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ALGEBRAIC GROUPS WHOSE ORBIT CLOSURES

CONTAIN ONLY FINITELY MANY ORBITS

VLADIMIR L. POPOV

Abstract. We classify all connected affine algebraic groups G such that

there are only finitely many G-orbits in every algebraic G-variety contain-

ing a dense open G-orbit. We also prove that G enjoys this property if and

only if every irreducible algebraic G-variety X is modality-regular, i.e., the

modality of X (in the sense of V. Arnol’d) equals to that of a family which

is open in X.

1. Introduction. The phenomenon of finiteness of the sets of orbits in orbit

closures of an algebraic group G, that arises under certain conditions on G

and actions, has been known for a long time and plays an essential role in

several mathematical theories. For instance, if G is an affine torus, then every

orbit closure contains only finitely many orbits, which is a key fact of the

theory of toric embeddings [TE73] (see, e.g., also [Ful93]). Historically, the

next example, generalizing the previous one, is the class of all equivariant

embeddings of a fixed homogeneous space O = G/H of a connected reductive

group G: every such embedding contains only finitely many orbits if and

only if O is spherical [Akh85]. This fact is a key ingredient of the theory of

spherical embeddings [LV83] (see, e.g., also [Tim11]). Historically, the first

manifestation of the latter example was the case of parabolic H: then every

equivariant embedding of O coincides with O. One more example is obtained if

G is a connected unipotent group: in this case, every quasiaffine orbit closure

of G coincides with this orbit [Ros61, Thm. 2], which is an important fact of

the algebraic transformation group theory.

In this paper, we consider the absolute case, i.e., that, in which no conditions

on G and actions are imposed. Namely, we explore the problem of classifying

the connected affine algebraic groups G such that every orbit closure of G

contains only finitely many orbits. The answer we found turned out to be

rather unexpected for us: we prove that, apart from the aforementioned class

of affine tori, there is one more class of groups enjoying this property, and only

this class, namely, that of all products of affine tori and Ga.

The finiteness of the set of orbits of an algebraic group action can be equiva-

lently expressed in terms of the notion of the modality of this action that goes

back to Arnol’d’s works on the theory of singularities [Arn75]. The modality
1

http://arxiv.org/abs/1707.06914v1


2 VLADIMIR L. POPOV

is the maximal number of parameters, on which a family of orbits may de-

pend. The finiteness of the set of orbits is equivalent to the condition that the

modality is 0. It turns out that the answer to the above problem can be equiv-

alently reformulated in terms of modality. Namely, we prove that every orbit

closure of G contains only finitely many orbits if and only if every G-variety X

is modality-regular, i.e., its modality equals to that of a family which is open

in X.

Our main result, Theorem 2, is formulated in Section 4 and proved in Sec-

tion 7. Section 3 contains the materials about the modality necessary for for-

mulating Theorem 2. In Sections 5 and 6 are collected the auxiliary results on

property (F) from the formulation of Theorem 2 and on the modality, which

we use in the proof of this theorem. In Section 2 are collected the conventions,

notation, and terminology.

2. Conventions, notation, and terminology. We fix an algebraically clo-

sed field k. In what follows, as in [Bor91], [Spr98], [PV94], the word variety

means an algebraic variety over k in the sense of [Ser55] (so an algebraic

group means an algebraic group over k). We assume that char k = 0 as we

use the classification of commutative unipotent algebraic groups valid only

in characteristic 0. We use freely the standard notation and conventions of

[Bor91], [Spr98], [PV94], where also the proofs of unreferenced claims and/or

the relevant references can be found.

If all irreducible components of a variety X have the same dimension, then

X is called equidimensional.

Below all actions of algebraic groups on varieties are algebraic (morphic).

If an algebraic group G acts on a variety X, we say that X is a G-variety.

If an algebraic group is isomorphic to Gd
m for some d, we call it a torus.

