## Natural Sciences

This book constitutes the refereed proceedings of the 9th International Conference on Optimization and Applications, OPTIMA 2018, held in Petrovac, Montenegro, in October 2018.The 35 revised full papers and the one short paper presented were carefully reviewed and selected from 103 submissions. The papers are organized in topical sections on mathematical programming; combinatorial and discrete optimization; optimal control; optimization in economy, finance and social sciences; applications.

The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia. The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

This book contains a selection of papers accepted for the presentation and discussion at the 2018 International Conference on Digital Science (DSIC’18). This Conference had the support of the Institute of Certified Specialists, Russia, AISTI (Iberian Association for Information Systems and Technologies), and Springer. It will take place at Convention Centre, Budva, Montenegro, October 19–21, 2018. DSIC’18 is an international forum for researchers and practitioners to present and discuss the most recent innovations, trends, results, experiences, and concerns in the several perspectives of Digital Science. The main idea of this Conference is that the world of science is unified and united allowing all scientists/practitioners to be able to think, analyze, and generalize their thoughts. DSIC aims efficiently to disseminate original research results in natural, social, art, and humanities sciences. An important characteristic feature of the Conference should be the short publication time and worldwide distribution. This Conference enables fast dissemination, so conference participants can publish their papers in print and electronic format, which is then made available worldwide and accessible by numerous researchers. The Scientific Committee of DSIC’18 was composed of a multidisciplinary group of 26 experts. One hundred and seven invited reviewers who are intimately concerned with Digital Science have had the responsibility for evaluating, in a “double-blind review” process, the papers received for each of the main themes proposed for the Conference: Digital Art and Humanities; Digital Economics; Digital Education; Digital Engineering; Digital Environmental Sciences; Digital Finance, Business and Banking; Digital Media; Digital Medicine, Pharma and Public Health; Digital Public Administration; Digital Technology and Applied Sciences. DSIC’18 received 88 contributions from 16 countries around the world. The papers accepted for the presentation and discussion at the Conference are published by Springer (this book) and will be submitted for indexing by ISI, SCOPUS, among others.

This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained, while all the results are carefully and concisely proven. Bibliographical notes are added at the end of each chapter to provide an overview of the literature.

I show that Hurwitz numbers may be generated by certain correlation functions which appear in quantum chaos.

Sustaining a competitive edge in today’s business world requires innovative approaches to product, service, and management systems design and performance. Advances in computing technologies have presented managers with additional challenges as well as further opportunities to enhance their business models.

Software Engineering for Enterprise System Agility: Emerging Research and Opportunities is a collection of innovative research that identifies the critical technological and management factors in ensuring the agility of business systems and investigates process improvement and optimization through software development. Featuring coverage on a broad range of topics such as business architecture, cloud computing, and agility patterns, this publication is ideally designed for business managers, business professionals, software developers, academicians, researchers, and upper-level students interested in current research on strategies for improving the flexibility and agility of businesses and their systems.

This volume offers profound analyses of the main theoretical and practical aspects of the concept of sustainable development: namely, current environmental problems; the building of green economies; climate policies; specifics of international cooperation in the sphere of sustainable development; specific features of business and government involvement in implementing sustainable development; the role of civil society; its social and gender aspects; and specific characteristics of national models of sustainable development. The focus on the international aspects of the implementation of sustainable development ideas makes the insights offered here fresh and unique.

Computer simulations are nowadays a rmly established third pillar of modern natural sciences, complementing experimentation and paper-and-pencil theoret- ical studies. Simulations, experiments in silico, prove indispensable in diverse areas of research in physics and other natural sciences. This volume collects papers based on presentations delivered at the Sec- ond International Conference on Computer Simulations in Physics and beyond (CSP2017), which took place October 9-12, 2017 in Moscow. The Conference, which continues a biannual tradition started by an innaugural conference in 2015, took place on campus of A.N. Tikhonov Moscow Institute of Electronics and Mathematics, was jointly organized by the National Research University Higher School of Economics, the Landau Insitute for Theoretical Physics and Science Center in Chernogolovka. As the name implies, the Conference is a multidisciplinary meeting, with a focus on computational physics and related subjects. Indeed, methods of computational physics prove useful in a broad spectrum of research in multiple branches of natural sciences, and this volume provides a sample. We hope that this volume will interest a wide range of readers, and we are already looking forward for the next conference in this biannual series.

This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well.

The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces.

The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion.

Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework.

