the induced subgraph H4 = G[o, q, b1, c1, b2, c2, x, y] with
H4-separator (o, q, x, y) is (4, I)-compressible. The result of compression is a minor of G since it is
obtained by contracting the edges b1b2, c1c2, b2y, and xc2. Therefore, this minor is a subcubic planar
graph. It is not hard to check that if the obtained graph contains an induced triod T3,3,2 then G also
contains an induced triod T3,3,2.

We have a contradiction in all three cases. Thus, there is no irreducible graph G with

N(b2) \ {b1} = N(c2) \ {c1}.
Lemma 8 is proved.

Thus, we proved that there exists a vertex d in G not belonging to T2,2,10 and adjacent to exactly
one of the vertices b2 and c2. Assume without loss of generality that this vertex is adjacent to b2.
It is clear that d must be adjacent to at least one of the vertices in the set {b1, c1, a1, a2, a3}; otherwise,
[o, a1, a2, a3, b1, b2, d, c1, c2].

Lemma 9. The equality N(d) ∩ {b1, c1, a1, a2, a3} = {b1} is impossible.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 11 No. 3 2017



POLYNOMIAL-TIME SOLVABILITY OF THE INDEPENDENT SET PROBLEM 407

Proof. Suppose the contrary; i.e., the equality holds. Clearly, deg(b2) = deg(d) = 3; otherwise, G has
a separating clique {b1, b2}. So, we may assume that there exist vertices b′2 ∈ N(b2) \ {b1, d} and
d′ ∈ N(d) \ {b1, b2}. If d′ = b′2 then the subgraph G[b1, b2, d, d′] is 2-compressible; therefore, we assume
that b′2 	= d. Each of the vertices b′2 and d′ must be adjacent to at least one of the vertices c1, c2, a1, a2,
and a3; otherwise,

[o, a1, a2, a3, b1, d, d′, c1, c2] or [o, a1, a2, a3, b1, b2, b
′
2, c1, c2].

Thus, at least one of the vertices b′2 and d′ must be adjacent to at least one of the vertices a1, a2, and a3;
otherwise, {b′2, d′} contains a vertex (say, d′) having exactly one neighbor in {c1, c2}, the vertex c2.
Hence,

k = max({i ∈ 1, 3 | aib
′
2 ∈ E} ∪ {i ∈ 1, 3 | aid

′ ∈ E})
is defined. Assume that d′ is a neighbor of ak and consider one of the possible cases: k = 1, k = 2, and
k = 3.

1. Let k = 1. Obviously, b′2c1 ∈ E since otherwise b′2c2 ∈ E, b′2c1 	∈ E, and [o, a1, a2, a3, c1, c2, b
′
2,

b1, d]. Therefore, [a1, o, c1, c2, d
′, d, b2, a2, a3] (if c2d

′ 	∈ E), or [d′, c2, c1, b
′
2, a1, a2, a3, d, b1] (if c2d

′ ∈ E
and c2b

′
2 	∈ E), or [a1, a2, a3, a4, d

′, c2, b
′
2, o, b1] (if c2d

′ ∈ E and c2b
′
2 ∈ E).

2. Let k = 2. If a1d
′ ∈ E then the subgraph H = G[o, b1, b2, d, d′, a1, a2] with H-separator (o, b2, a2)

is (3, V)-compressible. The result of the compression is obtained by remoning a1 from G. Assume
that d′a1 	∈ E. The vertex d′ must be adjacent to at least one of the vertices a3, a4, and a5; other-
wise, [a2, d

′, d, b2, a3, a4, a5, a1, o]. Moreover, the vertex d′ is adjacent namely to a3 since otherwise
[d′, a2, a1, o, a4, a5, a6, d, b2] (if d′a4 ∈ E) or [d′, a2, a1, o, a5, a6, a7, d, b2] (if d′a5 ∈ E). If deg(a1) = 2
then the pair (G[o, a1, a2, a3, b1, b2, d, d′], {o, b2, a3}) is degenerate. Consider the two subcases, namely,
b′2a1 ∈ E and b′2a1 	∈ E.

2.1: b′2a1 ∈ E. If, moreover, b′2c1 ∈ E then we have the 2-compressible subgraph

G[o, a1, a2, a3, c1, b1, b2, b
′
2, d, d′].

If b′2c1 	∈ E and b′2c2 ∈ E then deg(c1) = 2. Indeed, suppose that c′1 ∈ N(c1) \ {o, c2}, then

[a1, o, c1, c
′
1, b

′
2, b2, d, a2, a3].

Thus, for b′2c1 	∈ E and b′2c2 ∈ E, we obtain a 2-compressible subgraph

G[o, a1, a2, a3, c1, c2, b1, b2, b
′
2, d, d′].

Finally, if b′2c1 	∈ E and b′2c2 	∈ E then [a1, o, c1, c2, b
′
2, b2, d, a2, a3].