3. Modality. Let H be a connected algebraic group. Any irreducible H-

variety F such that all H-orbits in F have the same dimension d is called

a family of H-orbits depending on

mod(H : F ) := dimF − d (1)

parameters; the integer mod(H : F ) is called the modality of F . If F 99K F ···
·H

is a rational geometric quotient of this action (it exists by the Rosenlicht

theorem [PV94, Thm. 4.4]), then

mod(H : F ) = dimF ···
·H = tr degkk(F )H (2)

and F ···
·H may be informally viewed as the variety parametrizing typical H-

orbits in F .

Given an H-variety Y , we denote by F (Y ) the set of all locally closed

H-stable subsets of Y , which are the families. The integer

mod(H : Y ) := max
F∈F (Y )

mod(H : F ), (3)
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is then called the modality of the H-variety Y .

The definition of modality implies that (3) still holds if F (Y ) is replaced

by the set of all maximal (with respect to inclusion) families in Y , i.e., by the

sheets of Y [PV94, Sect. 6.10]. Recall that there are only finitely many sheets

of Y . If Y is irreducible, then Y reg is a sheet, called regular, which is open

and dense in Y . By (2),

mod(H : Y reg) = tr degkk(Y )H . (4)

Similarly, (3) still holds if F (Y ) is replaced by the set of all H-stable irre-

ducible locally closed (or closed) subsets of Y , and mod(H : F ) by tr degkk(F )H .

Let G be a (not necessarily connected) algebraic group and let X be a

G-variety. Then by definition,

mod(G : X) := mod(G0 : X),

where G0 is the identity component of Ge.

It readily follows from the definition that if Z is a locally closed G-stable

subset of X, then

mod(G : X) > mod(G : Z).

Recall that, for every integer s, the set {x ∈ X | dimG ·x 6 s} is closed in

X. Whence, for every locally closed (not necessarily G-stable) subset Z in X,

Zreg := {z ∈ Z | dimG·z > dimG·x for every x ∈ Z} (5)

is a nonempty open subset of Z.

The aforesaid shows that mod(G : X)=0 if and only if the set of all G-orbits

in X is finite.

The existence of regular sheets leads to defining the following distinguished

class of algebraic group actions:

Definition 1. An irreducible G-variety X and the action of G on X are called

modality-regular if mod(G : X)=mod(G : Xreg).

4. Main result: formulation.

Theorem 2. For any connected affine algebraic group G, the following proper-

ties are equivalent:

(F) there are only finitely many G-orbits in every irreducible G-variety

containing a dense open G-orbit;

(M) every irreducible G-variety is modality-regular;

(G) G is either a torus or a product of a torus and a group isomorphic

to Ga.

Remark. For any connected affine algebraic group G, the following properties

are equivalent:

(i) G is a product of a torus and a group isomorphic to Ga;

(ii) G is nilpotent and its unipotent radical is one-dimensional.
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5. Auxiliary results: property (F). This section contains some auxiliary

results on property (F) from the formulation of Theorem 2 that will be used

in its proof. First we explore its behaviour under passing to a subgroup and

a quotient group. Then we explore it for two-dimensional connected solvable,

and, in conclusion, for semisimple affine algebraic groups.

Lemma 3. Let G be a connected affine algebraic group and let H be its closed

subgroup. If G enjoys property (F), then

(a) H enjoys property (F);

(b) G/H, for normal H, enjoys property (F).