The assembly process is extremely complex for aircraft and its management requires to address numerous optimization problems related to the assignment of tasks to workstations, staffing problem for each workstation and finally the assignment of tasks to operators at each workstation. This paper treats the latter problem dealing with the assignment of tasks to operators under ergonomic constraints. The problem of optimal tasks scheduling in aircraft assembly line is modelled as Resource-Constrained Project Scheduling Problem (RCPSP). The objective of this research is to assign tasks to operators and to find an optimal schedule of task processing under economic and ergonomic constraints. Two different models to solve this problem are presented and evaluated on an industrial case study.

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil- Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.- P. Serre).

This book highlights selected topics of standard and modern theory of accretion onto black holes and magnetized neutron stars. The structure of stationary standard discs and non-stationary viscous processes in accretion discs are discussed to the highest degree of accuracy analytic theory can provide, including relativistic effects in flat and warped discs around black holes. A special chapter is dedicated to a new theory of subsonic settling accretion onto a rotating magnetized neutron star. The book also describes supercritical accretion in quasars and its manifestation in lensing events. Several chapters cover the underlying physics of viscosity in astrophysical discs with some important aspects of turbulent viscosity generation. The book is aimed at specialists as well as graduate students interested in the field of theoretical astrophysics.

Workshop on Program Semantics, Specification and Verification: Theory and Applications is the leading event in Russia in the field of applying of the formal methods to software analysis. Proceedings of the ninth workshop dedicated to formalisms for program semantics, formal models and verification, programming and specification languages, algebraic and logical aspects of programming.

The present book gathers chapters from colleagues of A. Ezersky from Russia, especially those from Nizhny Novgorod Institute of Applied Physics of the Russian Academy of Science and from France, with whom he has been collaborating on experimental and theoretical developments. The book is subdivided into two parts. Part I contains eight chapters related to nonlinear water waves and Part II addresses in five chapters, patterns dynamics in nonequilibrium media. The contributions of Alexander B. Ezersky were valuable from both the experimental and the theoretical points of view. We thank all the authors for their contributions and the Springer Editor for having kindly accepted the edition of this book in memory of our colleague and friend, Prof. Alexander Borisovich Ezersky.

This book constitutes the refereed proceedings of the 14th International Workshop on Enterprise and Organizational Modeling and Simulation, EOMAS 2018, held in Tallinn, Estonia, in June 2018. The main focus of EOMAS is on the role, importance, and application of modeling and simulation within the extended organizational and enterprise context. The 11 full papers presented in this volume were carefully reviewed and selected from 22 submissions. They were organized in topical sections on conceptual modeling, enterprise engineering, and formal methods.

This state-of-the-art survey is dedicated to the memory of Emmanuil Markovich Braverman (1931-1977), a pioneer in developing the machine learning theory. The 12 revised full papers and 4 short papers included in this volume were presented at the conference "Braverman Readings in Machine Learning: Key Ideas from Inception to Current State" held in Boston, MA, USA, in April 2017, commemorating the 40th anniversary of Emmanuil Braverman's decease. The papers present an overview of some of Braverman's ideas and approaches. The collection is divided in three parts. The first part bridges the past and the present. Its main contents relate to the concept of kernel function and its application to signal and image analysis as well as clustering. The second part presents a set of extensions of Braverman's work to issues of current interest both in theory and applications of machine learning. The third part includes short essays by a friend, a student, and a colleague.

The transmission and the circular transmission are investigated for a ring of quantum dots (in a benzene-type configuration) connected to external leads in the meta-configuration. A computational method utilizing the tight-binding approximation to the Schrödinger equation is used to solve for the transmission probabilities as a function of the electron energy and external magnetic flux. The flux dependence is incorporated into the model using a standard procedure involving the Aharonov–Bohm effect. The positions of the transmission zeros and poles in the complex energy plane, and their possible interference with or even complete cancellation of each other, are shown to correlate with the amplitude and structure of the circular transmission resonances. Large-amplitude resonances of the circular transmission are found to occur when two poles of the transmission are separated along the imaginary axis. These resonances demonstrate a high degree of flux sensitivity at specific energy values and flux ranges. A small change in flux causes the orientation of the resonance poles in the complex energy plane to rotate parallel to the real energy axis, resulting in a concurrent decrease in the circular transmission amplitude. The flux-dependent interference between the transmission poles and zeros in the complex energy plane leads to a decrease of the circular transmission resonance amplitudes. The circular transmission and its corresponding current–voltage characteristic provide more information related to the external flux than can be obtained from the normal transmission alone.

We give a new proof of the cut-and-join equation for the monotone Hurwitz numbers, derived first by Goulden, Guay-Paquet, and Novak. The main interest in this particular equation is its close relation to the quadratic loop equation in the theory of spectral curve topological recursion, and we recall this motivation giving a new proof of the topological recursion for monotone Hurwitz numbers, obtained first by Do, Dyer, and Mathews.