2.2: b′2a1 	∈ E. In this case, b′2c1 ∈ E; otherwise,

b′2c2 ∈ E, b′2c1 	∈ E, and [o, a1, a2, a3, c1, c2, b
′
2, b1, d].

Thus we have the degenerate pair (G[o, a1, a2, a3, b1, b2, b
′
2, d, d′, c1], {a3, a1, c1, b

′
2}).

3. Let k = 3. By Case 2, we will assume that d′a2 	∈ E. Clearly, d′a1 	∈ E; otherwise,

[d′, a3, a4, a5, a1, o, c1, d, b2].

The vertex d′ must be adjacent to one of the vertices a4 or a5; otherwise, [a3, a2, a1, o, d
′, d, b2, a4, a5].

The vertex d′ must be adjacent exactly to a4; otherwise,

d′a5 ∈ E, d′a4 	∈ E, [d′, a5, a6, a7, a3, a2, a1, d, b2].

Consider the subcases of deg(a2) = 2 and deg(a2) = 3.

3.1: Suppose that there exists a′2 ∈ N(a2) \ {a1, a3}. First, put a′2a1 	∈ E. Then a′2 must have
a neighbor in the set {c1, c2}; otherwise, [o, a1, a2, a

′
2, b1, d, d′, c1, c2]. If a′2c2 ∈ E but a′2a5 	∈ E then

[a2, a3, a4, a5, a1, o, b1, a
′
2, c2]. If E contains a′2c2 and a′2a5 then [a2, a

′
2, a5, a6, a3, d

′, d, a1, o]. Finally,
if a′2c2 	∈ E then a′2c1 ∈ E and also b′2c2 ∈ E and b′2a1 ∈ E (otherwise, [o, a1, a2, a3, b1, b2, b

′
2, c1, c2]).

Hence, [a1, a2, a3, a4, b
′
2, b2, d, o, c1].
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Suppose that a′2a1 ∈ E. Then deg(a′2) = 3; otherwise, G contains the separating clique {a1, a2}.
Clearly, b′2c1 ∈ E; otherwise,

b′2c2 ∈ E, b′2c1 	∈ E, [o, a1, a2, a3, c1, c2, b
′
2, b1, d].

Let a′′2 ∈ N(a′2) \ {a1, a2}. If a′′2 = b′2 then the subgraph G[o, a1, a2, a3, a4, a
′
2, b1, b2, d, d′, c1, b

′
2] is

2-compressible. If a′′2 	= b′2 then b′2 and a′′2 are adjacent (otherwise, [o, a1, a
′
2, a

′′
2 , b1, d, d′, c1, b

′
2]); hence,

[b′2, a
′′
2 , a

′
2, a2, b2, d, d′, c1, o].

3.2: deg(a2) = 2. In this case, we obtain the degenerate pair

(G[o, a1, a2, a3, a4, b1, b2, d, d′], {a1, o, b2, a4}).
Lemma 9 is proved.

Lemma 10. The equality N(d) ∩ {b1, c1, a1, a2, a3} = {c1} is impossible.

Proof. Suppose the contrary, i.e., that the equality holds. Obviously, deg(c2) ≥ 2; otherwise, c1 consti-
tutes a separating clique in G. Consider an arbitrary vertex e ∈ N(c2) \ {c1}. It is easy to see that

N(e) ∩ {a1, a2, a3, b1, b2} 	= ∅

since otherwise [o, a1, a2, a3, c1, c2, e, b1, b2]. If ea3 ∈ E, ea1 	∈ E, and ea2 	∈ E then e must be adjacent
to some ai for i ∈ 4, 6 (otherwise, [a3, a4, a5, a6, a2, a1, o, e, c2]); but then [c1, c2, e, ai, o, a1, a2, d, b2]. If

ea2 ∈ E, ea1 	∈ E, ea3 	∈ E, eb1 	∈ E

then e must be adjacent to some ai for i ∈ {4, 5} (otherwise [a2, a1, o, b1, a3, a4, a5, e, c2]), and so
[e, ai, ai+1, ai+2, c2, c1, d, a2, a1]. If ea1 ∈ E, but ea2 	∈ E, ea3 	∈ E, eb1 	∈ E, and eb2 	∈ E then ea4 ∈ E
(otherwise [a1, a2, a3, a4, o, b1, b2, e, c2]); and then [e, a4, a5, a6, c2, c1, d, a1, a2].