Proof. (a) Arguing on the contrary, suppose there exists an irreducible H-

variety Y with infinitely many H-orbits, one of which, say, O, is open in

Y . Since the action canonically lifts to the normalization [Ses63], we may

(and shall) assume that Y is normal. Then, by [Sum74, Lemma 8], we have

Y =
⋃

i∈I Ui, where each Ui is an H-stable quasi-projective open subset of

Y . As Y is irreducible, each Ui contains O. Since in the Zarisky topology any

open covering contains a finite subcovering, there is i0 ∈ I such that Ui0

contains infinitely many H-orbits. Therefore replacing Y by Ui0 , we may (and

shall) assume that Y is quasi-projective. Then, by [Ser58, 3.2] (see also [PV94,

Thm. 4.9]), the homogeneous fiber space X := G ×H Y over G/H with the

fiber Y is an algebraic variety. Since for the action of H on Y there are infin-

itely many orbits one of which is open, the natural action of G on X enjoys

these properties as well; see [PV94, Thm. 4.9]. This contradicts the condition

that G enjoys property (F), thereby proving (a).

(b) Assume, again arguing on the contrary, that there is an irreducible al-

gebraic G/H-variety X with infinitely many G/H-orbits, one of which is open

in X. Since the canonical homomorphism G → G/H determines an action

of G on X whose orbits coincide with the G/H-orbits, this contradicts the

condition that G enjoys property (F), thereby proving (b). �

We now consider the two-dimensional connected solvable affine algebraic

groups. Let S be such a group. Then S = T ⋉Su, where T is a maximal torus

and Su is the unipotent radical of S. There are only the following possibilities:

(S1) Su is trivial. Then S is a two-dimensional torus.

(S2) T is trivial. Then S isomorphic to Ga ×Ga.

Indeed, as S is unipotent, there is a one-dimensional closed subgroup C

lying in its center; see [Spr98, 6.3.4]. If g ∈ S \ C, from dimS = 2 we infer

that S is the closure of the subgroup generated by C and g. As this subgroup

is commutative, S is commutative as well. Since char k = 0, this entails the

claim; see [Spr98, 3.4.7].

(S3) dimT = dimSu = 1, i.e., T and Su are isomorphic to respectively

to Gm and Ga. Then there is n ∈ Z such that S is isomorphic to the group
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S(n) := Gm ⋉Ga, in which the group operation is defined by the formula

(t1, u1)(t2, u2) := (t1t2, t
n
2u1 + u2). (6)

Indeed, as dimSu = 1, there is an isomorphism θ : Ga → Su. For any t ∈ T ,

the map Su → Su, u 7→ tut−1, is an automorphism; whence there is a character

χ : T → Gm such that tθ(u)t−1 = θ(χ(t)u) for all u ∈ Ga, t ∈ T ; whence the

claim.

The group S(n) is commutative if and only if n = 0.

Proposition 4. The group Gd
a does not enjoy property (F) for every d > 2.

Proof. The action action of Gd
a on itself by left translations is its action on

the affine space Ad defined by the formula

u · a := (a1 + u1, . . . , ad + ud)

for u = (u1, . . . , ud) ∈ Gd
a, a = (a1, . . . , ad) ∈ Ad.

We indentify Ad with the affine chart

Pd
d := {(p0 : . . . : pd) ∈ Pd | pd 6= 0}

of the projective space Pd. Then the following formula extends this action up

to the action of Gd
a on Pd:

u · p := (p0 + u1pd : . . . : pd−1 + udpd : pd)

for u = (u1, . . . , ud) ∈ Gd
a, p = (p0 : . . . : pd) ∈ Pd.

For the latter action, Pd
d is an open orbit, and the hyperplane Pd \ Pd

d is

pointwise fixed. As dimPd \Pd
d > 0 for d > 2, this completes the proof. �

Proposition 5. Every group S(n) for n 6= 0 does not enjoy property (F).

Proof. It follows from (6) that

S(n) → GL2, (t, u) 7→

(
tn 0

u 1

)
,

is a representation of S(n). It determines the following linear action of S(n)

on A2:

g · a := (a1t
n, a1u+ a2), where g = (t, u) ∈ S(n) and a = (a1, a2) ∈ A2. (7)

From (7) and n 6= 0 we immediately infer that the fixed point set of this

action is the line ℓ := {(a1, a2) ∈ A2 | a1 = 0} whose complement A2 \ ℓ is a

single orbit. This completes the proof. �

In conclusion, we consider semisimple algebraic groups.

