Engineering and Technology

7th International School and Conference "Saint-Petersburg OPEN 2020" on Optoelectronics, Photonics, Engineering and Nanostructures was held on April 27 - 30, 2020. The Organizer of the conference is the Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences. Initially, the School and Conference was supposed to be held in full-time format at the Alferov Academic University (Saint-Petersburg, Russia), as it happened in the past. However, due to the restrictions imposed by the city authorities on holding mass events due to the threat of the spread of the COVID-19 infection, the conference committees decided to move the conference to the online format. The conference consisted of poster reports presented by the participants and online oral presentations by invited speakers. Posters and video reports of the participants were posted on the conference website. Invited speakers made their presentations online. During their speeches, participants could discuss and ask questions in the chat. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology.

The 10-Point Action Plan to catalyse a Circular Bioeconomy of Wellbeing is a call for collective and integrated action to global leaders, investors, companies, scientists, governments, nongovernmental and intergovernmental organisations, funding agencies and society at large to put the world on a sustainable path. The Plan is guided by new scientific insights and breakthrough technologies from a number of disciplines and sectors. It is articulated around six transformative action points (1–6) and four enabling action points (7–10), which mutually reinforce each other and need to be implemented in an integrated manner.

Contents Authors................................................................................................................................ 7 Acknowledgements............................................................................................................9 Executive summary ........................................................................................................... 11 1. Introduction....................................................................................................................13 Riccardo Valentini, Pekka Leskinen, Pieter Johannes Verkerk, Gert-Jan Nabuurs, George Safonov and Elena Kulikova 2. State of Russian forests and forestry............................................................................17 Dmitry Zamolodchikov, Anatoly Shvidenko, Sergey Bartalev, Elena Kulikova, Alexander Held, Riccardo Valentini and Marcus Lindner 2.1 Major characteristics of Russian forests..........................................................17 2.2 Natural forest disturbances.............................................................................. 21 2.3 Forest governance and use..............................................................................26 2.4 Ecosystem functions and services of Russia’s forests....................................28 2.5 Key challenges in forest resource management..............................................35 2.6 Key messages.................................................................................................... 38 3. Climate change in Russia – past, present and future................................................. 45 Riccardo Valentini, Dmitry Zamolodchikov, Christopher Reyer, Sergio Noce, Monia Santini and Marcus Lindner 3.1 Observed changes of Russian climate in recent decades.............................. 45 3.2 Climate change scenarios................................................................................48 3.3 Key messages.....................................................................................................51 4. Climate change and Russian forests: impacts, vulnerability and adaptation needs... 53 Christopher Reyer, Marcus Lindner, Dmitry Zamolodchikov, Anatoly Shvidenko, Martin Gutsch and Sergey Bartalev 4.1 Observed impacts of climate change...............................................................53 4.2 Projected impacts.............................................................................................56 4.3 Vulnerability assessment................................................................................. 61 4.4 Adaptation needs............................................................................................. 64 4.5 Key messages....................................................................................................67
5. Climate-Smart Forestry in Russia and potential climate change mitigation benefits.............................................................................................................................. 73 Bas Lerink, Mariana Hassegawa, Alexander Kryshen, Anton Kovalev, Eldar Kurbanov, Gert-Jan Nabuurs, Sergei Moshnikov and Pieter Johannes Verkerk 5.1 Introduction...................................................................................................... 73 5.2 Approach and general scenario assumptions.................................................74 5.3 Case study: Republic of Karelia.......................................................................78 5.4 Case study: Republic of Mari El.......................................................................84 5.5 Case study: Angara macro-district (Krasnoyarsk kray).................................. 91 5.6 Concluding remarks, discussion and implications....................................... 98 5.7 Key messages...................................................................................................101 6. The role of the bioeconomy in climate change mitigation in Russia..................... 105 Pekka Leskinen, Jo Van Brusselen, Mariana Hassegawa, Alexander Alekseev, Natalia Lukina, Olga Rakitova, George Safonov, Elena Kulikova and Mikhail Safonov 6.1 Introduction.................................................................................................... 105 6.2 The bioeconomy concept in Russia...............................................................106 6.3 The link between bioeconomy and climate change mitigation.................. 107 6.4 State of Russian forest industry and potential for bioeconomy................... 111 6.5 Sectoral development and outlook................................................................. 113 6.6 Summary and conclusions: Opportunities and challenges for a bioeconomy in Russia.....................................................................................123 6.7 Key messages...................................................................................................125 7. Conclusions.................................................................................................................. 131 Pekka Leskinen, Jo Van Brusselen, Marcus Lindner, Gert-Jan Nabuurs, Pieter Johannes Verkerk, Natalia Lukina, Sergey Bartalev and Elena Kulikova 7.1 Forest resources............................................................................................... 131 7.2 Climate change impacts, adaptation and mitigation....................................132 7.3 Forest management........................................................................................ 133 7.4 Enabling environment for a bioeconomy......................................................134 7.5 Holistic view.................................................................................................... 135 7.6 Key messages and next steps ........................................................................ 136

