## Natural Sciences

This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well.

The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces.

The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion.

Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework.

I show that Hurwitz numbers may be generated by certain correlation functions which appear in quantum chaos.

Neuroimaging studies are accumulating fast. A significant number of these studies use functional magnetic resonance imaging (fMRI) and report stereotactic brain coordinates. In the last 15 years meta-analytic software tools have been developed to identify over-arching data agreement across studies (e.g., http://www.brainmap.org/). Meta-analytic studies help establish statistical concordance and quantitatively summarize large amounts of evidence. To date there are 944 papers on fMRI meta-analyses, as indexed by Web of Science (WOS; 28/04/18). Before analyzing coordinates researchers have to compile, systematically review relevant literature and extract stereotaxic coordinates. One process of pooling information from the articles requires manual search of the articles and manual extraction the relevant data, such as coordinates (i.e., foci), contrasts (i.e., experiments) and types of analyses (whole-brain or region of interest). Another available approach is offered by software with pre-extracted information, such as Sleuth (http://brainmap.org/sleuth/), Neurosynth (http://neurosynth.org/) and other open-source programs. Critically, these methods do not have up to date datasets covering only a limited number of studies (e.g., 11406 papers in the Neurosynth and 3294 papers in the Sleuth 2.4 at the 28/04/2018), whereas, a WOS search for the keyword (“fMRI”) yields 61976 papers. To improve the quality of the manual search for area-based meta-analyses and increase the speed of the identification of the foci of interest, we developed CoordsFinder - standalone graphical interface software for addressing the challenge of processing multiple fMRI articles reporting data in coordinate space. The software is written using WPF (C# and XAML), based on .NET Framework 4.5.2, and it supports Microsoft Windows 7 operating system or higher. The CoordsFinder estimates the foci uploaded in the software manually and searches for it inside the specified folder, which contains the pdf files of the papers, as this is the most common file format for articles. Foci coordinates can be found both in tables and in a plain text of the articles. The foci file uploaded could contain MNI or TAL space coordinates, and the software can indicate each type. In the current version, CoordsFinder can explore only files stored at the user’s computer, and process 274 papers per minute for a typical computer. Practically this software provides a solution for automatically extracting coordinates from multiple articles for effectively organizing and further analyzing data already available in the literature.

The assembly process is extremely complex for aircraft and its management requires to address numerous optimization problems related to the assignment of tasks to workstations, staffing problem for each workstation and finally the assignment of tasks to operators at each workstation. This paper treats the latter problem dealing with the assignment of tasks to operators under ergonomic constraints. The problem of optimal tasks scheduling in aircraft assembly line is modelled as Resource-Constrained Project Scheduling Problem (RCPSP). The objective of this research is to assign tasks to operators and to find an optimal schedule of task processing under economic and ergonomic constraints. Two different models to solve this problem are presented and evaluated on an industrial case study.

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil- Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.- P. Serre).

This book highlights selected topics of standard and modern theory of accretion onto black holes and magnetized neutron stars. The structure of stationary standard discs and non-stationary viscous processes in accretion discs are discussed to the highest degree of accuracy analytic theory can provide, including relativistic effects in flat and warped discs around black holes. A special chapter is dedicated to a new theory of subsonic settling accretion onto a rotating magnetized neutron star. The book also describes supercritical accretion in quasars and its manifestation in lensing events. Several chapters cover the underlying physics of viscosity in astrophysical discs with some important aspects of turbulent viscosity generation. The book is aimed at specialists as well as graduate students interested in the field of theoretical astrophysics.

Workshop on Program Semantics, Specification and Verification: Theory and Applications is the leading event in Russia in the field of applying of the formal methods to software analysis. Proceedings of the ninth workshop dedicated to formalisms for program semantics, formal models and verification, programming and specification languages, algebraic and logical aspects of programming.

The present book gathers chapters from colleagues of A. Ezersky from Russia, especially those from Nizhny Novgorod Institute of Applied Physics of the Russian Academy of Science and from France, with whom he has been collaborating on experimental and theoretical developments. The book is subdivided into two parts. Part I contains eight chapters related to nonlinear water waves and Part II addresses in five chapters, patterns dynamics in nonequilibrium media. The contributions of Alexander B. Ezersky were valuable from both the experimental and the theoretical points of view. We thank all the authors for their contributions and the Springer Editor for having kindly accepted the edition of this book in memory of our colleague and friend, Prof. Alexander Borisovich Ezersky.