Proposition 6. Every nontrivial connected semisimple algebraic group G does

not enjoy property (F).
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Proof. Let α be a root of G with respect to a maximal torus and let Gα be

the centralizer of the torus (kerα)0 in G. The commutator group (Gα, Gα) is

isomorphic to either SL2 or PSL2 (see, e.g., [Spr98, 7.1.2, 8.1.4]). Correspon-

dingly, the Borel subgroups of (Gα, Gα) are isomorphic to either S(1) or

S(2). Hence, by Proposition 5, they do not enjoy property (F). The claim

now follows from Lemma 3. �

6. Auxiliary results: modality. The following lemma helps to practically

determine the modality and will be used in the proof of Theorem 2.

Lemma 7. Let G be an algebraic group, let X be a G-variety, and let {Ci}i∈I
be a collection of the subsets of X such that

(i) I is finite;

(ii)
⋃

i∈I Ci = X;

(iii) the closure Ci of Ci in X is irreducible for every i ∈ I;

(iv) every Ci is G-stable;

(v) all G-orbits in Ci have the same dimension di for every i ∈ I.

Then the following hold:

(a) mod(G : X) = maxi∈I
(
dimCi − di

)
;

(b) if X is irreducible, then X = Ci0 for some i0, and mod(G : Xreg) =

dimX−di0 .

Proof. By (iii), we have a family Ci
reg

, and (v) implies Ci ⊆ Ci
reg

. Whence

mod(G : Ci
reg

) = dimCi − di. (8)

From (3) and (8), we infer that mod(G : X) > max
i∈I

(dimCi−di). To prove the

opposite inequality let Z ∈ F (X) be a family of s-dimensional G-orbits such

that mod(G : X) = dimZ − s and let J := {i ∈ I | Z ∩ Ci 6= ∅}. By (ii), we

have Z =
⋃

j∈J(Z ∩ Cj). Since Z is irreducible and, by (i), J is finite, there

is j0 ∈ J such that Z ⊆ Cj0 . As Z ∩ Cj0 6= ∅, we have s = dj0 . Therefore,

mod(G : X) = dimZ − s 6 dimCj0 − dj0 . This proves (a).

By (ii),
⋃

i∈I Ci = X. If X is irreducible, then, in view of (i), this equality

implies the existence of i0 such that X = Ci0 . This and (8) prove (b). �

Lemma 8. Let G be a connected algebraic group and let ϕ : X 99K Y be a

rational G-equivariant map of the irreducible G-varieties.

(i) If ϕ is dominant, then mod(G : Xreg) > mod(G : Y reg). If, moreover,

dimX = dimY , then mod(G : Xreg) = mod(G : Y reg).

(ii) If ϕ is a surjective morphism, then mod(G : X) > mod(G : Y ).

Proof. The inequality in (i) follows from (4) because ϕ determines a G-equi-

variant field embedding ϕ∗ : k(Y ) →֒ k(X).

Assume that dimX = dimY . Then, by the fiber dimension theorem, the

fibers of ϕ over the points of an open subset of Y are finite. Whence, for every

point x of an open subset of X, we have dimG·x = dim G·ϕ(x). This implies
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that mX := maxx∈X dimG · x = mY := maxy∈Y dimG · y. From this equality

and (1) we infer mod(G : Xreg) = dimX−mX = dimY−mY = mod(G : Y reg).

This proves (i).

To prove (ii), consider a family F in Y such that

mod(G : Y ) = mod(G : F ). (9)

If ϕ is a surjective morphism, then ϕ : ϕ−1(F ) → F is a surjective morphism.

As F is irreducible, there is an irreducible component F̃ of ϕ−1(F ) such

that ϕ : F̃ → F is a surjective morphism. Since ϕ is G-equivariant and G

is connected, F̃ is G-stable, so the latter morphism is G-equivariant. Hence

mod(G : X)>mod(G : F̃ reg) > mod(G : F reg) = mod(G : F ) = mod(G : Y ).