Magneto-fermionic condensate under study is a Bose-Einstein condensate of cyclotron spin-flip magnetoexcitons in a quantum Hall insulator. This condensate features unique properties such as millisecond range lifetime and hundreds of micrometers of propagation length. In this study, utilizing the photo-induced resonant reflection technique, we measured the exciton escape time. Finally, we estimated the exciton condensate propagation velocity as 25 m/s, which is much higher than a single particle propagation velocity. We also proposed a mechanism of exciton condensation.

An attractive two-dimensional semiconductor with tunable direct bandgap and high carrier mobility, black phosphorus (BP) is used in batteries, solar cells, photocatalysis, plasmonics and optoelectronics. BP is sensitive to ambient conditions, with oxygen playing a critical role in structure degradation. Our simulations show that BP oxidation slows down charge recombination. This is unexpected, since typically charges are trapped and lost on defects. First, BP has no ionic character. It interacts with oxygen and water weakly, experiencing little perturbation to electronic structure. Second, phosphorus supports different oxidation states and binds extraneous atoms avoiding deep defect levels. Third, soft BP structure can accommodate foreign species without disrupting periodic geometry. Finally, BP phonon scattering on defects shortens quantum coherence and suppresses recombination. Thus, oxidation can be regarded as production of a self-protective layer that improves BP properties. These BP features should be common to other mono-elemental 2D materials, stimulating energy and electronics applications.

We propose a method of measuring low concentrations of fluorescent molecules located in a small volume of a liquid solvent (about 5 *μ*l) based on the Ebbesen effect of the extraordinary transmission (EOT) of light through a state-of-the-art plasmonic crystal formed by a nanohole array perforated in the ultra-high-quality Ag film. In the method, the EOT effect is realized at the fluorescence wavelength of the detected molecules with a low transmission of light at the absorption wavelength. This approach enables the realization of high level sensor sensitivity approaching a sensitivity level of single molecules counting sensors, owing to the suppression of the sensor substrate’s inevitable parasitic luminescence. The proposed method was successfully demonstrated by detection an ultra-low concentration of Cy-5 fluorescent markers in a dimethyl sulfoxide solution corresponding to less than 1000 molecules in the sensor detection volume.

The issue of a recurrence of the modulationally unstable water wave trains within the framework of the fully nonlinear potential Euler equations is addressed. It is examined, in particular, if a modulation which appears from nowhere (i.e., is infinitesimal initially) and generates a rogue wave which then disappears with no trace. If so, this wave solution would be a breather solution of the primitive hydrodynamic equations. It is shown with the help of the fully nonlinear numerical simulation that when a rogue wave occurs from a uniform Stokes wave train, it excites other waves which have different lengths, what prevents the complete recurrence and, eventually, results in a quasi-periodic breathing of the wave envelope. Meanwhile the discovered effects are rather small in magnitude, and the period of the modulation breathing may be thousands of the dominant wave periods. Thus, the obtained solution may be called a quasi-breather of the Euler equations.

A Gaussian graphical model is a graphical representation of the dependence structure for

a Gaussian random vector. Gaussian graphical model selection is a statistical problem that

identifies the Gaussian graphical model from observations. There are several statistical

approaches for Gaussian graphical model identification. Their properties, such as unbiasedeness

and optimality, are not established. In this paper we study these properties.

We consider the graphical model selection problem in the framework of multiple decision

theory and suggest assessing these procedures using an additive loss function. Associated

risk function in this case is a linear combination of the expected numbers of the two types

of error (False Positive and False Negative). We combine the tests of a Neyman structure for

individual hypotheses with simultaneous inference and prove that the obtained multiple

decision procedure is optimal in the class of unbiased multiple decision procedures.

Let G be a connected semisimple algebraic group and let H⊂G be a connected reductive subgroup. Given a flag variety X of G, a result of Vinberg and Kimelfeld asserts that H acts spherically on X if and only if for every irreducible representation R of G realized in the space of sections of a homogeneous line bundle on X the restriction of R to H is multiplicity free. In this case, the information on restrictions to H of all such irreducible representations of G is encoded in a monoid, which we call the restricted branching monoid. In this paper, we review the cases of spherical actions on flag varieties of simple groups for which the restricted branching monoids are known (this includes the case where H is a Levi subgroup of G) and compute the restricted branching monoids for all spherical actions on flag varieties that correspond to triples (G,H,X) satisfying one of the following two conditions: (1) G is simple and H is a symmetric subgroup of G; (2) G=SL_n.