These arguments imply that the following cases are possible:
(1) ea1 ∈ E, ea2 ∈ E; (2) ea1 ∈ E, ea3 ∈ E; (3) ea2 ∈ E, ea3 ∈ E;
(4) ea2 ∈ E, eb1 ∈ E; (5) ea1 ∈ E, eb1 ∈ E; (6) ea1 ∈ E, eb2 ∈ E;
(7) eb1 ∈ E, ed ∈ E; (8) eb2 ∈ E, ed ∈ E; (9) eb1 ∈ E, eb2 ∈ E;
(10) N(e) ∩ {a1, a2, a3, b1, b2} = {b1}; 11) N(e) ∩ {a1, a2, a3, b1, b2} = {b2}.

Firstly consider the cases when e is adjacent to two elements of {b1, b2, d}. Clearly, in each of these
cases, the degrees of the vertices o, b1, b2, c1, c2, d, e are equal to 3; otherwise, the graph generated
by them is 2-compressible. Consider a planar embedding of G. Obviously, the vertices c2 and e
simultaneously lie either in the domain D(o, b1, b2, d, c1) or outside it.

Suppose that eb1 ∈ E and eb2 ∈ E. Assume additionally that c2 and e lie inside D(o, b1, b2, d, c1).
Obviously, an element of N(c2) \ {c1, e} either belongs to D(c1, o, b1, e, c2) or lies in D(c1, c2, e, b2, d).
In the former case, a1, . . . , a10 belong to D(c1, o, b1, e, c2) (otherwise {c2} is a separatong clique in G)
and then {d} is a separating clique in G. In the latter case, an element of the set N(d) \ {c1, b2} belongs
to D(c1, c2, e, b2, d) (otherwise, {c2} is a separating clique in G), but then {o} is a separating clique in G.
The case when the vertices c2 and e lie outside D(o, b1, b2, d, c1) is considered similarly.

By analogy with the arguments of the previous paragraph, it is demonstrated that c1 and b2 cannot
have degree 3 simultaneously if eb1 ∈ E and ed ∈ E.

If eb2 ∈ E and ed ∈ E then the subgraph H1 = G[o, b1, b2, c1, c2, d, e] with H1-separator (b1, o, c2) is
(3, III)-compressible. The result of compression is obtained by removing the vertices e, b2, and d from G.

Throughout the sequel, we will assume that none of the vertices in N(c2) \ {c1} is adjacent to two
elements of {b1, b2, d}.

(a) Suppose first that N(e) ∩ {b1, b2} 	= ∅. A possible neighbor e′ of c2 different from c1 and e has
equal rights with the vertex e. In particular, e′ must be adjacent to at least one of the vertices b1, b2, a1,
a2, and a3. Symmetry reasons imply that only three variants are possible:

(i) there exists a vertex in N(c2) \ {c1} adjacent at least to one of a1, . . . , a10 or deg(c2) = 2 and e has
a neighbor adjacent to at least one of the vertices a1, . . . , a10;

(ii) deg(c2) = 2, and neither e nor any of its neighbors is adjacent to any of the vertices a1, . . . , a10;
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(iii) N(c2) = {e, e′, c1} and the vertices e and e′ satisfy the equalities

N(e) ∩ {a1, a2, a3, b1, b2} = {b1}, N(e′) ∩ {a1, a2, a3, b1, b2} = {b2}.

Suppose the fulfillment of (i). Then G has an induced cycle C ′
1 containing the edges a1o, oc1, and

c1c2. Consider the cycles

C ′
2 =

{
(o, c1, c2, e, b1) if eb1 ∈ E,

(o, c1, c2, e, b2, b1) if eb1 	∈ E, eb2 ∈ E,
C ′

3 = (o, b1, b2, d, c1).

The edges c2c1, c1o, ob1 and the cycles C ′
1, C

′
2, C

′
3 satisfy the conditions of Lemma 5. Consider a planar

embedding of G. Then, by Lemma 5, D(C ′
3) ⊂ D(C ′

2) or D(C ′
1) ⊂ D(C ′

2).
(i.1) Let eb1 ∈ E. It is not hard to see that, in any planar embedding of G, in each of the

cases D(C ′
3) ⊂ D(C ′

2) and D(C ′
1) ⊂ D(C ′

2), the vertices a1, . . . , a10 and the vertices b2, d lie to
different sides of C ′

2. An edge of the cycle C ′
1 incident to c2 or e and different from the edges ec2

and c2c1 lies to one side of C ′
2 with the vertices a1, . . . , a10. If there exists b′2 ∈ N(b2) \ {b1, d} then

[o, a1, a2, a3, b1, b2, b
′
2, c1, c2]. Therefore, by Lemma 4, deg(d) = 3 since (o, b1, b2, d, c1) is an induced

cycle in G. Note that G contains an induced path (e, v1, . . . , vk, d); otherwise, {d} is a separating clique
in G. Each of the vertices a1, . . . , a10 and any vertex of this path lie to different sides of C ′

2; therefore,
k = 1 (otherwise, [o, a1, a2, a3, c1, d, vk, b1, e]). Then the subgraph H2 = G[o, b1, b2, c1, c2, d, e, v1] with
H2-separator (o, c2, v1) is (3, II)-compressible. The result of the compression is obtained by removing
the vertices b1, b2, and d from G.

