Electronics and Electrical Engineering

The main target of the IEEE East-West Design & Test Symposium (EWDTS) is to exchange experiences between scientists and technologies from Eastern and Western Europe, as well as North America and other parts of the world, in the field of design, design automation and test of electronic circuits and systems. The symposium is typically held in countries around East Europe, the Black Sea, the Balkans and Central Asia region. We cordially invite you to participate and submit your contributions to EWDTS 2020 which covers (but is not limited to) the following topics. • Analog, Mixed-Signal and RF Test • ATPG and High-Level TPG • Automotive Reliability & Test • Built-In Self Test • Debug and Diagnosis • Defect/Fault Tolerance and Reliability • Design Verification and Validation • EDA Tools for Design and Test • Embedded Software • Failure Analysis & Fault Modeling • Functional Safely • High-level Synthesis • High-Performance Networks and Systems on a Chip • Internet of Things Design & Test • Low-power Design • Memory and Processor Test • Modeling & Fault Simulation • Network-on-Chip Design & Test • Flexible and Printed Electronics • Applied Electronics Automotive/Mechatronics • Algorithms • Object-Oriented System Specification and Design • On-Line Testing • Power Issues in Design & Test • Real Time Embedded Systems • Reliability of Digital Systems • Scan-Based Techniques • Self-Repair and Reconfigurable Architectures • Signal and Information Processing in Radio and Communication Engineering • System Level Modeling, Simulation & Test Generation • System-in-Package and 3D Design & Test • Using UML for Embedded System Specification • Optical signals in communication and Information Processing • CAD and EDA Tools, Methods and Algorithms • Hardware Security and Design for Security • Logic, Schematic and System Synthesis • Place and Route • Thermal and Electrostatic Analysis of SoCs • Wireless and RFID Systems Synthesis • Sensors and Transducers • Medical Electronics • Design of Integrated Passive Components

A GUIDE TO THE FUNDAMENTAL THEORY AND PRACTICE OF OPTICAL COMMUNICATION Fiber Optic and Atmospheric Optical Communication offers a much needed guide to characterizing and overcoming the drawbacks associated with optical communication links that suffer from various types of fading when optical signals with information traverse these wireless (atmospheric) or wired (fiber optic) channels. The authors--noted experts on the topic--present material that aids in predicting the capacity, data rate, spectral efficiency, and bit-error-rate associated with a channel that experiences fading. They review modulation techniques and methods of coding and decoding that are useful when implementing communications systems. The book also discusses how to model the channels, including treating distortion due to the various fading phenomena. Light waves and their similarity to radio waves are explored, and the way light propagates through the atmosphere, through materials, and through the boundary between two materials is explained. This important book: Characterizes principal optical sources and detectors, including descriptions of their advantages and disadvantages, to show how to design systems from start to finish Provides a new method of predicting and dealing with the dispersive properties of fiber optic cables and other optical guiding structures in order to increase data stream capacity Highlights effects of material and multimode (multi-ray) dispersion during propagation of optical signals with data through fiber optic channels Presents modulation techniques and methods of coding and decoding that are useful when implementing communications systems Written for professionals dealing with optical and electro-optical communications, Fiber Optic and Atmospheric Optical Communication explores the theory and practice of optical communication both when the optical signal is propagating through the atmosphere and when it is propagating through an optical fiber.

The goal of this International Roadmap for Devices and Systems (IRDS) chapter is to survey, catalog, and assess the status of technologies in the areas of cryogenic electronics and quantum information processing. Application drivers are identified for sufficiently developed technologies and application needs are mapped as a function of time against projected capabilities to identify challenges requiring research and development effort. Cryogenic electronics (also referred to as low-temperature electronics or cold electronics) is defined by operation at cryogenic temperatures (below −150 °C or 123.15 K) and includes devices and circuits made from a variety of materials including insulators, conductors, semiconductors, superconductors, or topological materials. Existing and emerging applications are driving development of novel cryogenic electronic technologies. Information processing refers to the input, transmission, storage, manipulation or processing, and output of data. Information processing systems to accomplish a specific function, in general, require several different interactive layers of technology. A top-down list of these layers begins with the required application or system function, leading to system architecture, micro- or nano-architecture, circuits, devices, and materials. A fundamental unit of information (e.g., a bit) is represented by a computational state variable, for example, the position of a bead in the ancient abacus calculator or the voltage (or charge) state of a node capacitance in CMOS logic. A binary computational state variable serves as the foundation for von Neumann computational system architectures that dominated conventional computing. Quantum information processing is different in that it uses qubits, two-state quantum-mechanical systems that can be in coherent superpositions of both states at the same time, which can have computational advantages. Measurement of a qubit in a given basis causes it to collapse to one of the basis states. Technology categories covered in this report include: • Superconductor electronics (SCE) • Cryogenic semiconductor electronics (Cryo-Semi) • Quantum information processing (QIP)

