### ?

## On families of lagrangian tori on hyperkaehler manifolds

Cornell University library
,
2013.

Amerik E., Campana F.

In press

This is a note on Beauville's problem (solved by Greb, Lehn and Rollenske in the non-algebraic case and by Hwang and Weiss in general) whether a lagrangian torus on an irreducible holomorphic symplectic manifold is a fiber of a lagrangian fibration. We provide a different, very short solution in the non-algebraic case and make some observations suggesting a different approach in the algebraic case.

Keywords: algebraic variety

Popov V., / Bielefeld University. Series LAGRS "Linear Algebraic Groups and Related Structures". 2012. No. 485.

We construct counterexamples to the rationality conjecture regar-ding the new version of the Makar-Limanov invariant introduced in A. Liendo, Ga-actions of fiber type on affine T-varieties, J. Algebra 324 (2010), 3653–3665. ...

Added: January 9, 2013

Попов В. Л., Известия РАН. Серия математическая 2019 Т. 84 № 4 С. 194-225

The rst group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: July 31, 2019

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2021. No. 2106.02072.

For each integer n>0, we construct a series of irreducible algebraic varieties X, for which the automorphism group Aut(X) contains as a subgroup the automorphism group Aut(F_n) of a free group F_n of rank n. For n > 1, such groups Aut(X) are nonamenable, and for n > 2, they are nonlinear and contain the ...

Added: June 7, 2021

Vladimir L. Popov, Journal of the Ramanujan Mathematical Society 2013 Vol. 28A No. Special Issue-2013 dedicated to C.S.Seshadri's 80th birthday P. 409-415

We construct counterexamples to the rationality conjecture regarding the new version of the Makar-Limanov invariant formulated in A. Liendo, G_a-actions of fiber type on affine T-varieties, J. Algebra 324 (2010), 3653--3665. ...

Added: June 20, 2013

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2023. No. 2302.13364.

We prove that for every positive integer d, there are no nonzero regular differential d-forms on every smooth irreducible projective algebraic variety birationally isomorphic to the variety of flexes of plane cubics. ...

Added: February 28, 2023

Arzhantsev I., Liendo A., Stasyuk T., Journal of Pure and Applied Algebra 2021 Vol. 225 No. 2 P. 106499

Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper ...

Added: July 29, 2020

Vladimir L. Popov, Transformation Groups 2014 Vol. 19 No. 2 P. 549-568

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: March 17, 2014

Tokyo : American Mathematical Society, World Scientific, 2017

Preface
The workshop “Algebraic Varieties and Automorphism Groups” was held at the Research Institute of Mathematical Sciences (RIMS), Kyoto University during July 7-11, 2014. There were over eighty participants including twenty people from overseas Canada, France, Germany, India, Korea, Poland, Russia, Singapore, Switzerland, and USA.
Recently, there have been remarkable developments in algebraic geometry and related fields, ...

Added: July 12, 2017

Vladimir L. Popov, European Journal of Mathematics 2016 Vol. 2 No. 1 P. 283-290

According to the classical theorem, every algebraic variety
endowed with a nontrivial rational action of a connected linear algebraic
group is birationally isomorphic to a product of another algebraic variety
and the projective space of a positive dimension. We show that the classical proof of this theorem
actually works only in characteristic 0 and we give a characteristic free
proof ...

Added: February 2, 2016

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2022. No. 2207.08912.

Considering a certain construction of algebraic varieties X endowed with an algebraic action of the group Aut(Fn), n < ∞, we obtain a criterion for the faithfulness of this action. It gives an infinite family F of X’s such that Aut(Fn) embeds intoAut(X). For n > 3, this implies nonlinearity, and for n > 2, ...

Added: July 20, 2022

Zürich : European Mathematical Society Publishing house, 2010

Fascinating and surprising developments are taking place in the classification of algebraic varieties. Work of Hacon and McKernan and many others is causing a wave of breakthroughs in the Minimal Model Program: we now know that for a smooth projective variety the canonical ring is finitely generated. These new results and methods are reshaping the ...

Added: October 11, 2013

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2015. No. 1502.02167.