(i.2) Suppose that eb2 ∈ E. Owing to Cases 1–11, we have either N(e) ∩ {a1, a2, a3, b1, b2} =
{b2} or ea1 ∈ E. Consider the subcase when d lies inside the domain D(C ′

2), i.e., D(C ′
3) ⊂ D(C ′

2).
The second subcase is considered similarly. Due to the presence of the cycle C ′

1, the vertices a1, . . . , a10

do not belong to D(C ′
2). Therefore, a possible element e′ of the set N(c2) \ {c1, e} does not belong

to D(C ′
2) because of N(e′) ∩ {a1, a2, a3, b1, b2} 	= ∅.

A possible element of N(d) \ {c1, b2} does not belong to D(C ′
3); i.e., it lies in the difference D(C ′

2) \
D(C ′

3); otherwise, either {d} is a separating clique in G or there is a vertex b′1 ∈ N(b1) \ {o, b2} in D(C ′
3).

In the latter case, either

[a1, a2, a3, a4, o, b1, b
′
1, e, c2] if ea1 ∈ E

or

[o, a1, a2, a3, c1, c2, e, b1, b
′
1] if N(e) ∩ {a1, a2, a3, b1, b2} = {b2}.

If ea1 ∈ E then deg(d) = 2; otherwise {d} is a separating clique in G. Moreover, the vertices b1

and c2 have degree 3; otherwise, the induced subgraph G[o, a1, c1, c2, e, b1, b2, d] is 2-compressible.
Then at least one of the two elements of (N(b1) ∪ N(c2)) \ {o, b2, c1, e} belongs to the domain
D(o, c1, c2, e, a1), and so either {c2} or {b1} is a separating clique of G.

If N(e) ∩ {a1, a2, a3, b1, b2} = {b2} then at least one of the vertices d or e has degree 3; otherwise,
the pair (G[o, b1, b2, c1, c2, d, e], {o, b1, c2}) is degenerate.

(i.2.1) Let deg(c2) = 2. Clearly, deg(d) = 2; otherwise, the set (N(d) ∪ N(e)) \ {c1, c2, b2} contains
two elements that lie in the difference D(C ′

2) \ D(C ′
3) since {d} is not a separating clique of G. Then the

pair (G[o, b1, b2, c1, c2, d, e], {o, b1, e}) is degenerate.
(i.2.2) Suppose that deg(c2) = 3 and there exists a vertex e′ ∈ N(c2) \ {e, c1}. Then e′ 	∈ D(C ′

2).
In this case, there is a vertex x ∈ N(e) \ {b2, c2}; otherwise, either {d} is a separating clique in G
or the degenerate pair (G[o, b1, b2, c1, c2, d, e], {o, b1, c2}) is formed. The vertices x and b1 cannot be
adjacent; otherwise, deg(d) = 2 and the subgraph H3 = G[o, b1, b2, c1, c2, d, e, x] with H3-separator
(o, c2, x) is (3, II)-compressible. The result of the compression is obtained by removing the vertices b1,
b2, and d from G.

The case when N(e′)∩ {a1, a2, a3, b1, b2} = {b1} will be treated in considering condition (iii). There-
fore, we will assume that e′ has a neighbor among the vertices a1, a2, and a3. Define the numbers

i′ = max{i ∈ 1, 3 | aie
′ ∈ E}, i′′ = min{i ∈ 1, 3 | aie

′ ∈ E}.
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If e′ = x and i′ = 1 then deg(b) = 2 (otherwise, {b} is a separating clique in G) and the subgraph
G[o, a1, b1, b2, c1, c2, e, d, x] is 2-compressible. If e′ = x and i′ > 1 then

[ai′ , ai′+1, ai′+2, ai′+3, ai′−1, ai′−2, ai′−3, x, e],

where a0 = o and a−1 = b1.
If e′ 	= x and e′b1 	∈ E then i′ 	= i′′ in view of Cases 1–11. Then

[c2, c1, o, b1, e
′, ai′ , ai′+1, e, x] if ai′+1x 	∈ E,

[e, c2, e
′, ai′′ , x, ai′+1, ai′+2, b2, b1] if ai′+1x ∈ E, ai′+2x 	∈ E,

[e, c2, e
′, ai′′ , x, ai′+2, ai′+3, b2, b1] if ai′+1x ∈ E, ai′+2x ∈ E.

If e′ 	= x and e′b1 ∈ E then i′ ∈ {1, 2} by Cases 1–11. For i′ = 2, we have

[b1, e
′, a2, a3, b2, e, x, o, c1] if a3x 	∈ E,

[e, c2, e
′, a2, x, a3, a4, b2, d] if a3x ∈ E, a4x 	∈ E,

[e, c2, e
′, a2, x, a4, a5, b2, d] if a3x ∈ E, a4x ∈ E.