The international scientific and engineering conference “Systems of Signal Synchronization, Generating and Processing in Telecommunications” has been held since 1974. For 46 years of work the conference has become a widely known forum for specialists of the field.
The papers which are discussed at the conference can be divided into the following chapters:
– Synchronization Systems and Devices;
– Signal Generating and Shaping Devices;
– Signal Processing Devices.
– Special chapter: “Problems of microwave electronics” them. V.A. Solntsev
The chapters content is concerned with fundamental problems of signal synchronization, generating and processing in the field of communications, broadcasting, radar, radio guidance and radio control. The questions of the practical issues are also including.
The presentations are made by the scientists and developers from 10 countries: Belarus, Azerbaijan, Germany, Kazakhstan, China, Lebanon, Mongolia, Russia, Uzbekistan and Ukraine.
Branch Director of the IEEE Worldwide Limited in the Russian Federation and Scientific Secretary of Russian (Moscow) IEEE Circuits and Systems (CAS04) Chapter Roman Y. Ivanyushkin promotes this conference among the Engineers in the field of Telecommunications. He also organizes the work of conference Chapter “Signals Generating and Shaping Devices”.
Chairman of Russian (Moscow) IEEE Circuits and Systems (CAS04) Chapter Valentin Kuleshov is the Chairman of the Technical Program Committee.
Every year Director and Chairman of Russian Branch IEEE Circuits and System Society are participate as co-Chairs of the Chapter “Signals Generating and Shaping Devices”.
Chairman of the Steering Committee Alexander Pestryakov (Doctor of Technical Science, Professor, Radio and Broadcasting Faculty Dean of the Moscow Technical University of Communications and Informatics) in cooperation with Director and Chairman of Russian Branch IEEE Circuits and System Society appoints the conference committee chairs and other key members.
Conference will produce a publication.

Proceedings. - Prague, April 23–24, 2019. IEEE Catalog Number: CFP19P59-CDR. ISBN: 978-1-5386-6524-4.
Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubspermissions@ieee.org. All rights reserved. Copyright ©2019 by IEEE.

The materials of The International Scientific – Practical Conference is presented below. The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies. It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

2019 International Siberian Conference on Control and Communications (SIBCON). Proceedings

The materials of The International Scientific – Practical Conference is presented below.
The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies.
It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

The main target of the East-West Design & Test Symposium (EWDTS) is to exchange experiences between the scientists and technologies of the Eastern and Western Europe, as well as North America and other parts of the world, in the field of design, design automation and test of electronic systems. The symposium aims at attracting scientists especially from countries around the Black Sea, the Baltic states and Central Asia. We cordially invite you to participate and submit your contribution(s) to EWDTS’16 which covers (but is not limited to) the following topics:
Analog, Mixed-Signal and RF Test Analysis and Optimization ATPG and High-Level TPG Automotive Reliability & Test Built-In Self Test Debug and Diagnosis Defect/Fault Tolerance and Reliability Design Verification and Validation EDA Tools for Design and Test Embedded Software Performance Failure Analysis, Defect and Fault Functional Safely High-level Synthesis High-Performance Networks and Systems on a Chip Internet of Things Design & Test Low-power Design Memory and Processor Test Modeling & Fault Simulation Network-on-Chip Design & Test Modeling and Synthesis of Embedded Systems Object-Oriented System Specification and Design On-Line Testing Power Issues in Design & Test Real Time Embedded Systems Reliability of Digital Systems Scan-Based Techniques Self-Repair and Reconfigurable Architectures Signal and Information Processing in Radio and Communication Engineering System Level Modeling, Simulation & Test Generation System-in-Package and 3D Design & Test Using UML for Embedded System Specification Optical signals in communication and Information Processing CAD and EDA Tools, Methods and Algorithms Hardware Security and Design for Security Logic, Schematic and System Synthesis Place and Route Thermal and Electrostatic Analysis of SoCs Wireless and RFID Systems Synthesis

The materials of The International Scientific – Practical Conference is presented below. The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies.
It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

The 18th International Vacuum Electronics Conference (IVEC 2017) helded on 24-26 April 2017 in London, UK. With technical co-sponsorship from the IEEE Electron Devices Society (EDS), the conference provide a forum for scientists and engineers from around the globe to present the latest developments in vacuum electronics technology at frequencies ranging from the UHF to THz frequency bands. IVEC was originally created in 2000 by merging the U.S. Power Tubes Conferences and the European Space Agency TWTA Workshops. Now a fully international conference, IVEC is held every other year in the U.S., and in Europe and Asia alternately every fourth year.