According to the classical theorem, every irreducible algebraic variety endowed with a nontrivial rational action of a connected linear algebraic group is birationally isomorphic to a product of another algebraic variety and the s-dimensional projectice space with positive s. We show that the classical proof of this theorem actually works only in characteristic 0 and ...

Added: February 10, 2015

Popov V. L., Doklady Mathematics 2018 Vol. 98 No. 2 P. 413-415

The compressibility of certain types of finite groups of birational automorphisms of algebraic varieties is established. ...

Added: November 13, 2018

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2021. No. 2105.12861.

Starting with exploration of the possibility to present the underlying variety of an affine algebraic group in the form of a product of some algebraic varieties, we then explore the naturally arising problem as to what extent the group variety of an algebraic group determines its group structure. ...

Added: May 28, 2021

V. L. Popov, Izvestiya: Mathematics, England 2019 Vol. 83 No. 4 P. 830-859

The first group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: September 29, 2019

Arzhantsev I., Celik D., Hausen J., Journal of Algebra 2013 Vol. 387 P. 87-98

Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result, which, for example, settles the case of afinitely generated algebra of invariants. ...

Added: November 13, 2013

Borzykh D., ЛЕНАНД, 2021

Книга представляет собой экспресс-курс по теории вероятностей в контексте начального курса эконометрики. В курсе в максимально доступной форме изложен тот минимум, который необходим для осознанного изучения начального курса эконометрики. Данная книга может не только помочь ликвидировать пробелы в знаниях по теории вероятностей, но и позволить в первом приближении выучить предмет «с нуля». При этом, благодаря доступности изложения и небольшому объему книги, ...

Added: February 20, 2021

Kotelnikova M. V., Aistov A., Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Социальные науки 2019 Т. 55 № 3 С. 183-189

The article describes a method that allows to improve the content of disciplines of the mathematical cycle by dividing them into invariant (general) and variable parts. The invariants were identified for such disciplines as «Linear algebra», «Mathematical analysis», «Probability theory and mathematical statistics» delivered to Bachelors program students of economics at several universities. Based on ...

Added: January 28, 2020

В. Л. Попов, Математические заметки 2017 Т. 102 № 1 С. 72-80

Мы доказываем, что аффинно-треугольные подгруппы являются борелевскими подгруппами групп Кремоны. ...

Added: May 3, 2017

Красноярск : ИВМ СО РАН, 2013

Труды Пятой Международной конференции «Системный анализ и информационные технологии» САИТ-2013 (19–25 сентября 2013 г., г.Красноярск, Россия): ...

Added: November 18, 2013

Min Namkung, Younghun K., Scientific Reports 2018 Vol. 8 No. 1 P. 16915-1-16915-18

Sequential state discrimination is a strategy for quantum state discrimination of a sender’s quantum
states when N receivers are separately located. In this report, we propose optical designs that can
perform sequential state discrimination of two coherent states. For this purpose, we consider not
only binary phase-shifting-key (BPSK) signals but also general coherent states, with arbitrary prior
probabilities. Since ...

Added: November 16, 2020

Grines V., Gurevich E., Pochinka O., Russian Mathematical Surveys 2017 Vol. 71 No. 6 P. 1146-1148

In the paper a Palis problem on finding sufficient conditions on embedding of Morse-Smale diffeomorphisms in topological flow is discussed. ...

Added: May 17, 2017

Okounkov A., Aganagic M., Moscow Mathematical Journal 2017 Vol. 17 No. 4 P. 565-600

We associate an explicit equivalent descendent insertion to any relative insertion in quantum K-theory of Nakajima varieties.
This also serves as an explicit formula for off-shell Bethe eigenfunctions for general quantum loop algebras associated to quivers and gives the general integral solution to the corresponding quantum Knizhnik Zamolodchikov and dynamical q-difference equations. ...

Added: October 25, 2018

Danilov B.R., Moscow University Computational Mathematics and Cybernetics 2013 Vol. 37 No. 4 P. 180-188

The article investigates a model of delays in a network of functional elements (a gate network) in an arbitrary finite complete basis B, where basis elements delays are arbitrary positive real numbers that are specified for each input and each set of boolean variables supplied on the other inputs. Asymptotic bounds of the form τ ...

Added: December 2, 2019