The economies of Central and Eastern Europe, Caucasus, and Central Asia (CEECCA) grew at a varying pace in 2000–2019, with an average rate of 6.5 percent per annum (GDP, PPP). This economic progress was accompanied by some positive changes in environmental performance, but not in all areas and not in all countries in the region.

Proceedings of the SPIE PHOTONICS EUROPE Conference on Biophotonics in Point-of-Care, 6-10 April 2020, Online Only, France. Proc. SPIE volume 11361

The main target of the IEEE East-West Design & Test Symposium (EWDTS) is to exchange experiences between scientists and technologies from Eastern and Western Europe, as well as North America and other parts of the world, in the field of design, design automation and test of electronic circuits and systems. The symposium is typically held in countries around East Europe, the Black Sea, the Balkans and Central Asia region. We cordially invite you to participate and submit your contributions to EWDTS 2020 which covers (but is not limited to) the following topics. • Analog, Mixed-Signal and RF Test • ATPG and High-Level TPG • Automotive Reliability & Test • Built-In Self Test • Debug and Diagnosis • Defect/Fault Tolerance and Reliability • Design Verification and Validation • EDA Tools for Design and Test • Embedded Software • Failure Analysis & Fault Modeling • Functional Safely • High-level Synthesis • High-Performance Networks and Systems on a Chip • Internet of Things Design & Test • Low-power Design • Memory and Processor Test • Modeling & Fault Simulation • Network-on-Chip Design & Test • Flexible and Printed Electronics • Applied Electronics Automotive/Mechatronics • Algorithms • Object-Oriented System Specification and Design • On-Line Testing • Power Issues in Design & Test • Real Time Embedded Systems • Reliability of Digital Systems • Scan-Based Techniques • Self-Repair and Reconfigurable Architectures • Signal and Information Processing in Radio and Communication Engineering • System Level Modeling, Simulation & Test Generation • System-in-Package and 3D Design & Test • Using UML for Embedded System Specification • Optical signals in communication and Information Processing • CAD and EDA Tools, Methods and Algorithms • Hardware Security and Design for Security • Logic, Schematic and System Synthesis • Place and Route • Thermal and Electrostatic Analysis of SoCs • Wireless and RFID Systems Synthesis • Sensors and Transducers • Medical Electronics • Design of Integrated Passive Components

The materials of The International Scientific – Practical Conference is presented below. The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies. It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

This book presents the main findings of a study on school learning environments and student outcomes, which the World Bank conducted in 2019 in three regions of the Russian Federation. Using data collected through the OECD School User Survey and the pilot “Trends in Mathematics and Science Study” (TIMSS), the book analyzes how a school’s infrastructure and learning environment may affect the progress and success of students in math and science. It also delves into teaching practices, analyzing their impact on learning and highlighting the important nexus between learning environments and teaching methods. The book concludes by recommending areas in which focused attention by educational authorities could improve educational policy and help maintain high-quality learning environments. The book will be useful for educators, school principals, architects, and policy makers who are involved in school infrastructure projects and are interested in increasing their knowledge of school design planning.

Water Conservation and Wastewater Treatment in BRICS Nations: Technologies, Challenges, Strategies, and Policies addresses issues of water resources—including combined sewer system overflows—assessing effects on water quality standards and protecting surface and sub-surface potable water from the intrusion of saline water due to sea level rise. The book's chapters incorporate both policies and practical aspects and serve as baseline information for future adaption plans in BRICS nations. Users will find detailed important information that is ideal for policymakers, water management specialists, BRICS nation undergraduate or university students, teachers and researchers.