The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies. It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

The Conference is focused on the actual problems in the field of Quality Management, Transport and Information Security, Information Technologies (Navigation and Information Systems, Information Security Systems and Computer Security, Transport Security Management, Information and Communication Technologies in Education, Scientific Research and Economy, Automation of Business Processes, Automated Systems of Control and Quality Management, Quality Management Systems including Integrated Systems of Quality Management of Information Systems (Implementation, Certification, Auditing), Engineering Management, IT Service Management, Management of Projects and Risks as well as other issues related to the field). Previous Conferences on these topics revealed great interest of both Russian and foreign researchers in this issues. Organizing and hosting the 2016 IEEE Conference on Quality Management, Transport and Information Security, Information Technologies (IT&MQ&IS) in Russia is of great value for exchange of research ideas and practical results in this field, for discovering new problems and development trends, for development of new effective practical methods and tools targeted on solving complex practical problems. During the IT&MQ&IS 2016 Conference sessions, it is expected and planned to discuss a wide range of issues, both of theoretical and practical value. One of the key Conference aims is also attracting young researchers and practitioners to discussions and exchange of ideas with the professional community.

The 12th Siberian conference SIBCON-2016, the oldest conference of IEEE in Siberia, aims to offer opportunities to learn and to share information on the latest advances in communications, electron devices, and control systems.