Note that, in the last two cases, x 	∈ D(C ′
2) since a3x ∈ E.

Finally, for i′ = 1 we conclude that deg(b) = deg(e) = 3; otherwise, the 2-compressible subgraph
G[o, a1, b1, b2, c1, c2, d, e, e′, x] is formed. Consequently, x ∈ D(C ′

2) \D(C ′
3), and hence {e′, a1} is a sep-

arating clique in G. This finishes the consideration of condition (i).
The edges c1o, dc1, b2d and the cycles C ′′

1 , C ′′
2 , C ′′

3 satisfy the conditions of Lemma 5. Therefore,
for an arbitrary planar embedding of G, we have D(C ′′

3 ) ⊂ D(C ′′
2 ) or D(C ′′

1 ) ⊂ D(C ′′
2 ). Consider

D(C ′′
3 ) ⊂ D(C ′′

2 ); the second inclusion is considered analogously. The vertices c2, e, and x belong
to the domain D(o, c1, d, b2, b1), and the vertices a1, . . . , a10 and y do not. There exists a vertex
b′1 ∈ N(b1) \ {o, b2} lying in the given domain (otherwise, {e} is a separating clique in G), but then
[d, b2, b1, b

′
1, y, ai, ai+1, c1, c2] for some i ∈ {1, 2}.

(ii.2.2.2) Suppose that ya1 	∈ E and ya2 	∈ E. If in addition xy 	∈ E then [c1, o, a1, a2, c2, e, x, d, y].
If xy ∈ E then the subgraph H6 = G[o, b1, b2, c1, c2, e, d, x, y] with H6-separator (o, b1, x, y) is (4, II)-
compressible. The result of the compression is obtained by removing the vertices c1, c2, b2, d, and e
from G.

Pass to condition (iii). Recall that here N(c2) = {e, e′, c1}, N(e) ∩ {a1, a2, a3, b1, b2} = {b1}, and
N(e′) ∩ {a1, a2, a3, b1, b2} = {b2}. We will assume that ee′ 	∈ E; otherwise, a 2-compressible subgraph
G[o, b1, b2, c1, c2, d, e, e′] is formed.

Note that, in every planar embedding of G, the vertices d and e lie to different sides of the cycle
(o, b1, b2, e

′, c2, c1). It is not hard to deduce from here that deg(d) = 2 or deg(e) = 2; otherwise,

[o, a1, a2, a3, b1, e
′, c1, d, d′] or [o, a1, a2, a3, b1, e, e

′′, c1, d],

where d′ ∈ N(d) \ {c1, b2} and e′′ ∈ N(e) \ {b1, c2}.
For symmetry reasons, we can put deg(d) = 2 and deg(e) = 3. Then the subgraph

H7 = G[o, b1, b2, c1, c2, d, e, e′]

with H7-separator (o, e, e′) is (3, II)-compressible. The result of the compression is obtained by remov-
ing the vertices b2, d, and c1 from G.

(b) Suppose next that N(e) ∩ {b1, b2} = ∅. In view of cases 1–11, the vertex e is adjacent exactly
to two vertices in the set {a1, a2, a3}. Observe also that deg(c2) = 2; otherwise, a possible element
in N(c2) \ {c1, e} having equal rights with e has exactly two neighbors in the set {a1, a2, a3}. Consider
all of the three possible variants of the intersection N(e) ∩ {a1, a2, a3}.

(b.1) In the case when ea1 ∈ E and ea2 ∈ E, the degenerate pair (G[o, a1, a2, c1, c2, e], {a2, o, c1}) is
formed in G.

(b.2) Assume that ea2 ∈ E and ea3 ∈ E. Consider the two variants separately: deg(a1) = 2 and
deg(a1) = 3.
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(b.2.1) Let deg(a1) = 2. Then the subgraph H8 = G[o, a1, a2, a3, c1, c2, e] with H8-separator
(a3, o, c1) is (3, VI)-compressible. The result of the compression is the minor G′ of G obtained
by contracting the edges a2a1, a1o, c2e, and c1c2. Consequently, G′ belongs to the class P(3) and
contains no induced triod T3,3,2.

(b.2.2) Suppose that there exists a vertex a′1 ∈ N(a1) \ {a2, o}. Then N(a′1)∩{b2, d} 	= ∅; otherwise,
[c1, c2, e, a3, o, a1, a

′
1, d, b2].

(b.2.2.1) If a′1b2 ∈ E and a′1d ∈ E then we find a 2-compressible subgraph

G[o, a1, a2, a3, b1, b2, d, c1, c2, e, a
′
1].