A GUIDE TO THE FUNDAMENTAL THEORY AND PRACTICE OF OPTICAL COMMUNICATION Fiber Optic and Atmospheric Optical Communication offers a much needed guide to characterizing and overcoming the drawbacks associated with optical communication links that suffer from various types of fading when optical signals with information traverse these wireless (atmospheric) or wired (fiber optic) channels. The authors--noted experts on the topic--present material that aids in predicting the capacity, data rate, spectral efficiency, and bit-error-rate associated with a channel that experiences fading. They review modulation techniques and methods of coding and decoding that are useful when implementing communications systems. The book also discusses how to model the channels, including treating distortion due to the various fading phenomena. Light waves and their similarity to radio waves are explored, and the way light propagates through the atmosphere, through materials, and through the boundary between two materials is explained. This important book: Characterizes principal optical sources and detectors, including descriptions of their advantages and disadvantages, to show how to design systems from start to finish Provides a new method of predicting and dealing with the dispersive properties of fiber optic cables and other optical guiding structures in order to increase data stream capacity Highlights effects of material and multimode (multi-ray) dispersion during propagation of optical signals with data through fiber optic channels Presents modulation techniques and methods of coding and decoding that are useful when implementing communications systems Written for professionals dealing with optical and electro-optical communications, Fiber Optic and Atmospheric Optical Communication explores the theory and practice of optical communication both when the optical signal is propagating through the atmosphere and when it is propagating through an optical fiber.

Understanding the connections between climate change policies and sustainable development is critically important for the implementation of the Paris Agreement and the United Nations Sustainable Development Goals (SDGs). Well-designed climate mitigation policy can lead to significant co-benefits for a range of development priorities, including enhanced energy security and safety and reduced indoor air pollution; however, if not properly managed, mitigation can also lead to trade-offs. Maximizing synergies and avoiding trade-offs thus requires an integrated strategy based on a new generation of technological and socio-economic pathways that includes climate-resilient adaptation strategies. Over the last four years, CD-LINKS brought together an international team of interdisciplinary researchers with both global and national expertise. Funded by the Horizon 2020 programme of the European Union, the project applied cutting-edge scientific tools and models to explore the linkages between climate policies and sustainable development. Major achievements of the project include the development of globally consistent national low-carbon development pathways, and the formation of a research network and capacity building platform to leverage knowledge exchange among institutions. The project also improved understanding of the linkages between climate change policies and multiple sustainable development objectives and greatly enhanced the existing evidence base on policy effectiveness. A particular asset of the project are the insights related to policy designs that adequately account for mitigation trade-offs across sectors, actors, and objectives. We invite you to learn more about this ground-breaking work in the pages that follow.

Cancer cells require exogenous methionine for survival and therefore methionine restriction is a promising avenue for treatment. The basis for methionine dependence in cancer cells is still not entirely clear. While the lack of the methionine salvage enzyme methylthioadenosine phosphorylase (MTAP) is associated with methionine auxotrophy in cancer cells, there are other causes for tumors to require exogenous methionine. Restricting methionine by diet or by enzyme depletion, alone or in combination with certain chemotherapeutics, is a promising antitumor strategy.

The paper provides findings of the research work and scientific discussions under the “Global Sustainability Strategy Forum” (GSSF) that aims to develop evidence-informed judgments on challenges and solutions. It views attaining sustainability as a set of closely-coupled societal and environmental challenges and opportunities that require integration of multiple disciplines, new research methods, and new knowledge sources with sensitivity to regional and cultural diversities. The project is designed to produce innovative insights and strategies to support effective governance of transitions to sustainability of our complex global social-ecological system within its inherent resource limitations, and to develop sustainable lifestyles that are practical and appealing in the different regions and cultures of the world.

The global climate change is one of the most dangerous threats to human society in the 21st Century. The dramatic losses have already been observed, and the risks are rising over time. CEECCA region experiences many negative impacts of global warming, which is faster and stronger than the world average. Numerous adaptation and resilience measures are required to protect people, but regional governments often underestimate and ignore the social implications of climate policies.This paper explores what are the priority challenges for CEECCA countries and how to address them effectively.

The IEEE Russia North West Section and the European Centre for Quality (Moscow) are pleased to present the Proceedings of the 2019 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT&QM&IS). The Conference was held in Sochy, Russia on September 23–2, 2019. The Organizing Committee believes and trusts that we have been true to the spirit of collegiality that members of IEEE value whilst also maintaining a high standard as we reviewed papers, provided feedback and now present a strong body of published work in this collection of proceedings. The themes for this year's conference were chosen as a means of bringing together academics and industrialists, engineering and management research, manufacturing and teaching, and providing a basis for discussion of issues arising across the engineering and business community in relation to Quality Management, Information Technologies, Transport and Information Security aimed at developing engineers and managers for the future. The goal of these proceedings has been to present high quality work in an accessible medium, for use in a wide community of academics, engineers, managers, and industrialists, the community united by the key words Science, Education, Quality, Innovations in engineering. To achieve this aim, all abstracts were blind reviewed, and full papers submitted for publication in this journal of proceedings were subjected to a rigorous reviewing process.