This book constitutes the joint refereed proceedings of the 15th International Conference on Next Generation Wired/Wireless Advanced Networks and Systems, NEW2AN 2015, and the 8th Conference on Internet of Things and Smart Spaces, ruSMART 2015, held in St. Petersburg, Russia, in August 2015. The 74 revised full papers were carefully reviewed and selected from numerous submissions. The 15 papers selected for ruSMART are organized in topical sections on IoT infrastructure, IoT platforms, smart spaces and IoT cases, and smart services and solutions. The 59 papers from NEW2AN deal with the following topics: streaming, video, and TCP applications, mobile "ad hoc" networks, security, and clouds, sensor networks and IoT, cellular systems, novel systems and techniques, business and services, signals and circuits, optical and satellite systems, and advanced materials and their properties.
To achieve higher throughputs in cellular networks, 3GPP proposes to use unlicensed frequency bands and develops technologies - the latest one is NR-U - allowing a cellular base station to transmit in unlicensed bands, which are already occupied by Wi-Fi networks. To enable fair channel sharing between two technologies, the base station uses a sort of CSMA/CA with binary exponential backoff similar to Wi-Fi. However, the base station can start data transmission only at strictly periodic time moments. Many papers propose sending a reservation signal between the end of the backoff procedure and such a moment to prevent nearby devices from accessing the channel. However, this approach significantly reduces Wi-Fi performance. The paper proposes a novel method CR-LBT of transmitting a reservation signal that greatly decreases channel resource waste caused by collisions and improves channel resource sharing fairness. With developed analytical models and simulations, it is shown that CR-LBT may simultaneously increase the throughput of both NR-U and Wi-Fi networks. The effect is more noticeable for the Wi-Fi network, the throughput of which may rise three times compared with the traditional method of sending the reservation signal. Finally, the influence of various factors on CR-LBT performance is studied.
The temperature range of SPICE models of bipolar and field-effect transistors is extended from the standard commercial level (-60...+150 °C) to harsh conditions level (-200...+300 °C) for low/high temperature ICs design. This is done by including additional equations for temperaturedependent parameters, and by connecting additional elements to the device equivalent circuit to take into account the thermal effects. The universal automated methodology of model parameters extraction from the experimental data measured at low and high temperatures is proposed. The good agreement between simulated and measured device characteristics is achieved. The RMS error is not more than 10–20%.
Plasmonic interferometry is a rapidly growing area of research with a huge potential for applications in the terahertz frequency range. In this Letter, we explore a plasmonic interferometer based on graphene field effect transistor connected to specially designed antennas. As a key result, we observe helicity- and phase-sensitive conversion of circularly polarized radiation into dc photovoltage caused by the plasmon-interference mechanism: two plasma waves, excited at the source and drain part of the transistor, interfere inside the channel. The helicity-sensitive phase shift between these waves is achieved by using an asymmetric antenna configuration. The dc signal changes sign with inversion of the helicity. A suggested plasmonic interferometer is capable of measuring the phase difference between two arbitrary phase-shifted optical signals. The observed effect opens a wide avenue for phase-sensitive probing of plasma wave excitations in two-dimensional materials.
The compact models of junction field effect transistors (JFETs) used in release-quality versions of SPICE-like programs are focused only on the standard temperatures ranging from –60 to 150°C and are unworkable for an electronic circuit design in the cryogenic temperature range (below –120°C). It this study, the Low-T SPICE model of the JFET for designing electronic circuits in the extended temperature range, including the cryogenic range (from –200 to 110°С), is proposed. The model takes into account the changes in the I–V curves caused by the effect of ultralow temperature: growth of the saturation voltage VD sat, decrease of the pinch-off current Ip and steepness BETA, negative slope LAMBDA of the output I–V curves, increase of the drain–source resistance RD as the result of the freezing effect, etc. For this purpose, the dependences of the specified parameters on temperature are introduced in the model. The procedure for extracting the SPICE parameters of the Low-T SPICE model of the JFET is developed according to the results of the measurements of the standard set of the I–V curves in the cryogenic temperature range. The error of the calculation of the I–V curves is not higher than 10–15% in the temperature range from –200 to 110°C.
This paper discusses the development in the E-pulse technique, also known as the method of extinction pulse, which is an aspect-independent approach to ultra-wideband radar target discrimination in which each target can be characterized by the set of its natural resonances. It is shown that subsectional polynomial E-pulse can be constructed without composing a linear problem and further solution of the underlying matrix equation set. The key concept of the proposed algorithm consists of several steps, where the first one is building a skeleton E-pulse of an especial waveform, the second step is its extension, and the final step is the series of integration. The polynomial structure of the pulse allows above listed steps to be performed over the coefficients of basic functions rather than the functions themselves. As a result, the proposed solution could perform up to a thousand times faster than one based on direct matrix solution. It also provides the coefficients of the polynomial E-pulse sections without solving a linear problem associated with ill-conditioned sparse matrix in its left-hand side. The E-pulse signals synthesized by means of the fast algorithm are proven to be exactly the same as one synthesized by the direct approach. The numerical example given in the paper exposures the main features of the E-pulse technique. The discrimination scheme where two aircraft scaled model targets are involved is simulated. It was shown that the E-pulse discrimination number provides the effective tool for measuring the energy of the late-time part of the convolution as a measure of the difference of two pole sets belonging to the responses under comparison.
A large-scale project is being implemented in Russia to introduce a smart system to account for electricity consumption. Creating a system for rapid restoration of electricity meters should become an obligatory part of the range of services provided to consumers. Operational restoration of electricity meters should also be carried out during the implementation period. It is necessary to determine a nonexcessive number of personnel that will be able to provide both installation of electric meters at a given time and their prompt recovery. The organization of work of the personnel significantly affects its necessary number. In this paper, the task of determining the number of employees is solved under the assumption that the personnel are divided into those who are involved in the installation of electricity meters and those who are responsible for recovery. This division is not carried out at the start, but is varied as the number of electric meters operating in the system increases. Formulas are obtained for calculating the number of personnel that will allow the project to be completed on time. Using these formulas, it can be determined how to change the number of personnel involved in the installation of electricity meters and engaged in restoration during the project implementation period.
One promising trend in making voltage converters more reliable is to design them on the basis of backbone modular architecture, combined redundancy, and rotation of main and backup power channels. A technique is proposed for this converter for calculating the upper and the lower failsafe operation probability estimates that is based on using the standardized model for the sliding loaded redundancy group. It is shown that the session rate of failures can be used as the channel fail-safety indicator in the rotation of channels. The proposed technique allows finding these estimates as time functions and considering the rate of channel failures not only in the converter’s running mode, but in the standby mode as well. An example of calculating the converter’s failsafe operation estimates is presented; a similar calculation by imitative modeling is provided to confirm the obtained results. It is shown that a shortened full channel rotation cycle makes the channels spend the resource in a more even manner, has no effect on the converter’s fault-free performance figures at an absolutely reliable switch, and reduces them in the case of an unreliable switch.
Discusses MTTS society activities in Russia.
To improve the performance of Wi-Fi networks in dense deployments, the recent IEEE 802.11ax standard introduces a palette of features improving spatial reuse. A key property of these features is dynamic changes in transmit power and the interference from the neighboring devices. The paper explains the basic operation of spatial reuse features and shows that their efficiency significantly depends on how the stations select appropriate modulation and coding schemes taking into account the variable transmission conditions. Nevertheless, the majority of existing studies in the literature leave this effect out of consideration, assuming an ideal rate control algorithm and obtaining wrong results. The paper fills this gap and presents a novel statistics-based rate control algorithm that selects modulation and coding schemes taking into account the effects induced by the recent spatial reuse features. With extensive simulation, it is shown that the algorithm significantly outperforms the existing rate control algorithms, providing up to 50% higher goodput and three times lower latencies.