(b.2.2.2) If a′1b2 ∈ E and a′1d 	∈ E then we have a (4, III)-compressible subgraph

H9 = G[o, a1, a2, a3, b1, b2, d, c1, c2, e, a
′
1]

with H9-separator (a3, a
′
1, b1, d). The result of the compression is obtained by removing the vertices c1,

c2, and e from G.
(b.2.2.3) If a′1d ∈ E, a′1b2 	∈ E, then the degenerate pair

(G[o, a1, a2, a3, b1, b2, d, c1, c2, e, a
′
1], {a3, a

′
1, b1, b2})

is formed.
(b.3) Suppose that ea1 ∈ E and ea3 ∈ E. If in addition deg(a2) = 2 then the subgraph H10 =

G[o, a1, a2, a3, c1, c2, e] with H10-separator (a3, o, c1) is (3, VI)-compressible. The compression by con-
tracting the edges a2a1, a1o, c2e, and c1c2 gives a minor G′ of G. Consequently, G′ belongs to the
class P(3) and has no induced triod T3,3,2.

If there exists a vertex a′2 ∈ N(a2) \ {a3, a1} then a′2 is adjacent to some vertex ai, i ∈ 4, 6; otherwise,
[a3, a4, a5, a6, e, c2, c1, a2, a

′
2]. The vertex a′2 is adjacent to one of the vertices b1 and b2; otherwise,

[a1, a2, a
′
2, ai, o, b1, b2, e, c2]. Then

[a′2, ai, ai+1, ai+2, b1, b2, d, a2, a1] if a′2b1 ∈ E, [a′2, ai, ai+1, ai+2, b2, d, c1, a2, a1] if a′2b2 ∈ E.

Lemma 10 is proved.

Lemma 11. The vertex d cannot be adjacent to one of the vertices a1, a2, and a3 or e simulta-
neously adjacent to the vertices b1 and c1.

Proof. Suppose the contrary. If d is adjacent to b1 then d is also adjacent to one of the vertices c1, a1,
a2, and a3 by Lemma 9. If dai ∈ E for some i ∈ 1, 3 then we obtain

[ai, ai+1, ai+2, ai+3, ai−1, ai−2, ai−3, d, b2],

where a0 = o, a−1 = c1, and a−2 = c2.
Suppose that db1 ∈ E and dc1 ∈ E. Then there exists a vertex b′2 ∈ N(b2) \ {b1, d}; otherwise,

{b1, d} is a separating clique in G. If b′2c2 ∈ E then the subgraph H1 = G[o, c1, c2, b1, b2, d, b′2] with H1-
separator (b′2, c2, o) is (3, III)-compressible. The result of the compression is obtained by removing the
vertices b1, b2, and d from G. If b′2c2 	∈ E then b′2 and d have equal rights as regards arguments and also
b′2b1 	∈ E.

Thus, throughout the sequel, put db1 	∈ E, and by Lemma 10 we infer that the vertex d has a neighbor
among the vertices a1, a2, and a3. Put i′ = max{i | dai ∈ E, i ∈ 1, 3}.

(a) Assume that there exists a vertex e ∈ N(c2) \ {c1} nonadjacent to b2. The vertices e and d have
equal rights as regards arguments; therefore, we may assume that ec1 	∈ E and e has a neighbor ai′′ ,
where i′′ = max{i | eai ∈ E, i ∈ 1, 3}. Assume for symmetry reasons that i′ ≥ i′′. It is clear that
i′′ ∈ {1, 2}.

(a.1) Let i′′ = 1. If ea4 ∈ E then [a4, a5, a6, a7, e, c2, c1, a3, a2]; if ea4 	∈ E then necessarily eb1 ∈ E;
otherwise, [a1, a2, a3, a4, o, b1, b2, e, c2]. If deg(c2) = 2 then the pair (G[o, a1, b1, c1, c2, e], {a1, b1, c1})
is degenerate. If there exists a vertex e′ ∈ N(c2) \ {e, c1} then it is adjacent to one of the vertices b2,
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a2, or a3; otherwise, [o, a1, a2, a3, c1, c2, e
′, b1, b2] or N(e′) ∩ {c1, b1, b2, a1, a2, a3} = {c1}. But this is

impossible by Lemma 9 and due to the fact that the vertices d and e′ have equal rights.
Thus, the subgraph G[o, a1, a2, a3, b1, b2, d, c1, c2, e, e

′] has K3,3 as a minor. For obtaining it, we must
contract the edge c1c2 and also contract the subgraph G[a2, a3, b2, d, e′] into a vertex. Consequently, the
graph G is not planar by Wagner’s criterion.

(a.2) Let i′′ = 2. In this case, i′ = 3. If dai ∈ E for some i ∈ 5, 8 then

[d, ai, ai+1, ai+2, a3, a2, a1, b2, b1].

