### ?

## Semisimple flat F-manifolds in higher genus

math.
arXiv.
Cornell University
,
2020.

In this paper, we generalize the Givental theory for Frobenius manifolds and cohomological field theories to flat F-manifolds and F-cohomological field theories. In particular, we define a notion of Givental cone for flat F-manifolds, and we provide a generalization of the Givental group as a matrix loop group acting on them. We show that this action is transitive on semisimple flat F-manifolds. We then extend this action to F-cohomological field theories in all genera. We show that, given a semisimple flat F-manifold and a Givental group element connecting it to the constant flat F-manifold at its origin, one can construct a family of F-CohFTs in all genera, parameterized by a vector in the associative algebra at the origin, whose genus~$0$ part is the given flat F-manifold. If the flat F-manifold is homogeneous, then the associated family of F-CohFTs contains a subfamily of homogeneous F-CohFTs. However, unlike in the case of Frobenius manifolds and CohFTs, these homogeneous F-CohFTs can have different conformal dimensions, which are determined by the properties of a certain metric associated to the flat F-manifold.

Letters in Mathematical Physics 2016 Vol. 106 No. 3 P. 289-317

In this paper we define a quantization of the Double Ramification Hierarchies using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with ...

Added: September 28, 2020

Communications in Mathematical Physics 2015 Vol. 336 No. 3 P. 1085-1107

It this paper we present a new construction of a hamiltonian hierarchy associated to a cohomological field theory. We conjecture that in the semisimple case our hierarchy is related to the Dubrovin-Zhang hierarchy by a Miura transformation and check it in several examples. ...

Added: September 29, 2020

Communications in Mathematical Physics 2016 Vol. 342 No. 2 P. 533-568

In this paper we study various properties of the double ramification hierarchy, an integrable hierarchy of hamiltonian PDEs introduced by the first author using intersection theory of the double ramification cycle in the moduli space of stable curves. In particular, we prove a recursion formula that recovers the full hierarchy starting from just one of the ...

Added: September 28, 2020

American Journal of Mathematics 2015 Vol. 137 No. 3 P. 699-737

DR-cycles are certain cycles on the moduli space of curves. Intuitively, they parametrize curves that allow a map to the complex projective line with some specified ramification profile over two points. They are known to be tautological classes, but in general there is no known expression in terms of standard tautological classes. In this paper, ...

Added: September 30, 2020

Успехи математических наук 2017 Т. 72 № 5(437) С. 63-112

Обзор посвящён обширному классу систем уравнений в частных производных, которые, с одной стороны, возникают в классических задачах математической физики, а с другой стороны, являются эффективным инструментом для описания перечислительных инвариантов в алгебраической геометрии. Особое внимание уделено новым подходам к этим системам, в частности подходу, предложенному в недавней работе автора. ...

Added: September 27, 2020

Advances in Mathematics 2011 Vol. 228 P. 22-42

We give a new proof of Faber's intersection number conjecture concerning the top intersections in the tautological ring of the moduli space of curves $\M_g$. The proof is based on a very straightforward geometric and combinatorial computation with double ramification cycles. ...

Added: October 1, 2020

Pure and Applied Mathematics Quarterly 2015 Vol. 11 No. 4 P. 591-631

The relations in the tautological ring of the moduli space $M_g$ of nonsingular curves conjectured by Faber-Zagier in 2000 and extended to the moduli space $\overline{M}_{g,n}$ of stable curves by Pixton in 2012 are based upon two hypergeometric series $A$ and $B$. The question of the geometric origins of these series has been solved in at least two ways (via the Frobenius ...

Added: September 28, 2020

International Mathematics Research Notices 2018 No. 22 P. 6817-6843

We consider families of curve-to-curve maps that have no singularities except those of genus 0 stable maps and that satisfy a versality condition at each singularity. We provide a universal expression for the cohomology class Poincaré dual to the locus of any given singularity. Our expressions hold for any family of curve-to-curve maps satisfying the ...

Added: July 10, 2017

Mathematical Research Letters 2016 Vol. 23 No. 3 P. 675-683

In a previous paper we proved that after a simple transformation the generating series of the linear Hodge integrals on the moduli space of stable curves satisfies the hierarchy of the Intermediate Long Wave equation. In this paper we present a much shorter proof of this fact. Our new proof is based on an explicit ...

Added: September 28, 2020

Communications in Mathematical Physics 2018 Vol. 363 No. 1 P. 191-260

In this paper we continue the study of the double ramification hierarchy introduced by the first author. After showing that the DR hierarchy satisfies tau-symmetry we define its partition function as the (logarithm of the) tau-function of the string solution and show that it satisfies various properties (string, dilaton and divisor equations plus some important degree ...

Added: September 27, 2020

Journal of the European Mathematical Society 2016 Vol. 18 No. 12 P. 2925-2951

We describe the structure of the top tautological group in the cohomology of the moduli space of smooth genus g curves with n marked points. ...

