### Working paper

## Inverse Galois problem for del Pezzo surfaces over finite fields

In a previous paper we established that for any del Pezzo surface Y of degree at least 4, the affine cone X over Y embedded via a pluri-anticanonical linear system admits an effective Ga-action. In particular, the group Aut(X) is infinite dimensional. In contrast, we show in this note that for a del Pezzo surface Y of degree at most 2 the generalized cones X as above do not admit any non-trivial action of a unipotent algebraic group.

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary field $\bbk$ of characteristic zero.

Using Stepanov’s method, we obtain an upper bound for the cardinality of the intersection of additive shifts of several multiplicative subgroups of a finite field. The resulting inequality is applied to a question dealing with the additive decomposability of subgroups.

The textbook contains necessary information about universal and classical algebras, systems of axioms for the basic algebraic structures (groupoid, monoid, semi-groups, groups, partial orders, rings, fields). The basic cryptographic algorithms are described. Error-correcting codes - linear, cyclic, BCH are considered. Algorithms for designing of such codes are given. Many examples are shown. It is put in a basis of the book long-term experience of teaching by authors the discipline «Discrete mathematics» at the business informatics faculty, at the computer science faculty of National research university Higher school of economics, and at the automatics and computer technique faculty of National research university Moscow power engineering institute. The book is intended for the students of a bachelor degree, trained at the computer science faculties in the directions 09.03.01 Informatics and computational technique, 09.03.02 Informational systems and technologies, 09.03.03 Applied informatics, 09.03.04 Software Engineering, and also for IT experts and developers of software products.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.