This book constitutes the refereed proceedings of the 14th International Workshop on Enterprise and Organizational Modeling and Simulation, EOMAS 2018, held in Tallinn, Estonia, in June 2018. The main focus of EOMAS is on the role, importance, and application of modeling and simulation within the extended organizational and enterprise context. The 11 full papers presented in this volume were carefully reviewed and selected from 22 submissions. They were organized in topical sections on conceptual modeling, enterprise engineering, and formal methods.

This state-of-the-art survey is dedicated to the memory of Emmanuil Markovich Braverman (1931-1977), a pioneer in developing the machine learning theory. The 12 revised full papers and 4 short papers included in this volume were presented at the conference "Braverman Readings in Machine Learning: Key Ideas from Inception to Current State" held in Boston, MA, USA, in April 2017, commemorating the 40th anniversary of Emmanuil Braverman's decease. The papers present an overview of some of Braverman's ideas and approaches. The collection is divided in three parts. The first part bridges the past and the present. Its main contents relate to the concept of kernel function and its application to signal and image analysis as well as clustering. The second part presents a set of extensions of Braverman's work to issues of current interest both in theory and applications of machine learning. The third part includes short essays by a friend, a student, and a colleague.

This book constitutes the refereed proceedings of the 7th Conference on Artificial Intelligence and Natural Language, AINL 2018, held in St. Petersburg, Russia, in October 2018. The 19 revised full papers were carefully reviewed and selected from 56 submissions and cover a wide range of topics, including morphology and word-level semantics, sentence and discourse representations, corpus linguistics, language resources, and social interaction analysis.

This book constitutes extended, revised and selected papers from the 7th International Conference on Optimization Problems and Their Applications, OPTA 2018, held in Omsk, Russia in July 2018. The 27 papers presented in this volume were carefully reviewed and selected from a total of 73 submissions. The papers are listed in thematic sections, namely location problems, scheduling and routing problems, optimization problems in data analysis, mathematical programming, game theory and economical applications, applied optimization problems and metaheuristics.

Information systems in different domains, such as healthcare, tourism, banking, government and others, record operational behavior in the form of event logs. The process mining discipline offers dozens of techniques to discover, analyze, and visualize processes running in information systems, based on their event logs. The representational bias (the language for processes representation) plays an important role in the process discovery. In this work BPMN (Business Process Model and Notation) language was chosen as a representational bias and as a starting point for the process discovery, analysis and enhancement. BPMN is a common process modeling language, widely used by consultants, managers, analysts, and software engineers in various application domains. This work aims to bridge the gap between process mining techniques and BPMN. Existing techniques are often limited to a single perspective, e.g., just the control flow, subprocesses, or just resources. The goal of this work is to fully support the BPMN specification in the context of process mining and suggest a unified and integrated approach allowing for the discovery, analysis and enhancement of hierarchical high-level BPMN models. The approach proposed in this thesis is supported by tools that enable users to analyze discovered processes in BPMN-compliant tools and even automate their executions, using existing BPMN engines.

Control of Discrete-Time Descriptor Systems takes an anisotropy-based approach to the explanation of random input disturbance with an information-theoretic representation. It describes the random input signal more precisely, and the anisotropic norm minimization included in the book enables readers to tune their controllers better through the mathematical methods provided. The book contains numerous examples of practical applications of descriptor systems in various fields, from robotics to economics, and presents an information-theoretic approach to the mathematical description of coloured noise. Anisotropy-based analysis and design for descriptor systems is supplied along with proofs of basic statements, which help readers to understand the algorithms proposed, and to undertake their own numerical simulations. This book serves as a source of ideas for academic researchers and postgraduate students working in the control of discrete-time systems. The control design procedures outlined are numerically effective and easily implementable in MATLAB®

This volume contains proceedings of the first Workshop on Data Analysis in Medicine held in May 2017 at the National Research University Higher School of Economics, Moscow. The volume contains one invited paper by Dr. Svetla Boytcheva, 6 regular contributions and 2 project proposals, carefully selected and reviewed by at least two reviewers from the international program commit- tee. The papers accepted for publication report on different aspects of analysis of medical data, among them treatment of data on particular diseases (Consoli- dated mathematical growth model of Breast Cancer CoMBreC, Artificial neural networks for prediction of final height in children with growth hormone deficiency), methods of data analysis (analysis of rare diseases, methods of machine learning and Big Data, subgroup discovery for treatment optimization), and instrumental tools (explanation-oriented methods of data analysis in medicine, information support features of the medical research process, modeling frame- work for medical data semantic transformations, radiology quality management and peer-review system). Organizers of the workshop would like to thank the reviewers for their careful work and all contributors and participants of the workshop.