If ea4 ∈ E then [a4, a3, d, b2, e, c2, c1, a5, a6], and if ea5 ∈ E then [a5, a6, a7, a8, e, c2, c1, a4, a3]. There-
fore, necessarily da4 ∈ E; otherwise, [a3, a2, e, c2, d, b2, b1, a4, a5]. Consider the alternative: ea1 	∈ E and
ea1 ∈ E.

(a.2.1) Under the conditions ea1 	∈ E, ea4 	∈ E, and ea5 	∈ E, find eb1 ∈ E; otherwise, we have

[a2, a3, a4, a5, a1, o, b1, e, c2].

If there exists a vertex x1 belonging to the difference (N(c1) ∪ N(c2)) \ {o, c1, c2, e} then x1b2 	∈ E;
otherwise, the subgraph G[o, a1, a2, a3, b1, b2, c1, c2, d, e, x1] contains K3,3 as a minor. Then, necessarily,
x1a1 ∈ E; otherwise,

[b1, o, c1, x1, b2, d, a4, e, a2] if x1c1 ∈ E,

[o, a1, a2, a3, c1, c2, x1, b1, b2] if x1c1 	∈ E, x1c2 ∈ E.

Finally, either [a2, a1, x1, c1, e, b1, b2, a3, a4] (if x1c1 ∈ E) or [a1, a2, a3, a4, o, b1, b2, x1, c2] (if x1c2 ∈ E).
Thus, deg(c1) = deg(c2) = 2, and we get a contradiction to Lemma 4: the graph G contains the induced
5-cycle (o, c1, c2, e, b1).

(a.2.2) Let ea1 ∈ E. If deg(c2) = 2 then we have the degenerate pair

(G[o, a1, a2, c1, c2, e], {a2, o, c1}).
Suppose that there exists e′ ∈ N(c2) \ {c1, e}. By Lemmas 9 and 10, either e′b2 ∈ E or e′b1 ∈ E
and e′c1 ∈ E. In the latter case, G contains a 2-compressible subgraph

G′ = G[o, a1, a2, a3, a4, b1, b2, c1, c2, e, e
′, d]

. Let e′b2 ∈ E. The presence of e′b1 in E also leads to a 2-compressible subgraph G′, and so e′b1 	∈ E.
In this case, [a5, a4, a3, a2, a6, a7, a8, e

′, b2] if e′a5 ∈ E and [b2, d, a4, a5, e
′, c2, e, b1, o] otherwise.

(b) Suppose that there exists e ∈ N(c2) \ {c1} adjacent to b2. Moreover, assume that there is a vertex
e′ ∈ N(c2) \ {c1, e}. The vertices d and e′ have equal rights; therefore, e′c1 ∈ E, e′b1 ∈ E by Lemmas 9
and 10 and by what was proved in (a). Consequently, the subgraph H2 = G[o, b1, b2, c1, c2, e, e

′] with
H2-separator (e, b2, o) is (3, III)-compressible. The result of the compression is obtained by removing
the vertices c1, c2, and e′ from G.

Thus, we have shown that deg(c2) = 2. The vertex e cannot be adjacent to ai for i ∈ 3, 7; other-
wise, [ai, ai+1, ai+2, ai+3, e, c2, c1, ai−1, ai−2]. Also, eb1 	∈ E; otherwise, we have the degenerate pair
(G[o, c1, c2, b1, b2, e], {b1, o, c1}). Consider the possible values of i′.

(b.1) For i′ = 1 we get [a4, a5, a6, a7, d, b2, b1, a3, a2] if da4 ∈ E and [a1, a2, a3, a4, o, c1, c2, d, b2]
if da4 	∈ E.

(b.2) Let i′ = 3.
If da1 ∈ E then [d, a3, a4, a5, a1, o, c1, b2, e]. If da2 ∈ E and ea1 	∈ E then [b2, b1, o, a1, d, a3, a4, e, c2].
If da2 ∈ E and ea1 ∈ E then the pair

(G[o, a1, a2, a3, b1, b2, c1, c2, e, d], {b1, c1, a3})
is degenerate.

If da1 	∈ E, da2 	∈ E, and ea1 	∈ E then

[b2, b1, o, a1, d, a4, a5, e, c2] if da4 ∈ E,

[b2, b1, o, a1, d, a3, a4, e, c2] if da4 	∈ E.
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Finally, if da2 	∈ E, da1 	∈ E, and ea1 ∈ E then find the induced 5-cycle (a1, o, c1, c2, e) in G.
By Lemma 4, c1 has a neighbor v 	∈ {o, c2}. Since G is planar, va2 	∈ E and va4 	∈ E (otherwise, there
is the minor K3,3 appear). Then

[e, c2, c1, v, a1, a2, a3, b2, b1], if vb1 	∈ E,

[b2, b1, v, c1, d, a3, a4, e, a1], if vb1 ∈ E, da4 	∈ E,

[b2, b1, v, c1, d, a4, a5, e, a1], if vb1 ∈ E, da4 ∈ E.