Added: September 27, 2020

Journal of Differential Geometry 2012 Vol. 92 No. 1 P. 153-185

We define a hierarchy of Hamiltonian PDEs associated to an arbitrary tau-function in the semi-simple orbit of the Givental group action on genus expansions of Frobenius manifolds. We prove that the equations, the Hamiltonians, and the bracket are weighted-homogeneous polynomials in the derivatives of the dependent variables with respect to the space variable. In the particular ...

Added: September 30, 2020

Communications in Number Theory and Physics 2015 Vol. 9 No. 2 P. 239-271

In this paper we prove that the generating series of the Hodge integrals over the moduli space of stable curves is a solution of a certain deformation of the KdV hierarchy. This hierarchy is constructed in the framework of the Dubrovin-Zhang theory of the hierarchies of the topological type. It occurs that our deformation of ...

Added: September 29, 2020

Journal of Geometry and Physics 2012 Vol. 62 No. 7 P. 1639-1651

In our recent paper we proved the polynomiality of a Poisson bracket for a class of infinite-dimensional Hamiltonian systems of PDE's associated to semi-simple Frobenius structures. In the conformal (homogeneous) case, these systems are exactly the hierarchies of Dubrovin-Zhang, and the bracket is the first Poisson structure of their hierarchy. Our approach was based on a very ...

Added: September 30, 2020

Moscow Mathematical Journal 2017 Vol. 17 No. 1 P. 1-13

In this paper, using the formula for the integrals of the psi-classes over the double ramification cycles found by S. Shadrin, L. Spitz, D. Zvonkine and the author, we derive a new explicit formula for the n-point function of the intersection numbers on the moduli space of curves. ...

Added: September 27, 2020

Journal of the Institute of Mathematics of Jussieu 2019 Vol. 18 No. 3 P. 449-497

We apply the spectral curve topological recursion to Dubrovin's universal Landau-Ginzburg superpotential associated to a semi-simple point of any conformal Frobenius manifold. We show that under some conditions the expansion of the correlation differentials reproduces the cohomological field theory associated with the same point of the initial Frobenius manifold. ...

Added: December 22, 2016

Feynman transform and cohomological field theories / . 2018. No. 01804639.

The construction from [B06], see also [B10], of cohomology classes of compactified moduli spaces of Riemann surfaces, starting from a derivation of associative whose square is nonzero, is generalized to the case of A-infinity algebras. It is shown that the constructed cohomology classes define Cohomological Field Theory. ...

Added: October 25, 2018

Letters in Mathematical Physics 2018 Vol. 108 No. 1 P. 161-183

We introduce the SL(2, C) group action on the partition function of the Cohomological field theory via the certain Givental's action. Restricted to the small phase space we describe the action via the explicit formulae on the CohFT genus g potential. We prove that applied to the total ancestor potential of the simple elliptic singularity ...

Added: February 26, 2019

Letters in Mathematical Physics 2021 Vol. 111 Article 13

We propose a remarkably simple and explicit conjectural formula for a bihamiltonian structure of the double ramification hierarchy corresponding to an arbitrary homogeneous cohomological field theory. Various checks are presented to support the conjecture. ...

Added: October 29, 2021

Advances in Mathematics 2021 Vol. 386 No. 6 Article 107794

In this paper we construct a family of cohomology classes on the moduli space of stable curves generalizing Witten's r-spin classes. They are parameterized by a phase space which has one extra dimension and in genus 0 they correspond to the extended r-spin classes appearing in the computation of intersection numbers on the moduli space of open Riemann surfaces, while ...

Added: October 29, 2021

Real moduli space of stable rational curves revisted / Cornell University. Серия "Working papers by Cornell University". 2019. № 1905.04499.

We give a description of the operad formed by the real locus of the moduli space of stable genus zero curves with marked points $\overline{{\mathcal M}_{0,{n+1}}}({\mathbb R})$ in terms of a homotopy quotient of an operad of associative algebras. We use this model to find different Hopf models of the algebraic operad of Chains and ...

Added: October 30, 2019

International Mathematics Research Notices 2021 Vol. 2021

In this paper, we study relations between various natural structures on F-manifolds. In particular, given an arbitrary Riemannian F-manifold, we present a construction of a canonical flat F-manifold associated to it. We also describe a construction of a canonical homogeneous Riemannian F-manifold associated to an arbitrary exact homogeneous flat pencil of metrics satisfying a certain ...

Added: October 29, 2021

Working papers by Cornell University. Series math "arxiv.org" 2016

Added: February 26, 2019

Communications in Mathematical Physics 2021 Vol. 388 P. 291-328

We define the double ramification hierarchy associated to an F-cohomological field theory and use this construction to prove that the principal hierarchy of any semisimple (homogeneous) flat F-manifold possesses a (homogeneous) integrable dispersive deformation at all orders in the dispersion parameter. The proof is based on the reconstruction of an F-CohFT starting from a semisimple ...

Added: October 29, 2021