### Working paper

## Integrality of Framing and Geometric Origin of 2-functions

The EA-matrix integrals, introduced in Barannikov (Comptes Rendus Math 348:359–362, hal-00102085 (2006)), are studied in the case of graded associative algebras with odd or even scalar product. I prove that the EA-matrix integrals for associative algebras with scalar product are integrals of equivariantly closed differential forms with respect to the Lie algebra 𝑔𝑙(𝐴) .

A 3D shape of an object is N-fold rotational-symmetric if the shape is invariant for 360/N degree rotations about an axis. Human observers are sensitive to the 2D rotational-symmetry of a retinal image, but they are less sensitive than they are to 2D mirror-symmetry, which involves invariance to reflection across an axis. Note that perception of the mirror-symmetry of a 2D image and a 3D shape has been well studied, where it has been shown that observers are sensitive to the mirror-symmetry of a 3D shape, and that 3D mirror-symmetry plays a critical role in the veridical perception of a 3D shape from its 2D image. On the other hand, the perception of rotational-symmetry, especially 3D rotational-symmetry, has received very little study. In this paper, we derive the geometrical properties of 2D and 3D rotational-symmetry and compare them to the geometrical properties of mirror-symmetry. Then, we discuss perceptual differences between mirror- and rotational-symmetry based on this comparison. We found that rotational-symmetry has many geometrical properties that are similar to the geometrical properties of mirror-symmetry, but note that the 2D projection of a 3D rotational-symmetrical shape is more complex computationally than the 2D projection of a 3D mirror-symmetrical shape. This computational difficulty could make the human visual system less sensitive to the rotational-symmetry of a 3D shape than its mirror-symmetry.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas.

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class associated to Euler's Gamma-function. We illustrate in the case of toric varieties, toric complete intersections and Grassmannians how this conjecture follows from mirror symmetry. We also prove that Gamma conjecture is compatible with taking hyperplane sections, and give a heuristic argument how the mirror oscillatory integral and the Gamma class for the projective space arise from the polynomial loop space.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.