(b.3) Let i′ = 2. In this case, if ea1 	∈ E then

[d, a2, a1, o, a4, a5, a6, b2, e] for da4 ∈ E, [a2, a1, o, c1, d, b2, e, a3, a4] for da4 	∈ E.

If ea1 ∈ E then (a1, o, c1, c2, e) is an induced 5-cycle in G. By Lemma 4, c1 has a neighbor u 	∈
{o, c2}, and, by the planarity of G, we get ua3 	∈ E and ua4 	∈ E. Then

[e, c2, c1, u, a1, a2, a3, b2, b1] if ub1 	∈ E,

[b2, b1, u, c1, d, a3, a4, e, a1] if ub1 ∈ E, da4 	∈ E,

[b2, b1, u, c1, d, a4, a5, e, a1] if ub1 ∈ E, da4 ∈ E.

Pass to the case da1 ∈ E. If deg(b1) = deg(c1) = 2 then the subgraph H3 = G[o, b1, b2, c1, c2, e] with
H3-separator (e, b2, o) is (3, III)-compressible. The result of the compression is obtained by removing
the vertices c1 and c2 from G. Thus, either N(b1) \ {o, b2} 	= ∅ or deg(b2) = 2 and N(c1) \ {o, c2} 	= ∅.

(b.3.1) Suppose that there exists x2 ∈ N(b1) \ {o, b2}. If x2c1 	∈ E and x2e 	∈ E then

[b2, b1, x2, a3, e, c2, c1, d, a1] for x2a3 ∈ E,

[b2, e, c2, c1, d, a2, a3, b1, x2] for x2a3 	∈ E.

If x2c1 ∈ E and deg(x2) = 2 then the subgraph H4 = G[o, b1, b2, c1, c2, e, x2] with H4-separator
(o, b2, e) is (3, VII)-compressible. The result of compression is obtained by removing b1 and x2 from G.

If x2c1 ∈ E and there exists y ∈ N(x2) \ {b1, c1} then y 	= a3 and ya3 	∈ E; otherwise, the subgraph
G[o, a1, a2, a3, b1, b2, c1, c2, e, d, x2, y] contains K3,3 as a minor. However, y 	= e; otherwise, we have the
2-compressible subgraph G[o, b1, b2, c1, c2, e, x2]. The vertices y and e are adjacent since, otherwise,
[b2, b1, x2, y, d, a2, a3, e, c2]. Note that (c1, c2, e, y, x2) is an induced 5-cycle in G; therefore, by Lemma 4,
y is also adjacent to some vertex z ∈ N(y) \ {x2, e}. Then [e, c2, c1, o, b2, d, a2, y, z].

If x2e ∈ E and deg(x2) = 2 then the subgraph H5 = G[o, b1, b2, c1, c2, e, x2] with H5-separator
(o, b2, c1) is (3, I)-compressible. The result of the compression is obtained by removing the vertices b1

and x2 from G.

Finally, if for x2e ∈ E there exists a vertex y′ ∈ N(x2) \ {b1, e} then y′ 	= a3 and y′a3 	∈ E; otherwise,
G is not planar. Then

[o, b1, b2, e, a1, a2, a3, c1, y
′] if y′c1 ∈ E,

[e, c2, c1, o, b2, d, a2, x2, y
′] if y′c1 	∈ E.

(b.3.2) Suppose that deg(b1) = 2 and there exists a vertex x3 ∈ N(c1) \ {o, c2}. The vertex x3 is
necessary adjacent to e or a3 since otherwise [o, a1, a2, a3, b1, b2, e, c1, x3]. If x3e ∈ E then we obtain
a (3, II)-compressible subgraph H6 = G[o, b1, b2, c1, c2, e, x3] with H6-separator (o, b2, x3). The result
of the compression is obtained by removing the vertices c1 and c2 from G. If x3a3 ∈ E and x3e 	∈ E then

[c1, x3, a4, a5, c2, e, b2, o, a1] for x3a4 ∈ E,

[c1, x3, a3, a4, c2, e, b2, o, a1] for x3a4 	∈ E.

Lemma 11 is proved.
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5. THE MAIN RESULT

Theorem. The class P(3) ∩ Free(T3,3,2) is IS-simple.

Proof. It follows from Lemmas 8–11 that every irreducible graph belongs to Free(T2,2,10). Hence, for
the graphs in P(3) ∩ Free(T3,3,2), the problem is polynomially reduced to the same problem for the
graphs in P(3)∩Free(T2,2,10). The class P(3)∩Free(T2,2,10) is IS-simple [4]. Therefore, the graph class
P(3) ∩ Free(T3,3,2) is also IS-simple. Theorem 1 is proved.
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