The materials of The International Scientific – Practical Conference is presented below.

The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies.

It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

We study dual strong coupling description of integrability-preserving deformation of the O(N) sigma model. Dual theory is described by a coupled theory of Dirac fermions with four-fermion interaction and bosonic fields with exponential interactions. We claim that both theories share the same integrable structure and coincide as quantum field theories. We construct a solution of Ricci flow equation which behaves in the UV as a free theory perturbed by graviton operators and show that it coincides with the metric of the η-deformed O(N) sigma-model after T -duality transformation.

Together with the Darcy ltration model, another model of beta-radiation filtering is considered. This model is related to the heap paradox problem and to numeration theory. The phase transition from liquid to amorphous solid, which changes with temperature and preserves the numeration of particles, is described.

It is proved that the distributions of the analytic number theory coincide with the Bose–Einstein distribution. The transition of the boson branch of the decomposition of an integer number (with repeated terms) into the fermion branch (without repeated terms) is described in detail near a small activity. Analytic formulas for the energy of transition of the Bose gas to the Fermi gas are obtained in the three-dimensional case and the nine-dimensional case (diatomic molecule). The radius of the Bose gas “jump” in the transition to the Fermi gas is calculated. The relationship between the constructed concept and the thermodynamics is described based on the obtained experimental values of gas characteristics on critical lines.

In previous papers of the author it was shown that, depending on the hidden parameter, purely quantum problems behave like classical ones. In the present paper, it is shown that the Bose{Einstein and the Fermi{Dirac distributions, which until now were regarded as dealing with quantum particles, describe, for the appropriate values of the hidden parameter, the macroscopic thermodynamics of classical molecules.

It is well known that the formula for the Fermi distribution is obtained from the formula for the Bose distribution if the argument of the polylogarithm, the activity a, the energy, and the number of particles change sign. The paper deals with the behavior of the Bose–Einstein distribution as a → 0; in particular, the neighborhood of the point a = 0 is studied in great detail, and the expansion of both the Bose distribution and the Fermi distribution in powers of the parameter a is used. During the transition from the Bose distribution to the Fermi distribution, the principal term of the distribution for the specific energy undergoes a jump as a → 0. In this paper,we find the value of the parameter a, close to zero, but not equal to zero, for which the Bose distribution (in the statistical sense) becomes zero. This allows us to find the point a, distinct from zero, at which a jump of the specific energy occurs. Using the value of the number of particles on the caustic, we can obtain the jump of the total energy of the Bose system to the Fermi system. Near the value a = 0, the author uses Gentile statistics, whichmakes it possible to study the transition fromthe Bose statistics to the the Fermi statistics in great detail. Here an important role is played by the self-consistent equation obtained by the author earlier.

In the paper we consider the hidden parameter (measurement time t_meas) which combines quantum and classical theory. We show that the Bose–Einstein and Fermi–Dirac quantum distributions turn out to be the decisive factor in the construction of isotherms in classical thermodynamics and in the description of the phase transition “gas to liquid” and “liquid to solid”.

A relation between the jump of spin and the corresponding jump of energy is derived. This relation is used to determine the binding energy of the nucleus and the “entanglement” energy between two bosons. The latter is shown to be inversely proportional to the area in the two-dimensional case.

In view of the results obtained in this communication we can connect macroscopy and microscopy via an intermediate level of mesoobjects.

Rotation of a neutron in the coat of helium-5 as a classical particle for a relatively large value of the hidden parameter (measurement time) tmeas = h/Ems is considered. In consideration of the asymptotics as N → 0, equations for the mesoscopic energy Ems are given. A model for the helium nucleus is introduced and the values of the mesoscopic parameters Mms, and Ems for helium-4 are calculated.