(the first inequality follows from (3), and the second from (i); the first equality

follows from F = F reg, and the second from (9)) This proves (ii). �

Recall [Ses63] that any action of an algebraic group G on an irreducible

algebraic variety X canonically lifts to the normalization X(n) → X making

the latter G-equivariant. Lemma 8(i) and (3) entail

Corollary 9.

(i) mod(G : X(n)) = mod(G : X);

(ii) the action of G on X is modality-regular if and only if that on X(n) is.

Lemma 10. For any action of a torus T on an irreducible variety Y , the

following properties hold:

(i) the stabilizer of any point of an open subset of Y coincides with the

kernel of this action;

(ii) this action is modality-regular.

Proof. First, we may (and shall) assume that T acts of Y faithfully. Next,

by Corollary 9, replacing Y by Y (n), we may (and shall) assume that Y is

normal. By [Sum74, Cor. 2, p. 8], then Y is covered by T -stable affine open

subsets. Whence, moreover, we may (and shall) assume that Y is affine.

(i) As Y is affine, we may (and shall) assume that Y is a closed T -stable

subset of a finite-dimensional algebraic T -module and Y does not lie in a

proper T -submodule of V (see [PV94, Thm. 1.5]). The action of G on V is

faithful because that on Y is. As T is a torus, V is the direct sum of the

T -weight subspaces. Let U be the complement in V to the union of these

subspaces. The stabilizer of any point of U coincides with the kernel of the

action on V , hence is trivial. As, by construction, Y ∩U 6= ∅, this proves (i).

(ii) Given Definition 1, the proof of [Vin86, Prop. 1] can be viewed as that

of (ii). For the sake of completeness, below is a somewhat different argument.

We may (and shall) assume that T acts on Y faithfully; by (i), we then have

mod(T : Y reg) = dimY − dimT. As in the proof of (i), we may (and shall)

assume that Y is affine. Let S be a sheet in the T -variety Y , and let T0 be the

kernel of the action of T on S. Then mod(T : S) = dimS − (dimT − dimT0).
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Let π : Y → Y//T0 =: Speck[Y ]T0 be the categorical quotient for the action

of T0 on Y . As T0 act on Y faithfully, (i) yields dimY//T0 6 dimY − dimT0.

Since S is pointwise fixed by T0 and π separates closed T0-orbits, we have

dimπ(S) = dimS; whence dimS 6 dimY//T0 6 dimY − dimT0. Combining

this information, we complete the proof: mod(T : S) = dimS − dimT +

dimT0 6 dimY − dimT0 − dimT + dimT0 = mod(T : Y reg). �

7. Main result: proof.

We shall prove the implications (M)⇒(F)⇒(G)⇒(M).

1. The implication (M)⇒(F) is clear.

2. We now turn to the proof of the implication (F)⇒(G).

Let the group G enjoys property (F). Let R be the radical of G. Since the

group G/R is semisimple, our assumption, Lemma 3, and Proposition 6 entail

that G/R is trivial, i.e., G is solvable. Whence G = T ⋉ U , where T is a

maximal torus and U is the unipotent radical of G. We should show that

either U is trivial or U is isomorphic to Ga and G is commutative. Arguing

on the contrary, we suppose that this is not so.

Then U is a nontrivial unipotent group. Hence there exists a chain {e} =

U1  U2  · · ·  Ud = U of closed connected subgroups, normal in G, such

that d > 2, and the successive quotients are one-dimensional; see [Bor91, 10.6].

We claim that d = 2. Indeed, if this is not the case, the above chain contains

U3. Since dimU3 = 2, arguing as case (S3) of Section 5, we obtain that U3 is

isomorphic to Ga × Ga. By Proposition 4 and Lemma 3, this is impossible

since G enjoys property (F). Thus d = 2; whence U is isomorphic to Ga.