The goal of this International Roadmap for Devices and Systems (IRDS) chapter is to survey, catalog, and assess the status of technologies in the areas of cryogenic electronics and quantum information processing. Application drivers are identified for sufficiently developed technologies and application needs are mapped as a function of time against projected capabilities to identify challenges requiring research and development effort. Cryogenic electronics (also referred to as low-temperature electronics or cold electronics) is defined by operation at cryogenic temperatures (below −150 °C or 123.15 K) and includes devices and circuits made from a variety of materials including insulators, conductors, semiconductors, superconductors, or topological materials. Existing and emerging applications are driving development of novel cryogenic electronic technologies. Information processing refers to the input, transmission, storage, manipulation or processing, and output of data. Information processing systems to accomplish a specific function, in general, require several different interactive layers of technology. A top-down list of these layers begins with the required application or system function, leading to system architecture, micro- or nano-architecture, circuits, devices, and materials. A fundamental unit of information (e.g., a bit) is represented by a computational state variable, for example, the position of a bead in the ancient abacus calculator or the voltage (or charge) state of a node capacitance in CMOS logic. A binary computational state variable serves as the foundation for von Neumann computational system architectures that dominated conventional computing. Quantum information processing is different in that it uses qubits, two-state quantum-mechanical systems that can be in coherent superpositions of both states at the same time, which can have computational advantages. Measurement of a qubit in a given basis causes it to collapse to one of the basis states. Technology categories covered in this report include: • Superconductor electronics (SCE) • Cryogenic semiconductor electronics (Cryo-Semi) • Quantum information processing (QIP)

