### Working paper

## Locality in the Fukaya category of a hyperkähler manifold

We show that all strongly non-degenerate trigonometric solutions of the associative Yang–Baxter equation (AYBE) can be obtained from triple Massey products in the Fukaya categories of square-tiled surfaces. Along the way, we give a classification result for cyclic A_∞-algebra structures on a certain Frobenius algebra associated with a pair of 1-spherical objects in terms of the equivalence classes of the corresponding solutions of the AYBE. As an application, combining our results with homological mirror symmetry for punctured tori (cf. [17]), we prove that any two simple vector bundles on a cycle of projective lines are related by a sequence of 1-spherical twists and their inverses.

It follows from the work of Burban and Drozd [6] that for nodal curves C, the derived category of modules over the Auslander order AC provides a categorical (smooth and proper) resolution of the category of perfect complexes Perf(C). On the A-side, it follows from the work of Haiden-Katzarkov-Kontsevich [10] that for punctured surfaces X with stops Λ at their boundary, the partially wrapped Fukaya category W(X,Λ) provides a categorical (smooth and proper) resolution of the compact Fukaya category F(X). Inspired by this analogy, we establish an equivalence between the derived cate- gory of modules over the Auslander orders over certain nodal stacky curves and partially wrapped Fukaya categories associated to punctured surfaces of arbitrary genus equipped with stops at their boundary. As an application, we deduce equivalences between derived categories of coherent sheaves (resp. perfect complexes) on such nodal stacky curves and the wrapped (resp. compact) Fukaya categories of punctured surfaces of arbitrary genus.

A Teichmüller space Teich is a quotient of the space of all complex structures on a given manifoldM by the connected components of the group of diffeomorphisms. The mapping class group Γ ofM is the group of connected components of the diffeomorphism group. The moduli problems can be understood as statements about the Γ-action on Teich. I will describe the mapping class group and the Teichmüller space for a hyperkähler manifold. It turns out that this action is ergodic. We use the ergodicity to show that a hyperkähler manifold is never Kobayashi hyperbolic.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.