Next, the assumption that G is not commutative means that the conjugat-

ing action of T on U is nontrivial. As T is generated by its one-dimensional

subtori, there is such a subtorus T ′ not lying in the kernel of this action. Then

T ′U is a noncommutative closed connected two-dimensional subgroup of G;

see [Bor91, 2.2]. Hence it is isomorphic to S(n) for some n 6= 0; see case (S3)

in Section 5. By Proposition 5 and Lemma 3, this is impossible since G enjoys

property (F). This contradiction proves the implication (F)⇒(G).

3. Now we turn to the proof of the last implication (G)⇒(M).

Assume that (G) holds and G acts on an irreducible variety X. We should

show that this action is modality-regular. In view of Lemma 10(ii), we should

consider only the case, where G is the product of two subgroups:

G = T × U, T is a torus, U is isomorphic to Ga. (10)

Below, exploring the actions of the subgroups of G on X, we always mean the

actions obtained by restricting the given action of G on X.

We may (and shall) assume that G acts on X faithfully. In view of Corollary

9(ii), replacing X by X(n), we also may (and shall) assume that X is normal.

Notice that since the elements of T (respectively, U) are semisimple (unipo-

tent), and the G-stabilizers of points of X, being closed in G, contain the
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Jordan decomposition components of their elements, we have, in view of (10),

for these stabilizers:

Gx = Tx × Ux for every x ∈ X. (11)

As G acts on X faithfully, from (11), (10), and Lemma 10(i) we infer that

Gx is finite for every x ∈ Xreg. (12)

Let S be a sheet of the action of T on X. As T and U commute and both are

connected, S is U -stable and every sheet C of the action of U on S is T -stable,

hence G-stable. Consider the set of all C’s, obtained in this way when S runs

over all sheets of the action of G on X. This set is finite; we fix a numbering of

its elements: C1, . . . , Cn. The construction and dimU = 1 yield the following:

(C1) X = C1 ∪ . . . ∪ Cn;

(C2) every Ci is a locally closed irreducible G-stable subset of X;

(C3) all T -orbits in Ci have the same dimension di for every i;

(C4) for every i, either CU
i = Ci or dimU ·x = 1 for all x ∈ Ci.

The construction implies that Xreg is one of these subsets; we assume that

Xreg = C1. (13)

In view of (C3) and (12), we have

mod(T : Ci) = dimCi − di for every i,

d1 = dimT.
(14)

By Lemma 10(ii), the action of T on X is modality-regular, so (14) yields

dimX − dimT > dimCi − di for every i. (15)

From (11), (C3), (C4), we deduce that

mod(G : Ci) =

{
dimCi − di if CU

i = Ci ,

dimCi − di − 1 if CU
i = ∅.

(16)

In particular, (13), (14), (16), and the faithfulness of the action of G onX yield

mod(G : Xreg) = dimX − dimT − 1. (17)

Arguing on the contrary, we now suppose that the action of G on X is not

modality-regular, i.e.,

mod(G : X) > mod(G : Xreg). (18)

Then, as a first step, we shall find a certain Ci0 that has some special prop-

erties. The next step will be analysing these properties which eventually will

lead to a sought-for contradiction.

Namely, by (18) and Lemma 7, there is i0 such that

mod(G : Xreg) < mod(G : Ci0). (19)
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Combining (15), (16), (17), (19), we obtain

dimCi0 − di0 − 1
(15)

6 dimX − dimT − 1

(17)
== mod(G : Xreg)

(19)
< mod(G : Ci0)

(16)
==

{
dimCi0 − di0 if CU

i0
= Ci0 ,

dimCi0 − di0 − 1 if CU
i0
= ∅.