Tensile strain is a promising tool for the creation and manipulation of magnetic solitonic textures in chiral helimagnets via tunable control of magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Here, by using in situ resonant small-angle x-ray scattering, we demonstrate that skyrmion and chiral soliton lattices can be achieved as metastable states in FeGe lamella as distinct states under tensile strain and magnetic fields in various orientations with respect to the deformation. The small-angle scattering data can be well accounted for in the framework of the analytical model for a soliton lattice. By using the experimental results and analytical theory, the unwinding of metastable skyrmions in a perpendicular magnetic field as shown by a small-angle scattering experiment was analyzed via micromagnetic simulation.
Disorder-induced broadening of optical vibrational eigenmodes in nanoparticles of nonpolar crystals is studied numerically. The methods previously used to treat the phonons in defectless particles are adjusted for numerical evaluation of the disordered problem. Imperfections in the forms of Gaussian and binary disorders as well as surface irregularities are investigated thoroughly in a wide range of impurity concentrations and disorder strengths. For dilute and weak pointlike impurities the regimes of separated and overlapped phonon levels are obtained and the behavior of the linewidth predicted analytically is confirmed; the crossover scale falls into the actual range of several nanometers. These notions survive for strong dilute impurities, as well. Regimes and crossovers predicted by the analytical approach are checked and identified, and the minor discrepancies are discussed. We mention a few of them: slower than in analytics increasing of the linewidth with the phonon quantum number for weak disorder and only a qualitative agreement between analytics and numerics for the resonant broadening in strong dilute disorder. The novel phenomena discovered numerically are the “mesoscopic smearing” of the distribution function in the ensemble of identical disordered particles, an inflection of the linewidth dependence on the impurity concentration for light “dense” binary impurities, and a position-dependent capability of a strong impurity to catch the phonon. It is shown that surface irregularities contribute to the phonon linewidth less than the volume disorder, and their rates reveal faster decay with increasing of the particle size. It is argued that the results of the present research are applicable also for quantum dots and short quantum wires.
Microscopic description of Raman spectra in nanopowders of nonpolar crystals is accomplished by developing the theory of disorder-induced broadening of optical vibrational eigenmodes. Analytical treatment of this problem is performed, and line shape and width are determined as functions of phonon quantum numbers, nanoparticle shape, size, and the strength of disorder. The results are found to be strongly dependent on whether the broadened line is separated from or overlaps other lines of the spectrum. Three models of disorder, i.e., weak pointlike impurities, weak smooth random potential, and strong rare impurities, are investigated in detail. The possibility of forming the phonon-impurity bound state is also studied.
Based on the quantum-mechanical theory of electron transfer (ET), the parameter was proposed to describe the electrochemical activity of doped graphenes. The parameter is calculated using the density of states (DOS), local density of state (LDOS) values, which are in turn obtained from the density functional theory (DFT) calculations and reorganization energies of redox system. DOS describes the contribution of the electronic structure of the electrode to the ET process, while the LDOS describes the electron density contribution of the atoms at some distance from the surface electrode. Reorganization energy corresponds to the restriction of solvation shell and bonds in redox system due to ET process. The overall contribution of these parameters enables a comprehensive assessment of the activity that is acceptable for semi-quantitative analysis. Calculations have shown that the proposed activity parameter correlates well with the calculated ET rate constants. Theoretical study of the oxygen reduction reaction (ORR) on graphene doped with p-elements in the framework of quantum-mechanical theory showed that ET activity decreases in the series P-Gr > S-Gr > N-Gr > B-Gr > O-Gr > Gr. According to our estimates, the mixed or adiabatic regime of ET is probably observed on doped graphenes for all steps of ORR. Using N- and B-graphenes as an example and activity parameter, the influence of the applied potential and the atomic fraction of the doped element on the ET activity are studied.
This paper discusses the development in the E-pulse technique, also known as the method of extinction pulse, which is an aspect-independent approach to ultra-wideband radar target discrimination in which each target can be characterized by the set of its natural resonances. It is shown that subsectional polynomial E-pulse can be constructed without composing a linear problem and further solution of the underlying matrix equation set. The key concept of the proposed algorithm consists of several steps, where the first one is building a skeleton E-pulse of an especial waveform, the second step is its extension, and the final step is the series of integration. The polynomial structure of the pulse allows above listed steps to be performed over the coefficients of basic functions rather than the functions themselves. As a result, the proposed solution could perform up to a thousand times faster than one based on direct matrix solution. It also provides the coefficients of the polynomial E-pulse sections without solving a linear problem associated with ill-conditioned sparse matrix in its left-hand side. The E-pulse signals synthesized by means of the fast algorithm are proven to be exactly the same as one synthesized by the direct approach. The numerical example given in the paper exposures the main features of the E-pulse technique. The discrimination scheme where two aircraft scaled model targets are involved is simulated. It was shown that the E-pulse discrimination number provides the effective tool for measuring the energy of the late-time part of the convolution as a measure of the difference of two pole sets belonging to the responses under comparison.
In this work, we experimentally studied silicon nitride Mach-Zehnder interferometer (MZI) with two directional couplers and 400 ps optical delay line for telecom wavelength 1550 nm. We achieved the extinction ratio in a range of 0.76-13.86 dB and system coupling losses of 28-44 dB, depending on the parameters of directional couplers. The developed interferometer is promising for the use in a compact random number generator for the needs of a fully integrated quantum cryptography system, where compact design, as well as high generation speed, are needed.
In this work we describe phase modulators for several Mach-Zehnder interferometers (MZI) on silicon nitride platform for telecomm wavelength (1550 nm). We obtained current-voltage and phase-voltage curves for these modulators. MZI are needed for experimental realisation of various quantum receivers that can distinguish weak coherent states of light with extremely low error. Thermo-optical (TO) modulation is ensured by microheaters on one of the arms of MZI, which enables the change of the refractive index of the material with temperature. This approach allows to apply the necessary voltage to the golden microheaters to obtain the required phase change. For the on-chip microheaters we demonstrate the dependence of the phase shift on the voltage applied to our on-chip microheaters.
In this paper, we fabricate and experimentally study focusing grating couplers for lithium niobate on an insulator photonic platform. The transmittance of a waveguide equipped with in- and out-couplers with respect to the grating period is measured with and without silicon dioxide cladding applied. Our results show the influence of silicon dioxide cladding on the efficiency and the central wavelength of grating couplers and can be used to improve grating coupling efficiency. Our study is supported by numerical simulations.
For a family of optimal two-dimensional circulant networks with an analytical description, two new improved versions of the shortest path search algorithm with a constant complexity estimate are obtained. A simple, based on the geometric model of circulant graphs, proof of the formulas used for the shortest path search algorithm is given. Pair exchange algorithms are presented, and their estimates are given for networks-on-chip (NoCs) with a topology in the form of the considered graphs. New versions of the algorithm improve the previously proposed shortest path search algorithm for optimal generalized Petersen graphs with an analytical description. The new proposed algorithm is a promising solution for the use in NoCs which was confirmed by an experimental study while synthesizing NoC communication subsystems and comparing the consumed hardware resources with those when other previously developed routing algorithms.