(20)

In turn, from (20) we infer the following:

CU
i0

= Ci0 , (21)

dimCi0 − di0 = dimX − dimT. (22)

Denote by Ti0 be the identity component of the kernel of the action of T

on Ci0 and consider in G the closed subgroup

H := Ti0 × U. (23)

By (C3) and Lemma 10(i), we have

dimTi0 = dimT − di0 , (24)

dimH = dimT − di0 + 1. (25)

From (21) and the definitions of Ti0 and H we infer that

CH
i0

= Ci0 . (26)

By [Sum74, Cor. 2, p. 8], as X is normal, Y is covered by the Ti0-stable

affine open subsets. Whence there is a Ti0-stable affine open subset A in X

such that

A ∩ Ci0 is a dense open subset of Ci0 , (27)

A ∩Xreg is a dense open subset of A. (28)

Consider the categorical quotient for the affine Ti0-variety A:

π : A → A//Ti0 =: Speck[A]Ti0 .

By (12), we have dimTi0 ·x = dimTi0 for every x ∈ Xreg. This, the fiber

dimension theorem, the Ti0-equivariance of π, and the equality dimA = dimX

then yield:

dimA//Ti0 6 dimA− dimTi0

(24)
== dimX − dimT + dCi0

(22)
== dimCi0 . (29)

On the other hand, since k[A]Ti0 separates disjoint closed Ti0-stable subsets of

A (see [PV94, Thm. 9.4]), we have

dimCi0

(26)
== dimπ(Ci0) 6 dimA//Ti0 (30)

From (29), (30) we obtain the equalities

dimCi0 = dimA//Ti0 = dimA− dimTi0 . (31)
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From (31), (27), (28), and the fiber dimension theorem, we then deduce the

existence of a dense open subset Q of A//Ti0 that enjoys the following proper-

ties:

Q ⊆ π(A ∩ Ci0) ∩ π(A ∩Xreg), (32)

π−1(q) is equidimensional of dimension dimTi0 for every q ∈ Q. (33)

Now take a point x ∈ π−1(Q) ∩Xreg. In view of (12), we have

dimTi0 ·x = dimTi0 . (34)

As orbits are open in their closures, and Ti0 ·x ⊆ π−1(π(x)), from (33), (34)

we infer that Ti0 ·x is a dense open subset of an irreducible component of the

fiber π−1(π(x)). In view of (32), this fiber contains a point s ∈ Ci0 , so we have

π−1(π(x)) = π−1(π(s)). (35)

As, by (26), the point s is Ti0-fixed, it lies in the closure of Ti0 ·x in A (and a

fortiori in X); see [PV94, Thm. 4.7]. Thus Ti0 ·x belongs to the set S of all

Ti0-orbits O in X that enjoy the following properties:

(a) dimO = dimTi0 ;

(b) the closure O of O in X contains s.

We claim that S is finite. Indeed, if a Ti0-orbit O belongs to S , then

O ∩ A is an open neighbourhood of s in O, therefore O ∩ A 6= ∅. Whence

O lies in A and contains s in its closure in A. This and (35) show that O is

a dimTi0-dimensional Ti0-orbit of π
−1(π(x)); whence, as above, O is a dense

open subset of an irreducible component of π−1(π(x)). The claim now follows

from the finiteness of the set of irreducible components of π−1(π(x)).

The finiteness of S implies that the union of all Ti0-orbits from S is a

locally closed subset Z of X whose irreducible components are these orbits. As

we proved above, one of these components id Ti0·x. Since U commutes with Ti0

and, by (21), s is a U -fixed point, the subset Z is U -stable. The connectedness

of U then entails that each irreducible component of this subset is U -stable. In

particular, Ti0 ·x is U -stable. Whence Ti0 ·x is H-stable and therefore we have

H ·x = Ti0 ·x. (36)

In view of (12), (23), (10), we now obtain the sought-for contradiction:

dimTi0 + 1 = dimH = dimH ·x
(36)
== dimTi0 ·x = dimTi0 . (37)

This completes the proof.
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